Properties

Label 630.6.g.e
Level $630$
Weight $6$
Character orbit 630.g
Analytic conductor $101.042$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(379,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.379");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.041806482\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 90x^{3} + 2304x^{2} - 4320x + 4050 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \beta_1 q^{2} - 16 q^{4} + (5 \beta_{5} - 15 \beta_1) q^{5} - 49 \beta_1 q^{7} - 64 \beta_1 q^{8} + ( - 20 \beta_{3} + 60) q^{10} + ( - 21 \beta_{5} - 13 \beta_{4} + \cdots + 166) q^{11} + ( - 20 \beta_{5} - 3 \beta_{4} + \cdots - 208 \beta_1) q^{13}+ \cdots - 9604 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{4} + 10 q^{5} + 320 q^{10} + 964 q^{11} + 1176 q^{14} + 1536 q^{16} + 548 q^{19} - 160 q^{20} - 450 q^{25} + 5264 q^{26} - 10012 q^{29} - 10860 q^{31} + 19584 q^{34} - 3920 q^{35} - 5120 q^{40}+ \cdots - 134660 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 90x^{3} + 2304x^{2} - 4320x + 4050 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 256\nu^{5} + 240\nu^{4} + 225\nu^{3} - 11520\nu^{2} + 579024\nu - 563085 ) / 542835 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2501\nu^{5} + 1425\nu^{4} + 12645\nu^{3} + 293490\nu^{2} - 6369264\nu + 10804320 ) / 542835 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2501\nu^{5} + 1425\nu^{4} + 12645\nu^{3} + 293490\nu^{2} - 5283594\nu + 10804320 ) / 542835 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2651\nu^{5} - 6255\nu^{4} + 5445\nu^{3} + 300240\nu^{2} - 5283594\nu - 490050 ) / 542835 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3131\nu^{5} + 6705\nu^{4} + 17595\nu^{3} - 321840\nu^{2} + 6369264\nu - 1583550 ) / 542835 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{5} + 3\beta_{2} + 66\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 24\beta_{5} + 24\beta_{4} - 45\beta _1 + 45 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -45\beta_{5} - 189\beta_{4} + 189\beta_{3} - 45\beta_{2} - 3168 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -135\beta_{5} + 135\beta_{4} - 2439\beta_{3} + 2439\beta_{2} + 7290\beta _1 + 7290 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
4.33734 4.33734i
−5.31361 + 5.31361i
0.976270 0.976270i
4.33734 + 4.33734i
−5.31361 5.31361i
0.976270 + 0.976270i
4.00000i 0 −16.0000 −51.0816 + 22.7083i 0 49.0000i 64.0000i 0 90.8331 + 204.327i
379.2 4.00000i 0 −16.0000 14.0214 + 54.1147i 0 49.0000i 64.0000i 0 216.459 56.0854i
379.3 4.00000i 0 −16.0000 42.0603 36.8230i 0 49.0000i 64.0000i 0 −147.292 168.241i
379.4 4.00000i 0 −16.0000 −51.0816 22.7083i 0 49.0000i 64.0000i 0 90.8331 204.327i
379.5 4.00000i 0 −16.0000 14.0214 54.1147i 0 49.0000i 64.0000i 0 216.459 + 56.0854i
379.6 4.00000i 0 −16.0000 42.0603 + 36.8230i 0 49.0000i 64.0000i 0 −147.292 + 168.241i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 379.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.6.g.e 6
3.b odd 2 1 210.6.g.a 6
5.b even 2 1 inner 630.6.g.e 6
15.d odd 2 1 210.6.g.a 6
15.e even 4 1 1050.6.a.bd 3
15.e even 4 1 1050.6.a.bn 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.6.g.a 6 3.b odd 2 1
210.6.g.a 6 15.d odd 2 1
630.6.g.e 6 1.a even 1 1 trivial
630.6.g.e 6 5.b even 2 1 inner
1050.6.a.bd 3 15.e even 4 1
1050.6.a.bn 3 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{3} - 482T_{11}^{2} - 53268T_{11} + 7077000 \) acting on \(S_{6}^{\mathrm{new}}(630, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 30517578125 \) Copy content Toggle raw display
$7$ \( (T^{2} + 2401)^{3} \) Copy content Toggle raw display
$11$ \( (T^{3} - 482 T^{2} + \cdots + 7077000)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 209140882583616 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 12\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( (T^{3} - 274 T^{2} + \cdots + 923937000)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{3} + 5006 T^{2} + \cdots - 305956186200)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 5430 T^{2} + \cdots - 133698013144)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 91\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( (T^{3} - 33074 T^{2} + \cdots - 780820395864)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 19\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 12\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{3} + 11688 T^{2} + \cdots + 613716110080)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots + 1578764358984)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots + 65512922963400)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 93\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots + 442045792923840)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 34\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots - 53904325080760)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 45\!\cdots\!76 \) Copy content Toggle raw display
show more
show less