Properties

Label 630.6.a.u.1.1
Level $630$
Weight $6$
Character 630.1
Self dual yes
Analytic conductor $101.042$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(1,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.041806482\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3369}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 842 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(29.5215\) of defining polynomial
Character \(\chi\) \(=\) 630.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +25.0000 q^{5} -49.0000 q^{7} -64.0000 q^{8} -100.000 q^{10} -566.565 q^{11} +238.823 q^{13} +196.000 q^{14} +256.000 q^{16} +854.306 q^{17} +1845.13 q^{19} +400.000 q^{20} +2266.26 q^{22} -4128.23 q^{23} +625.000 q^{25} -955.293 q^{26} -784.000 q^{28} +7220.18 q^{29} +4902.39 q^{31} -1024.00 q^{32} -3417.22 q^{34} -1225.00 q^{35} -3401.81 q^{37} -7380.52 q^{38} -1600.00 q^{40} -17843.1 q^{41} -3416.29 q^{43} -9065.03 q^{44} +16512.9 q^{46} +13268.0 q^{47} +2401.00 q^{49} -2500.00 q^{50} +3821.17 q^{52} -23114.4 q^{53} -14164.1 q^{55} +3136.00 q^{56} -28880.7 q^{58} -18129.6 q^{59} -32874.7 q^{61} -19609.6 q^{62} +4096.00 q^{64} +5970.58 q^{65} +66036.8 q^{67} +13668.9 q^{68} +4900.00 q^{70} +10950.5 q^{71} +39440.9 q^{73} +13607.2 q^{74} +29522.1 q^{76} +27761.7 q^{77} +61458.3 q^{79} +6400.00 q^{80} +71372.3 q^{82} -5609.17 q^{83} +21357.7 q^{85} +13665.1 q^{86} +36260.1 q^{88} -126028. q^{89} -11702.3 q^{91} -66051.7 q^{92} -53072.1 q^{94} +46128.2 q^{95} -138769. q^{97} -9604.00 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} + 50 q^{5} - 98 q^{7} - 128 q^{8} - 200 q^{10} - 959 q^{11} - 393 q^{13} + 392 q^{14} + 512 q^{16} + 2231 q^{17} + 3342 q^{19} + 800 q^{20} + 3836 q^{22} + 450 q^{23} + 1250 q^{25}+ \cdots - 19208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −100.000 −0.316228
\(11\) −566.565 −1.41178 −0.705891 0.708320i \(-0.749453\pi\)
−0.705891 + 0.708320i \(0.749453\pi\)
\(12\) 0 0
\(13\) 238.823 0.391939 0.195969 0.980610i \(-0.437215\pi\)
0.195969 + 0.980610i \(0.437215\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 854.306 0.716954 0.358477 0.933539i \(-0.383296\pi\)
0.358477 + 0.933539i \(0.383296\pi\)
\(18\) 0 0
\(19\) 1845.13 1.17258 0.586290 0.810101i \(-0.300588\pi\)
0.586290 + 0.810101i \(0.300588\pi\)
\(20\) 400.000 0.223607
\(21\) 0 0
\(22\) 2266.26 0.998281
\(23\) −4128.23 −1.62721 −0.813607 0.581416i \(-0.802499\pi\)
−0.813607 + 0.581416i \(0.802499\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −955.293 −0.277142
\(27\) 0 0
\(28\) −784.000 −0.188982
\(29\) 7220.18 1.59424 0.797119 0.603822i \(-0.206356\pi\)
0.797119 + 0.603822i \(0.206356\pi\)
\(30\) 0 0
\(31\) 4902.39 0.916229 0.458115 0.888893i \(-0.348525\pi\)
0.458115 + 0.888893i \(0.348525\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −3417.22 −0.506963
\(35\) −1225.00 −0.169031
\(36\) 0 0
\(37\) −3401.81 −0.408513 −0.204256 0.978917i \(-0.565478\pi\)
−0.204256 + 0.978917i \(0.565478\pi\)
\(38\) −7380.52 −0.829140
\(39\) 0 0
\(40\) −1600.00 −0.158114
\(41\) −17843.1 −1.65772 −0.828858 0.559459i \(-0.811009\pi\)
−0.828858 + 0.559459i \(0.811009\pi\)
\(42\) 0 0
\(43\) −3416.29 −0.281762 −0.140881 0.990027i \(-0.544994\pi\)
−0.140881 + 0.990027i \(0.544994\pi\)
\(44\) −9065.03 −0.705891
\(45\) 0 0
\(46\) 16512.9 1.15061
\(47\) 13268.0 0.876116 0.438058 0.898947i \(-0.355666\pi\)
0.438058 + 0.898947i \(0.355666\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) −2500.00 −0.141421
\(51\) 0 0
\(52\) 3821.17 0.195969
\(53\) −23114.4 −1.13030 −0.565148 0.824989i \(-0.691181\pi\)
−0.565148 + 0.824989i \(0.691181\pi\)
\(54\) 0 0
\(55\) −14164.1 −0.631368
\(56\) 3136.00 0.133631
\(57\) 0 0
\(58\) −28880.7 −1.12730
\(59\) −18129.6 −0.678044 −0.339022 0.940778i \(-0.610096\pi\)
−0.339022 + 0.940778i \(0.610096\pi\)
\(60\) 0 0
\(61\) −32874.7 −1.13120 −0.565598 0.824681i \(-0.691354\pi\)
−0.565598 + 0.824681i \(0.691354\pi\)
\(62\) −19609.6 −0.647872
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 5970.58 0.175280
\(66\) 0 0
\(67\) 66036.8 1.79721 0.898606 0.438757i \(-0.144581\pi\)
0.898606 + 0.438757i \(0.144581\pi\)
\(68\) 13668.9 0.358477
\(69\) 0 0
\(70\) 4900.00 0.119523
\(71\) 10950.5 0.257803 0.128901 0.991657i \(-0.458855\pi\)
0.128901 + 0.991657i \(0.458855\pi\)
\(72\) 0 0
\(73\) 39440.9 0.866243 0.433122 0.901336i \(-0.357412\pi\)
0.433122 + 0.901336i \(0.357412\pi\)
\(74\) 13607.2 0.288862
\(75\) 0 0
\(76\) 29522.1 0.586290
\(77\) 27761.7 0.533604
\(78\) 0 0
\(79\) 61458.3 1.10793 0.553966 0.832539i \(-0.313114\pi\)
