Properties

Label 630.6.a.o
Level $630$
Weight $6$
Character orbit 630.a
Self dual yes
Analytic conductor $101.042$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(1,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.041806482\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} + 16 q^{4} + 25 q^{5} + 49 q^{7} + 64 q^{8} + 100 q^{10} - 152 q^{11} - 314 q^{13} + 196 q^{14} + 256 q^{16} + 266 q^{17} - 2476 q^{19} + 400 q^{20} - 608 q^{22} - 3332 q^{23} + 625 q^{25}+ \cdots + 9604 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 0 16.0000 25.0000 0 49.0000 64.0000 0 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.6.a.o 1
3.b odd 2 1 210.6.a.a 1
15.d odd 2 1 1050.6.a.m 1
15.e even 4 2 1050.6.g.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.6.a.a 1 3.b odd 2 1
630.6.a.o 1 1.a even 1 1 trivial
1050.6.a.m 1 15.d odd 2 1
1050.6.g.n 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11} + 152 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(630))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 25 \) Copy content Toggle raw display
$7$ \( T - 49 \) Copy content Toggle raw display
$11$ \( T + 152 \) Copy content Toggle raw display
$13$ \( T + 314 \) Copy content Toggle raw display
$17$ \( T - 266 \) Copy content Toggle raw display
$19$ \( T + 2476 \) Copy content Toggle raw display
$23$ \( T + 3332 \) Copy content Toggle raw display
$29$ \( T - 1674 \) Copy content Toggle raw display
$31$ \( T + 9272 \) Copy content Toggle raw display
$37$ \( T - 5014 \) Copy content Toggle raw display
$41$ \( T + 3622 \) Copy content Toggle raw display
$43$ \( T - 3564 \) Copy content Toggle raw display
$47$ \( T + 5048 \) Copy content Toggle raw display
$53$ \( T + 13446 \) Copy content Toggle raw display
$59$ \( T + 30332 \) Copy content Toggle raw display
$61$ \( T - 31150 \) Copy content Toggle raw display
$67$ \( T + 6132 \) Copy content Toggle raw display
$71$ \( T + 55084 \) Copy content Toggle raw display
$73$ \( T - 57346 \) Copy content Toggle raw display
$79$ \( T - 43368 \) Copy content Toggle raw display
$83$ \( T + 53292 \) Copy content Toggle raw display
$89$ \( T + 22150 \) Copy content Toggle raw display
$97$ \( T - 87610 \) Copy content Toggle raw display
show more
show less