0.553966 + 0.832539i \(0.313114\pi\)
\(80\) 6400.00 0.111803
\(81\) 0 0
\(82\) 71372.3 1.17218
\(83\) −5609.17 −0.0893723 −0.0446862 0.999001i \(-0.514229\pi\)
−0.0446862 + 0.999001i \(0.514229\pi\)
\(84\) 0 0
\(85\) 21357.7 0.320632
\(86\) 13665.1 0.199236
\(87\) 0 0
\(88\) 36260.1 0.499140
\(89\) −126028. −1.68652 −0.843261 0.537505i \(-0.819367\pi\)
−0.843261 + 0.537505i \(0.819367\pi\)
\(90\) 0 0
\(91\) −11702.3 −0.148139
\(92\) −66051.7 −0.813607
\(93\) 0 0
\(94\) −53072.1 −0.619507
\(95\) 46128.2 0.524394
\(96\) 0 0
\(97\) −138769. −1.49748 −0.748742 0.662862i \(-0.769342\pi\)
−0.748742 + 0.662862i \(0.769342\pi\)
\(98\) −9604.00 −0.101015
\(99\) 0 0
\(100\) 10000.0 0.100000
\(101\) −63472.7 −0.619133 −0.309566 0.950878i \(-0.600184\pi\)
−0.309566 + 0.950878i \(0.600184\pi\)
\(102\) 0 0
\(103\) 11842.2 0.109986 0.0549931 0.998487i \(-0.482486\pi\)
0.0549931 + 0.998487i \(0.482486\pi\)
\(104\) −15284.7 −0.138571
\(105\) 0 0
\(106\) 92457.5 0.799240
\(107\) 140875. 1.18953 0.594765 0.803900i \(-0.297245\pi\)
0.594765 + 0.803900i \(0.297245\pi\)
\(108\) 0 0
\(109\) −92044.5 −0.742047 −0.371024 0.928623i \(-0.620993\pi\)
−0.371024 + 0.928623i \(0.620993\pi\)
\(110\) 56656.5 0.446445
\(111\) 0 0
\(112\) −12544.0 −0.0944911
\(113\) −10705.3 −0.0788685 −0.0394343 0.999222i \(-0.512556\pi\)
−0.0394343 + 0.999222i \(0.512556\pi\)
\(114\) 0 0
\(115\) −103206. −0.727712
\(116\) 115523. 0.797119
\(117\) 0 0
\(118\) 72518.3 0.479449
\(119\) −41861.0 −0.270983
\(120\) 0 0
\(121\) 159944. 0.993129
\(122\) 131499. 0.799876
\(123\) 0 0
\(124\) 78438.3 0.458115
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −37867.2 −0.208331 −0.104165 0.994560i \(-0.533217\pi\)
−0.104165 + 0.994560i \(0.533217\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) −23882.3 −0.123942
\(131\) −21844.3 −0.111214 −0.0556070 0.998453i \(-0.517709\pi\)
−0.0556070 + 0.998453i \(0.517709\pi\)
\(132\) 0 0
\(133\) −90411.3 −0.443194
\(134\) −264147. −1.27082
\(135\) 0 0
\(136\) −54675.6 −0.253481
\(137\) −279896. −1.27408 −0.637038 0.770832i \(-0.719841\pi\)
−0.637038 + 0.770832i \(0.719841\pi\)
\(138\) 0 0
\(139\) 22107.7 0.0970527 0.0485263 0.998822i \(-0.484548\pi\)
0.0485263 + 0.998822i \(0.484548\pi\)
\(140\) −19600.0 −0.0845154
\(141\) 0 0
\(142\) −43801.9 −0.182294
\(143\) −135309. −0.553332
\(144\) 0 0
\(145\) 180505. 0.712965
\(146\) −157764. −0.612526
\(147\) 0 0
\(148\) −54429.0 −0.204256
\(149\) 515664. 1.90284 0.951418 0.307903i \(-0.0996272\pi\)
0.951418 + 0.307903i \(0.0996272\pi\)
\(150\) 0 0
\(151\) 92725.5 0.330946 0.165473 0.986214i \(-0.447085\pi\)
0.165473 + 0.986214i \(0.447085\pi\)
\(152\) −118088. −0.414570
\(153\) 0 0
\(154\) −111047. −0.377315
\(155\) 122560. 0.409750
\(156\) 0 0
\(157\) −420486. −1.36145 −0.680726 0.732538i \(-0.738335\pi\)
−0.680726 + 0.732538i \(0.738335\pi\)
\(158\) −245833. −0.783426
\(159\) 0 0
\(160\) −25600.0 −0.0790569
\(161\) 202283. 0.615029
\(162\) 0 0
\(163\) −473380. −1.39554 −0.697768 0.716324i \(-0.745823\pi\)
−0.697768 + 0.716324i \(0.745823\pi\)
\(164\) −285489. −0.828858
\(165\) 0 0
\(166\) 22436.7 0.0631958
\(167\) 99103.8 0.274979 0.137489 0.990503i \(-0.456097\pi\)
0.137489 + 0.990503i \(0.456097\pi\)
\(168\) 0 0
\(169\) −314257. −0.846384
\(170\) −85430.6 −0.226721
\(171\) 0 0
\(172\) −54660.6 −0.140881
\(173\) −491611. −1.24884 −0.624420 0.781089i \(-0.714665\pi\)
−0.624420 + 0.781089i \(0.714665\pi\)
\(174\) 0 0
\(175\) −30625.0 −0.0755929
\(176\) −145041. −0.352946
\(177\) 0 0
\(178\) 504112. 1.19255
\(179\) 495024. 1.15476 0.577382 0.816474i \(-0.304074\pi\)
0.577382 + 0.816474i \(0.304074\pi\)
\(180\) 0 0
\(181\) −220301. −0.499828 −0.249914 0.968268i \(-0.580402\pi\)
−0.249914 + 0.968268i \(0.580402\pi\)
\(182\) 46809.3 0.104750
\(183\) 0 0
\(184\) 264207. 0.575307
\(185\) −85045.2 −0.182692
\(186\) 0 0
\(187\) −484020. −1.01218
\(188\) 212288. 0.438058
\(189\) 0 0
\(190\) −184513. −0.370803
\(191\) −926661. −1.83797 −0.918983 0.394296i \(-0.870988\pi\)
−0.918983 + 0.394296i \(0.870988\pi\)
\(192\) 0 0
\(193\) −727645. −1.40613 −0.703066 0.711125i \(-0.748186\pi\)
−0.703066 + 0.711125i \(0.748186\pi\)
\(194\) 555075. 1.05888
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −294843. −0.541284 −0.270642 0.962680i \(-0.587236\pi\)
−0.270642 + 0.962680i \(0.587236\pi\)
\(198\) 0 0
\(199\) 449223. 0.804136 0.402068 0.915610i \(-0.368292\pi\)
0.402068 + 0.915610i \(0.368292\pi\)
\(200\) −40000.0 −0.0707107
\(201\) 0 0
\(202\) 253891. 0.437793
\(203\) −353789. −0.602565
\(204\) 0 0
\(205\) −446077. −0.741353
\(206\) −47368.6 −0.0777719
\(207\) 0 0
\(208\) 61138.7 0.0979847
\(209\) −1.04538e6 −1.65543
\(210\) 0 0
\(211\) −45152.5 −0.0698193 −0.0349096 0.999390i \(-0.511114\pi\)
−0.0349096 + 0.999390i \(0.511114\pi\)
\(212\) −369830. −0.565148
\(213\) 0 0
\(214\) −563501. −0.841125
\(215\) −85407.1 −0.126008
\(216\) 0 0
\(217\) −240217. −0.346302
\(218\) 368178. 0.524707
\(219\) 0 0
\(220\) −226626. −0.315684
\(221\) 204028. 0.281002
\(222\) 0 0
\(223\) −1.10352e6 −1.48600 −0.743001 0.669291i \(-0.766598\pi\)
−0.743001 + 0.669291i \(0.766598\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 42821.3 0.0557685
\(227\) −108706. −0.140020 −0.0700101 0.997546i \(-0.522303\pi\)
−0.0700101 + 0.997546i \(0.522303\pi\)
\(228\) 0 0
\(229\) −936787. −1.18046 −0.590231 0.807234i \(-0.700963\pi\)
−0.590231 + 0.807234i \(0.700963\pi\)
\(230\) 412823. 0.514570
\(231\) 0 0
\(232\) −462092. −0.563648
\(233\) −1.03380e6 −1.24752 −0.623760 0.781616i \(-0.714396\pi\)
−0.623760 + 0.781616i \(0.714396\pi\)
\(234\) 0 0
\(235\) 331701. 0.391811
\(236\) −290073. −0.339022
\(237\) 0 0
\(238\) 167444. 0.191614
\(239\) −277682. −0.314451 −0.157226 0.987563i \(-0.550255\pi\)
−0.157226 + 0.987563i \(0.550255\pi\)
\(240\) 0 0
\(241\) 48925.2 0.0542613 0.0271307 0.999632i \(-0.491363\pi\)
0.0271307 + 0.999632i \(0.491363\pi\)
\(242\) −639778. −0.702249
\(243\) 0 0
\(244\) −525996. −0.565598
\(245\) 60025.0 0.0638877
\(246\) 0 0
\(247\) 440660. 0.459580
\(248\) −313753. −0.323936
\(249\) 0 0
\(250\) −62500.0 −0.0632456
\(251\) 404400. 0.405161 0.202580 0.979266i \(-0.435067\pi\)
0.202580 + 0.979266i \(0.435067\pi\)
\(252\) 0 0
\(253\) 2.33891e6 2.29727
\(254\) 151469. 0.147312
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.98063e6 −1.87055 −0.935277 0.353918i \(-0.884849\pi\)
−0.935277 + 0.353918i \(0.884849\pi\)
\(258\) 0 0
\(259\) 166689. 0.154403
\(260\) 95529.3 0.0876401
\(261\) 0 0
\(262\) 87377.1 0.0786401
\(263\) −1.22576e6 −1.09274 −0.546371 0.837544i \(-0.683991\pi\)
−0.546371 + 0.837544i \(0.683991\pi\)
\(264\) 0 0
\(265\) −577859. −0.505484
\(266\) 361645. 0.313385
\(267\) 0 0
\(268\) 1.05659e6 0.898606
\(269\) 975012. 0.821541 0.410770 0.911739i \(-0.365260\pi\)
0.410770 + 0.911739i \(0.365260\pi\)
\(270\) 0 0
\(271\) 1.14855e6 0.950007 0.475003 0.879984i \(-0.342447\pi\)
0.475003 + 0.879984i \(0.342447\pi\)
\(272\) 218702. 0.179238
\(273\) 0 0
\(274\) 1.11958e6 0.900908
\(275\) −354103. −0.282356
\(276\) 0 0
\(277\) −1.13962e6 −0.892405 −0.446203 0.894932i \(-0.647224\pi\)
−0.446203 + 0.894932i \(0.647224\pi\)
\(278\) −88431.0 −0.0686266
\(279\) 0 0
\(280\) 78400.0 0.0597614
\(281\) 1.09886e6 0.830185 0.415092 0.909779i \(-0.363749\pi\)
0.415092 + 0.909779i \(0.363749\pi\)
\(282\) 0 0
\(283\) 1.24865e6 0.926779 0.463389 0.886155i \(-0.346633\pi\)
0.463389 + 0.886155i \(0.346633\pi\)
\(284\) 175208. 0.128901
\(285\) 0 0
\(286\) 541235. 0.391265
\(287\) 874311. 0.626558
\(288\) 0 0
\(289\) −690018. −0.485977
\(290\) −722018. −0.504142
\(291\) 0 0
\(292\) 631055. 0.433122
\(293\) −2.34742e6 −1.59743 −0.798713 0.601712i \(-0.794486\pi\)
−0.798713 + 0.601712i \(0.794486\pi\)
\(294\) 0 0
\(295\) −453239. −0.303230
\(296\) 217716. 0.144431
\(297\) 0 0
\(298\) −2.06266e6 −1.34551
\(299\) −985917. −0.637768
\(300\) 0 0
\(301\) 167398. 0.106496
\(302\) −370902. −0.234014
\(303\) 0 0
\(304\) 472353. 0.293145
\(305\) −821868. −0.505886
\(306\) 0 0
\(307\) −910969. −0.551642 −0.275821 0.961209i \(-0.588950\pi\)
−0.275821 + 0.961209i \(0.588950\pi\)
\(308\) 444187. 0.266802
\(309\) 0 0
\(310\) −490239. −0.289737
\(311\) −343622. −0.201456 −0.100728 0.994914i \(-0.532117\pi\)
−0.100728 + 0.994914i \(0.532117\pi\)
\(312\) 0 0
\(313\) 1.17662e6 0.678852 0.339426 0.940633i \(-0.389767\pi\)
0.339426 + 0.940633i \(0.389767\pi\)
\(314\) 1.68194e6 0.962691
\(315\) 0 0
\(316\) 983333. 0.553966
\(317\) −37824.3 −0.0211408 −0.0105704 0.999944i \(-0.503365\pi\)
−0.0105704 + 0.999944i \(0.503365\pi\)
\(318\) 0 0
\(319\) −4.09070e6 −2.25072
\(320\) 102400. 0.0559017
\(321\) 0 0
\(322\) −809133. −0.434891
\(323\) 1.57631e6 0.840686
\(324\) 0 0
\(325\) 149264. 0.0783877
\(326\) 1.89352e6 0.986793
\(327\) 0 0
\(328\) 1.14196e6 0.586091
\(329\) −650133. −0.331141
\(330\) 0 0
\(331\) −887735. −0.445362 −0.222681 0.974891i \(-0.571481\pi\)
−0.222681 + 0.974891i \(0.571481\pi\)
\(332\) −89746.7 −0.0446862
\(333\) 0 0
\(334\) −396415. −0.194439
\(335\) 1.65092e6 0.803737
\(336\) 0 0
\(337\) 1.88882e6 0.905972 0.452986 0.891518i \(-0.350359\pi\)
0.452986 + 0.891518i \(0.350359\pi\)
\(338\) 1.25703e6 0.598484
\(339\) 0 0
\(340\) 341722. 0.160316
\(341\) −2.77752e6 −1.29352
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 218642. 0.0996180
\(345\) 0 0
\(346\) 1.96645e6 0.883063
\(347\) −1.45856e6 −0.650280 −0.325140 0.945666i \(-0.605412\pi\)
−0.325140 + 0.945666i \(0.605412\pi\)
\(348\) 0 0
\(349\) 2.10369e6 0.924522 0.462261 0.886744i \(-0.347038\pi\)
0.462261 + 0.886744i \(0.347038\pi\)
\(350\) 122500. 0.0534522
\(351\) 0 0
\(352\) 580162. 0.249570
\(353\) −2.06037e6 −0.880053 −0.440026 0.897985i \(-0.645031\pi\)
−0.440026 + 0.897985i \(0.645031\pi\)
\(354\) 0 0
\(355\) 273762. 0.115293
\(356\) −2.01645e6 −0.843261
\(357\) 0 0
\(358\) −1.98009e6 −0.816542
\(359\) −4.34879e6 −1.78087 −0.890434 0.455112i \(-0.849599\pi\)
−0.890434 + 0.455112i \(0.849599\pi\)
\(360\) 0 0
\(361\) 928403. 0.374946
\(362\) 881204. 0.353431
\(363\) 0 0
\(364\) −187237. −0.0740694
\(365\) 986023. 0.387396
\(366\) 0 0
\(367\) −1.04777e6 −0.406072 −0.203036 0.979171i \(-0.565081\pi\)
−0.203036 + 0.979171i \(0.565081\pi\)
\(368\) −1.05683e6 −0.406803
\(369\) 0 0
\(370\) 340181. 0.129183
\(371\) 1.13260e6 0.427212
\(372\) 0 0
\(373\) 608034. 0.226285 0.113143 0.993579i \(-0.463908\pi\)
0.113143 + 0.993579i \(0.463908\pi\)
\(374\) 1.93608e6 0.715721
\(375\) 0 0
\(376\) −849153. −0.309754
\(377\) 1.72435e6 0.624844
\(378\) 0 0
\(379\) −3.95319e6 −1.41367 −0.706837 0.707376i \(-0.749879\pi\)
−0.706837 + 0.707376i \(0.749879\pi\)
\(380\) 738052. 0.262197
\(381\) 0 0
\(382\) 3.70665e6 1.29964
\(383\) 3.63893e6 1.26758 0.633792 0.773503i \(-0.281497\pi\)
0.633792 + 0.773503i \(0.281497\pi\)
\(384\) 0 0
\(385\) 694042. 0.238635
\(386\) 2.91058e6 0.994285
\(387\) 0 0
\(388\) −2.22030e6 −0.748742
\(389\) 4.41302e6 1.47864 0.739319 0.673355i \(-0.235147\pi\)
0.739319 + 0.673355i \(0.235147\pi\)
\(390\) 0 0
\(391\) −3.52677e6 −1.16664
\(392\) −153664. −0.0505076
\(393\) 0 0
\(394\) 1.17937e6 0.382746
\(395\) 1.53646e6 0.495482
\(396\) 0 0
\(397\) 700578. 0.223090 0.111545 0.993759i \(-0.464420\pi\)
0.111545 + 0.993759i \(0.464420\pi\)
\(398\) −1.79689e6 −0.568610
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) 4.39067e6 1.36355 0.681774 0.731563i \(-0.261209\pi\)
0.681774 + 0.731563i \(0.261209\pi\)
\(402\) 0 0
\(403\) 1.17081e6 0.359106
\(404\) −1.01556e6 −0.309566
\(405\) 0 0
\(406\) 1.41516e6 0.426078
\(407\) 1.92735e6 0.576731
\(408\) 0 0
\(409\) 2.81587e6 0.832347 0.416173 0.909285i \(-0.363371\pi\)
0.416173 + 0.909285i \(0.363371\pi\)
\(410\) 1.78431e6 0.524216
\(411\) 0 0
\(412\) 189475. 0.0549931
\(413\) 888349. 0.256276
\(414\) 0 0
\(415\) −140229. −0.0399685
\(416\) −244555. −0.0692856
\(417\) 0 0
\(418\) 4.18154e6 1.17057
\(419\) 6.90421e6 1.92123 0.960614 0.277887i \(-0.0896342\pi\)
0.960614 + 0.277887i \(0.0896342\pi\)
\(420\) 0 0
\(421\) −3.17289e6 −0.872468 −0.436234 0.899833i \(-0.643688\pi\)
−0.436234 + 0.899833i \(0.643688\pi\)
\(422\) 180610. 0.0493697
\(423\) 0 0
\(424\) 1.47932e6 0.399620
\(425\) 533941. 0.143391
\(426\) 0 0
\(427\) 1.61086e6 0.427552
\(428\) 2.25400e6 0.594765
\(429\) 0 0
\(430\) 341629. 0.0891011
\(431\) 3.06122e6 0.793783 0.396891 0.917866i \(-0.370089\pi\)
0.396891 + 0.917866i \(0.370089\pi\)
\(432\) 0 0
\(433\) −2.16725e6 −0.555508 −0.277754 0.960652i \(-0.589590\pi\)
−0.277754 + 0.960652i \(0.589590\pi\)
\(434\) 960869. 0.244873
\(435\) 0 0
\(436\) −1.47271e6 −0.371024
\(437\) −7.61712e6 −1.90804
\(438\) 0 0
\(439\) −4.15793e6 −1.02971 −0.514856 0.857277i \(-0.672155\pi\)
−0.514856 + 0.857277i \(0.672155\pi\)
\(440\) 906503. 0.223222
\(441\) 0 0
\(442\) −816112. −0.198698
\(443\) −4.51661e6 −1.09346 −0.546730 0.837309i \(-0.684128\pi\)
−0.546730 + 0.837309i \(0.684128\pi\)
\(444\) 0 0
\(445\) −3.15070e6 −0.754235
\(446\) 4.41409e6 1.05076
\(447\) 0 0
\(448\) −200704. −0.0472456
\(449\) 5.48241e6 1.28338 0.641691 0.766963i \(-0.278233\pi\)
0.641691 + 0.766963i \(0.278233\pi\)
\(450\) 0 0
\(451\) 1.01093e7 2.34033
\(452\) −171285. −0.0394343
\(453\) 0 0
\(454\) 434826. 0.0990092
\(455\) −292558. −0.0662497
\(456\) 0 0
\(457\) −940064. −0.210556 −0.105278 0.994443i \(-0.533573\pi\)
−0.105278 + 0.994443i \(0.533573\pi\)
\(458\) 3.74715e6 0.834713
\(459\) 0 0
\(460\) −1.65129e6 −0.363856
\(461\) −1.16158e6 −0.254563 −0.127282 0.991867i \(-0.540625\pi\)
−0.127282 + 0.991867i \(0.540625\pi\)
\(462\) 0 0
\(463\) 3.77402e6 0.818185 0.409092 0.912493i \(-0.365845\pi\)
0.409092 + 0.912493i \(0.365845\pi\)
\(464\) 1.84837e6 0.398560
\(465\) 0 0
\(466\) 4.13520e6 0.882129
\(467\) −4.28176e6 −0.908510 −0.454255 0.890872i \(-0.650094\pi\)
−0.454255 + 0.890872i \(0.650094\pi\)
\(468\) 0 0
\(469\) −3.23580e6 −0.679282
\(470\) −1.32680e6 −0.277052
\(471\) 0 0
\(472\) 1.16029e6 0.239725
\(473\) 1.93555e6 0.397787
\(474\) 0 0
\(475\) 1.15321e6 0.234516
\(476\) −669776. −0.135492
\(477\) 0 0
\(478\) 1.11073e6 0.222351
\(479\) 2.56685e6 0.511166 0.255583 0.966787i \(-0.417733\pi\)
0.255583 + 0.966787i \(0.417733\pi\)
\(480\) 0 0
\(481\) −812431. −0.160112
\(482\) −195701. −0.0383685
\(483\) 0 0
\(484\) 2.55911e6 0.496565
\(485\) −3.46922e6 −0.669695
\(486\) 0 0
\(487\) −4.25380e6 −0.812746 −0.406373 0.913707i \(-0.633207\pi\)
−0.406373 + 0.913707i \(0.633207\pi\)
\(488\) 2.10398e6 0.399938
\(489\) 0 0
\(490\) −240100. −0.0451754
\(491\) 1.94579e6 0.364244 0.182122 0.983276i \(-0.441703\pi\)
0.182122 + 0.983276i \(0.441703\pi\)
\(492\) 0 0
\(493\) 6.16825e6 1.14300
\(494\) −1.76264e6 −0.324972
\(495\) 0 0
\(496\) 1.25501e6 0.229057
\(497\) −536573. −0.0974402
\(498\) 0 0
\(499\) −1.88194e6 −0.338341 −0.169170 0.985587i \(-0.554109\pi\)
−0.169170 + 0.985587i \(0.554109\pi\)
\(500\) 250000. 0.0447214
\(501\) 0 0
\(502\) −1.61760e6 −0.286492
\(503\) 5.19370e6 0.915287 0.457643 0.889136i \(-0.348694\pi\)
0.457643 + 0.889136i \(0.348694\pi\)
\(504\) 0 0
\(505\) −1.58682e6 −0.276885
\(506\) −9.35564e6 −1.62442
\(507\) 0 0
\(508\) −605875. −0.104165
\(509\) −4.04678e6 −0.692334 −0.346167 0.938173i \(-0.612517\pi\)
−0.346167 + 0.938173i \(0.612517\pi\)
\(510\) 0 0
\(511\) −1.93260e6 −0.327409
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 7.92251e6 1.32268
\(515\) 296054. 0.0491873
\(516\) 0 0
\(517\) −7.51719e6 −1.23688
\(518\) −666755. −0.109180
\(519\) 0 0
\(520\) −382117. −0.0619709
\(521\) 6.27733e6 1.01317 0.506583 0.862191i \(-0.330908\pi\)
0.506583 + 0.862191i \(0.330908\pi\)
\(522\) 0 0
\(523\) −654780. −0.104675 −0.0523373 0.998629i \(-0.516667\pi\)
−0.0523373 + 0.998629i \(0.516667\pi\)
\(524\) −349508. −0.0556070
\(525\) 0 0
\(526\) 4.90305e6 0.772685
\(527\) 4.18815e6 0.656894
\(528\) 0 0
\(529\) 1.06060e7 1.64782
\(530\) 2.31144e6 0.357431
\(531\) 0 0
\(532\) −1.44658e6 −0.221597
\(533\) −4.26134e6 −0.649723
\(534\) 0 0
\(535\) 3.52188e6 0.531974
\(536\) −4.22636e6 −0.635410
\(537\) 0 0
\(538\) −3.90005e6 −0.580917
\(539\) −1.36032e6 −0.201683
\(540\) 0 0
\(541\) 6.93592e6 1.01885 0.509426 0.860515i \(-0.329858\pi\)
0.509426 + 0.860515i \(0.329858\pi\)
\(542\) −4.59420e6 −0.671756
\(543\) 0 0
\(544\) −874809. −0.126741
\(545\) −2.30111e6 −0.331854
\(546\) 0 0
\(547\) −5.90397e6 −0.843676 −0.421838 0.906671i \(-0.638615\pi\)
−0.421838 + 0.906671i \(0.638615\pi\)
\(548\) −4.47834e6 −0.637038
\(549\) 0 0
\(550\) 1.41641e6 0.199656
\(551\) 1.33222e7 1.86937
\(552\) 0 0
\(553\) −3.01146e6 −0.418759
\(554\) 4.55850e6 0.631026
\(555\) 0 0
\(556\) 353724. 0.0485263
\(557\) 7.75606e6 1.05926 0.529631 0.848228i \(-0.322330\pi\)
0.529631 + 0.848228i \(0.322330\pi\)
\(558\) 0 0
\(559\) −815888. −0.110434
\(560\) −313600. −0.0422577
\(561\) 0 0
\(562\) −4.39542e6 −0.587029
\(563\) 3.99224e6 0.530818 0.265409 0.964136i \(-0.414493\pi\)
0.265409 + 0.964136i \(0.414493\pi\)
\(564\) 0 0
\(565\) −267633. −0.0352711
\(566\) −4.99462e6 −0.655331
\(567\) 0 0
\(568\) −700831. −0.0911470
\(569\) −9.00859e6 −1.16648 −0.583238 0.812301i \(-0.698215\pi\)
−0.583238 + 0.812301i \(0.698215\pi\)
\(570\) 0 0
\(571\) 5.46033e6 0.700856 0.350428 0.936590i \(-0.386036\pi\)
0.350428 + 0.936590i \(0.386036\pi\)
\(572\) −2.16494e6 −0.276666
\(573\) 0 0
\(574\) −3.49724e6 −0.443043
\(575\) −2.58014e6 −0.325443
\(576\) 0 0
\(577\) −3.09221e6 −0.386660 −0.193330 0.981134i \(-0.561929\pi\)
−0.193330 + 0.981134i \(0.561929\pi\)
\(578\) 2.76007e6 0.343638
\(579\) 0 0
\(580\) 2.88807e6 0.356483
\(581\) 274849. 0.0337796
\(582\) 0 0
\(583\) 1.30958e7 1.59573
\(584\) −2.52422e6 −0.306263
\(585\) 0 0
\(586\) 9.38966e6 1.12955
\(587\) −1.20567e7 −1.44423 −0.722113 0.691776i \(-0.756829\pi\)
−0.722113 + 0.691776i \(0.756829\pi\)
\(588\) 0 0
\(589\) 9.04555e6 1.07435
\(590\) 1.81296e6 0.214416
\(591\) 0 0
\(592\) −870863. −0.102128
\(593\) −1.93528e6 −0.225999 −0.113000 0.993595i \(-0.536046\pi\)
−0.113000 + 0.993595i \(0.536046\pi\)
\(594\) 0 0
\(595\) −1.04652e6 −0.121187
\(596\) 8.25063e6 0.951418
\(597\) 0 0
\(598\) 3.94367e6 0.450970
\(599\) 1.72671e7 1.96631 0.983157 0.182762i \(-0.0585037\pi\)
0.983157 + 0.182762i \(0.0585037\pi\)
\(600\) 0 0
\(601\) −1.65345e7 −1.86726 −0.933632 0.358234i \(-0.883379\pi\)
−0.933632 + 0.358234i \(0.883379\pi\)
\(602\) −669592. −0.0753042
\(603\) 0 0
\(604\) 1.48361e6 0.165473
\(605\) 3.99861e6 0.444141
\(606\) 0 0
\(607\) −1.09509e7 −1.20636 −0.603179 0.797606i \(-0.706100\pi\)
−0.603179 + 0.797606i \(0.706100\pi\)
\(608\) −1.88941e6 −0.207285
\(609\) 0 0
\(610\) 3.28747e6 0.357715
\(611\) 3.16871e6 0.343384
\(612\) 0 0
\(613\) −1.61328e6 −0.173404 −0.0867018 0.996234i \(-0.527633\pi\)
−0.0867018 + 0.996234i \(0.527633\pi\)
\(614\) 3.64387e6 0.390070
\(615\) 0 0
\(616\) −1.77675e6 −0.188657
\(617\) −7.38770e6 −0.781262 −0.390631 0.920547i \(-0.627743\pi\)
−0.390631 + 0.920547i \(0.627743\pi\)
\(618\) 0 0
\(619\) −1.19703e6 −0.125568 −0.0627838 0.998027i \(-0.519998\pi\)
−0.0627838 + 0.998027i \(0.519998\pi\)
\(620\) 1.96096e6 0.204875
\(621\) 0 0
\(622\) 1.37449e6 0.142451
\(623\) 6.17537e6 0.637445
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −4.70648e6 −0.480021
\(627\) 0 0
\(628\) −6.72777e6 −0.680726
\(629\) −2.90619e6 −0.292885
\(630\) 0 0
\(631\) −2.53030e6 −0.252988 −0.126494 0.991967i \(-0.540372\pi\)
−0.126494 + 0.991967i \(0.540372\pi\)
\(632\) −3.93333e6 −0.391713
\(633\) 0 0
\(634\) 151297. 0.0149488
\(635\) −946679. −0.0931684
\(636\) 0 0
\(637\) 573414. 0.0559912
\(638\) 1.63628e7 1.59150
\(639\) 0 0
\(640\) −409600. −0.0395285
\(641\) −1.34506e7 −1.29299 −0.646497 0.762916i \(-0.723767\pi\)
−0.646497 + 0.762916i \(0.723767\pi\)
\(642\) 0 0
\(643\) 6.77639e6 0.646355 0.323177 0.946338i \(-0.395249\pi\)
0.323177 + 0.946338i \(0.395249\pi\)
\(644\) 3.23653e6 0.307514
\(645\) 0 0
\(646\) −6.30522e6 −0.594455
\(647\) −9.58548e6 −0.900229 −0.450115 0.892971i \(-0.648617\pi\)
−0.450115 + 0.892971i \(0.648617\pi\)
\(648\) 0 0
\(649\) 1.02716e7 0.957250
\(650\) −597058. −0.0554285
\(651\) 0 0
\(652\) −7.57409e6 −0.697768
\(653\) 3.89619e6 0.357567 0.178783 0.983888i \(-0.442784\pi\)
0.178783 + 0.983888i \(0.442784\pi\)
\(654\) 0 0
\(655\) −546107. −0.0497364
\(656\) −4.56783e6 −0.414429
\(657\) 0 0
\(658\) 2.60053e6 0.234152
\(659\) −1.32170e7 −1.18555 −0.592773 0.805370i \(-0.701967\pi\)
−0.592773 + 0.805370i \(0.701967\pi\)
\(660\) 0 0
\(661\) −7.08193e6 −0.630446 −0.315223 0.949018i \(-0.602079\pi\)
−0.315223 + 0.949018i \(0.602079\pi\)
\(662\) 3.55094e6 0.314919
\(663\) 0 0
\(664\) 358987. 0.0315979
\(665\) −2.26028e6 −0.198202
\(666\) 0 0
\(667\) −2.98066e7 −2.59417
\(668\) 1.58566e6 0.137489
\(669\) 0 0
\(670\) −6.60368e6 −0.568328
\(671\) 1.86257e7 1.59700
\(672\) 0 0
\(673\) 2.43353e6 0.207109 0.103554 0.994624i \(-0.466978\pi\)
0.103554 + 0.994624i \(0.466978\pi\)
\(674\) −7.55526e6 −0.640619
\(675\) 0 0
\(676\) −5.02810e6 −0.423192
\(677\) 6.52078e6 0.546800 0.273400 0.961900i \(-0.411852\pi\)
0.273400 + 0.961900i \(0.411852\pi\)
\(678\) 0 0
\(679\) 6.79967e6 0.565996
\(680\) −1.36689e6 −0.113360
\(681\) 0 0
\(682\) 1.11101e7 0.914654
\(683\) −1.41845e7 −1.16349 −0.581746 0.813370i \(-0.697630\pi\)
−0.581746 + 0.813370i \(0.697630\pi\)
\(684\) 0 0
\(685\) −6.99740e6 −0.569784
\(686\) 470596. 0.0381802
\(687\) 0 0
\(688\) −874569. −0.0704406
\(689\) −5.52025e6 −0.443007
\(690\) 0 0
\(691\) −1.77069e7 −1.41074 −0.705371 0.708839i \(-0.749219\pi\)
−0.705371 + 0.708839i \(0.749219\pi\)
\(692\) −7.86578e6 −0.624420
\(693\) 0 0
\(694\) 5.83424e6 0.459818
\(695\) 552694. 0.0434033
\(696\) 0 0
\(697\) −1.52434e7 −1.18851
\(698\) −8.41474e6 −0.653736
\(699\) 0 0
\(700\) −490000. −0.0377964
\(701\) 977570. 0.0751369 0.0375684 0.999294i \(-0.488039\pi\)
0.0375684 + 0.999294i \(0.488039\pi\)
\(702\) 0 0
\(703\) −6.27678e6 −0.479014
\(704\) −2.32065e6 −0.176473
\(705\) 0 0
\(706\) 8.24148e6 0.622291
\(707\) 3.11016e6 0.234010
\(708\) 0 0
\(709\) 1.92882e6 0.144104 0.0720520 0.997401i \(-0.477045\pi\)
0.0720520 + 0.997401i \(0.477045\pi\)
\(710\) −1.09505e6 −0.0815243
\(711\) 0 0
\(712\) 8.06579e6 0.596275
\(713\) −2.02382e7 −1.49090
\(714\) 0 0
\(715\) −3.38272e6 −0.247458
\(716\) 7.92038e6 0.577382
\(717\) 0 0
\(718\) 1.73951e7 1.25926
\(719\) −6.44948e6 −0.465267 −0.232634 0.972564i \(-0.574734\pi\)
−0.232634 + 0.972564i \(0.574734\pi\)
\(720\) 0 0
\(721\) −580266. −0.0415708
\(722\) −3.71361e6 −0.265127
\(723\) 0 0
\(724\) −3.52482e6 −0.249914
\(725\) 4.51261e6 0.318848
\(726\) 0 0
\(727\) −7.11269e6 −0.499112 −0.249556 0.968360i \(-0.580285\pi\)
−0.249556 + 0.968360i \(0.580285\pi\)
\(728\) 748949. 0.0523750
\(729\) 0 0
\(730\) −3.94409e6 −0.273930
\(731\) −2.91855e6 −0.202011
\(732\) 0 0
\(733\) 2.02361e6 0.139113 0.0695565 0.997578i \(-0.477842\pi\)
0.0695565 + 0.997578i \(0.477842\pi\)
\(734\) 4.19110e6 0.287136
\(735\) 0 0
\(736\) 4.22731e6 0.287653
\(737\) −3.74141e7 −2.53727
\(738\) 0 0
\(739\) 1.64319e7 1.10682 0.553409 0.832910i \(-0.313327\pi\)
0.553409 + 0.832910i \(0.313327\pi\)
\(740\) −1.36072e6 −0.0913462
\(741\) 0 0
\(742\) −4.53042e6 −0.302084
\(743\) 1.22465e7 0.813841 0.406921 0.913464i \(-0.366603\pi\)
0.406921 + 0.913464i \(0.366603\pi\)
\(744\) 0 0
\(745\) 1.28916e7 0.850974
\(746\) −2.43214e6 −0.160008
\(747\) 0 0
\(748\) −7.74431e6 −0.506091
\(749\) −6.90289e6 −0.449600
\(750\) 0 0
\(751\) 1.30720e7 0.845748 0.422874 0.906189i \(-0.361021\pi\)
0.422874 + 0.906189i \(0.361021\pi\)
\(752\) 3.39661e6 0.219029
\(753\) 0 0
\(754\) −6.89739e6 −0.441831
\(755\) 2.31814e6 0.148003
\(756\) 0 0
\(757\) 1.27287e7 0.807317 0.403659 0.914910i \(-0.367738\pi\)
0.403659 + 0.914910i \(0.367738\pi\)
\(758\) 1.58127e7 0.999619
\(759\) 0 0
\(760\) −2.95221e6 −0.185401
\(761\) 2.82767e7 1.76997 0.884987 0.465616i \(-0.154167\pi\)
0.884987 + 0.465616i \(0.154167\pi\)
\(762\) 0 0
\(763\) 4.51018e6 0.280468
\(764\) −1.48266e7 −0.918983
\(765\) 0 0
\(766\) −1.45557e7 −0.896318
\(767\) −4.32976e6 −0.265752
\(768\) 0 0
\(769\) 9.22579e6 0.562584 0.281292 0.959622i \(-0.409237\pi\)
0.281292 + 0.959622i \(0.409237\pi\)
\(770\) −2.77617e6 −0.168740
\(771\) 0 0
\(772\) −1.16423e7 −0.703066
\(773\) 2.03038e7 1.22216 0.611081 0.791568i \(-0.290735\pi\)
0.611081 + 0.791568i \(0.290735\pi\)
\(774\) 0 0
\(775\) 3.06400e6 0.183246
\(776\) 8.88120e6 0.529440
\(777\) 0 0
\(778\) −1.76521e7 −1.04556
\(779\) −3.29228e7 −1.94381
\(780\) 0 0
\(781\) −6.20415e6 −0.363961
\(782\) 1.41071e7 0.824937
\(783\) 0 0
\(784\) 614656. 0.0357143
\(785\) −1.05121e7 −0.608860
\(786\) 0 0
\(787\) 9.16529e6 0.527484 0.263742 0.964593i \(-0.415043\pi\)
0.263742 + 0.964593i \(0.415043\pi\)
\(788\) −4.71749e6 −0.270642
\(789\) 0 0
\(790\) −6.14583e6 −0.350359
\(791\) 524561. 0.0298095
\(792\) 0 0
\(793\) −7.85125e6 −0.443359
\(794\) −2.80231e6 −0.157749
\(795\) 0 0
\(796\) 7.18757e6 0.402068
\(797\) 3.11124e7 1.73495 0.867477 0.497477i \(-0.165740\pi\)
0.867477 + 0.497477i \(0.165740\pi\)
\(798\) 0 0
\(799\) 1.13350e7 0.628135
\(800\) −640000. −0.0353553
\(801\) 0 0
\(802\) −1.75627e7 −0.964174
\(803\) −2.23458e7 −1.22295
\(804\) 0 0
\(805\) 5.05708e6 0.275049
\(806\) −4.68322e6 −0.253926
\(807\) 0 0
\(808\) 4.06225e6 0.218896
\(809\) 2.06869e7 1.11128 0.555642 0.831422i \(-0.312472\pi\)
0.555642 + 0.831422i \(0.312472\pi\)
\(810\) 0 0
\(811\) −9.61505e6 −0.513333 −0.256667 0.966500i \(-0.582624\pi\)
−0.256667 + 0.966500i \(0.582624\pi\)
\(812\) −5.66062e6 −0.301283
\(813\) 0 0
\(814\) −7.70938e6 −0.407811
\(815\) −1.18345e7 −0.624103
\(816\) 0 0
\(817\) −6.30349e6 −0.330389
\(818\) −1.12635e7 −0.588558
\(819\) 0 0
\(820\) −7.13723e6 −0.370677
\(821\) −2.47979e7 −1.28398 −0.641989 0.766714i \(-0.721891\pi\)
−0.641989 + 0.766714i \(0.721891\pi\)
\(822\) 0 0
\(823\) 1.03071e6 0.0530441 0.0265220 0.999648i \(-0.491557\pi\)
0.0265220 + 0.999648i \(0.491557\pi\)
\(824\) −757898. −0.0388860
\(825\) 0 0
\(826\) −3.55340e6 −0.181215
\(827\) 1.95090e7 0.991907 0.495953 0.868349i \(-0.334819\pi\)
0.495953 + 0.868349i \(0.334819\pi\)
\(828\) 0 0
\(829\) 8.24989e6 0.416929 0.208464 0.978030i \(-0.433153\pi\)
0.208464 + 0.978030i \(0.433153\pi\)
\(830\) 560917. 0.0282620
\(831\) 0 0
\(832\) 978220. 0.0489923
\(833\) 2.05119e6 0.102422
\(834\) 0 0
\(835\) 2.47760e6 0.122974
\(836\) −1.67262e7 −0.827714
\(837\) 0 0
\(838\) −2.76168e7 −1.35851
\(839\) −3.41432e6 −0.167456 −0.0837278 0.996489i \(-0.526683\pi\)
−0.0837278 + 0.996489i \(0.526683\pi\)
\(840\) 0 0
\(841\) 3.16199e7 1.54160
\(842\) 1.26916e7 0.616928
\(843\) 0 0
\(844\) −722440. −0.0349096
\(845\) −7.85641e6 −0.378514
\(846\) 0 0
\(847\) −7.83728e6 −0.375368
\(848\) −5.91728e6 −0.282574
\(849\) 0 0
\(850\) −2.13577e6 −0.101393
\(851\) 1.40435e7 0.664737
\(852\) 0 0
\(853\) −1.46769e7 −0.690657 −0.345328 0.938482i \(-0.612232\pi\)
−0.345328 + 0.938482i \(0.612232\pi\)
\(854\) −6.44345e6 −0.302325
\(855\) 0 0
\(856\) −9.01602e6 −0.420562
\(857\) 3.15902e7 1.46927 0.734634 0.678464i \(-0.237354\pi\)
0.734634 + 0.678464i \(0.237354\pi\)
\(858\) 0 0
\(859\) 7.92194e6 0.366310 0.183155 0.983084i \(-0.441369\pi\)
0.183155 + 0.983084i \(0.441369\pi\)
\(860\) −1.36651e6 −0.0630040
\(861\) 0 0
\(862\) −1.22449e7 −0.561289
\(863\) 9.96301e6 0.455369 0.227685 0.973735i \(-0.426884\pi\)
0.227685 + 0.973735i \(0.426884\pi\)
\(864\) 0 0
\(865\) −1.22903e7 −0.558498
\(866\) 8.66901e6 0.392803
\(867\) 0 0
\(868\) −3.84348e6 −0.173151
\(869\) −3.48201e7 −1.56416
\(870\) 0 0
\(871\) 1.57711e7 0.704396
\(872\) 5.89085e6 0.262353
\(873\) 0 0
\(874\) 3.04685e7 1.34919
\(875\) −765625. −0.0338062
\(876\) 0 0
\(877\) −3.11495e6 −0.136758 −0.0683789 0.997659i \(-0.521783\pi\)
−0.0683789 + 0.997659i \(0.521783\pi\)
\(878\) 1.66317e7 0.728116
\(879\) 0 0
\(880\) −3.62601e6 −0.157842
\(881\) −2.47277e7 −1.07335 −0.536677 0.843787i \(-0.680321\pi\)
−0.536677 + 0.843787i \(0.680321\pi\)
\(882\) 0 0
\(883\) 1.95110e7 0.842127 0.421063 0.907031i \(-0.361657\pi\)
0.421063 + 0.907031i \(0.361657\pi\)
\(884\) 3.26445e6 0.140501
\(885\) 0 0
\(886\) 1.80664e7 0.773194
\(887\) −3.49032e7 −1.48955 −0.744777 0.667314i \(-0.767444\pi\)
−0.744777 + 0.667314i \(0.767444\pi\)
\(888\) 0 0
\(889\) 1.85549e6 0.0787416
\(890\) 1.26028e7 0.533325
\(891\) 0 0
\(892\) −1.76564e7 −0.743001
\(893\) 2.44812e7 1.02732
\(894\) 0 0
\(895\) 1.23756e7 0.516426
\(896\) 802816. 0.0334077
\(897\) 0 0
\(898\) −2.19296e7 −0.907488
\(899\) 3.53962e7 1.46069
\(900\) 0 0
\(901\) −1.97467e7 −0.810370
\(902\) −4.04370e7 −1.65487
\(903\) 0 0
\(904\) 685141. 0.0278842
\(905\) −5.50753e6 −0.223530
\(906\) 0 0
\(907\) 802947. 0.0324092 0.0162046 0.999869i \(-0.494842\pi\)
0.0162046 + 0.999869i \(0.494842\pi\)
\(908\) −1.73930e6 −0.0700101
\(909\) 0 0
\(910\) 1.17023e6 0.0468456
\(911\) −1.53636e6 −0.0613335 −0.0306667 0.999530i \(-0.509763\pi\)
−0.0306667 + 0.999530i \(0.509763\pi\)
\(912\) 0 0
\(913\) 3.17796e6 0.126174
\(914\) 3.76026e6 0.148885
\(915\) 0 0
\(916\) −1.49886e7 −0.590231
\(917\) 1.07037e6 0.0420349
\(918\) 0 0
\(919\) −1.94637e7 −0.760214 −0.380107 0.924943i \(-0.624113\pi\)
−0.380107 + 0.924943i \(0.624113\pi\)
\(920\) 6.60517e6 0.257285
\(921\) 0 0
\(922\) 4.64631e6 0.180003
\(923\) 2.61523e6 0.101043
\(924\) 0 0
\(925\) −2.12613e6 −0.0817026
\(926\) −1.50961e7 −0.578544
\(927\) 0 0
\(928\) −7.39347e6 −0.281824
\(929\) 1.60720e7 0.610987 0.305494 0.952194i \(-0.401179\pi\)
0.305494 + 0.952194i \(0.401179\pi\)
\(930\) 0 0
\(931\) 4.43016e6 0.167512
\(932\) −1.65408e7 −0.623760
\(933\) 0 0
\(934\) 1.71270e7 0.642413
\(935\) −1.21005e7 −0.452662
\(936\) 0 0
\(937\) −3.32237e7 −1.23623 −0.618114 0.786089i \(-0.712103\pi\)
−0.618114 + 0.786089i \(0.712103\pi\)
\(938\) 1.29432e7 0.480325
\(939\) 0 0
\(940\) 5.30721e6 0.195905
\(941\) −1.30088e6 −0.0478921 −0.0239461 0.999713i \(-0.507623\pi\)
−0.0239461 + 0.999713i \(0.507623\pi\)
\(942\) 0 0
\(943\) 7.36603e7 2.69746
\(944\) −4.64117e6 −0.169511
\(945\) 0 0
\(946\) −7.74219e6 −0.281278
\(947\) −9.04734e6 −0.327828 −0.163914 0.986475i \(-0.552412\pi\)
−0.163914 + 0.986475i \(0.552412\pi\)
\(948\) 0 0
\(949\) 9.41940e6 0.339514
\(950\) −4.61282e6 −0.165828
\(951\) 0 0
\(952\) 2.67910e6 0.0958070
\(953\) 2.41731e6 0.0862185 0.0431092 0.999070i \(-0.486274\pi\)
0.0431092 + 0.999070i \(0.486274\pi\)
\(954\) 0 0
\(955\) −2.31665e7 −0.821964
\(956\) −4.44291e6 −0.157226
\(957\) 0 0
\(958\) −1.02674e7 −0.361449
\(959\) 1.37149e7 0.481555
\(960\) 0 0
\(961\) −4.59568e6 −0.160524
\(962\) 3.24972e6 0.113216
\(963\) 0 0
\(964\) 782804. 0.0271307
\(965\) −1.81911e7 −0.628841
\(966\) 0 0
\(967\) 1.04638e7 0.359850 0.179925 0.983680i \(-0.442414\pi\)
0.179925 + 0.983680i \(0.442414\pi\)
\(968\) −1.02364e7 −0.351124
\(969\) 0 0
\(970\) 1.38769e7 0.473546
\(971\) −4.16932e7 −1.41911 −0.709556 0.704649i \(-0.751105\pi\)
−0.709556 + 0.704649i \(0.751105\pi\)
\(972\) 0 0
\(973\) −1.08328e6 −0.0366825
\(974\) 1.70152e7 0.574698
\(975\) 0 0
\(976\) −8.41593e6 −0.282799
\(977\) −2.60092e7 −0.871748 −0.435874 0.900008i \(-0.643561\pi\)
−0.435874 + 0.900008i \(0.643561\pi\)
\(978\) 0 0
\(979\) 7.14030e7 2.38100
\(980\) 960400. 0.0319438
\(981\) 0 0
\(982\) −7.78317e6 −0.257560
\(983\) 2.12634e7 0.701858 0.350929 0.936402i \(-0.385866\pi\)
0.350929 + 0.936402i \(0.385866\pi\)
\(984\) 0 0
\(985\) −7.37108e6 −0.242070
\(986\) −2.46730e7 −0.808220
\(987\) 0 0
\(988\) 7.05055e6 0.229790
\(989\) 1.41032e7 0.458487
\(990\) 0 0
\(991\) −3.56443e6 −0.115294 −0.0576468 0.998337i \(-0.518360\pi\)
−0.0576468 + 0.998337i \(0.518360\pi\)
\(992\) −5.02005e6 −0.161968
\(993\) 0 0
\(994\) 2.14629e6 0.0689006
\(995\) 1.12306e7 0.359620
\(996\) 0 0
\(997\) −721404. −0.0229848 −0.0114924 0.999934i \(-0.503658\pi\)
−0.0114924 + 0.999934i \(0.503658\pi\)
\(998\) 7.52776e6 0.239243
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.6.a.u.1.1 2
3.2 odd 2 70.6.a.g.1.1 2
12.11 even 2 560.6.a.m.1.2 2
15.2 even 4 350.6.c.j.99.4 4
15.8 even 4 350.6.c.j.99.1 4
15.14 odd 2 350.6.a.q.1.2 2
21.20 even 2 490.6.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.g.1.1 2 3.2 odd 2
350.6.a.q.1.2 2 15.14 odd 2
350.6.c.j.99.1 4 15.8 even 4
350.6.c.j.99.4 4 15.2 even 4
490.6.a.v.1.2 2 21.20 even 2
560.6.a.m.1.2 2 12.11 even 2
630.6.a.u.1.1 2 1.1 even 1 trivial