Properties

Label 6336.2.a.cp.1.2
Level $6336$
Weight $2$
Character 6336.1
Self dual yes
Analytic conductor $50.593$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6336,2,Mod(1,6336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6336.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.5932147207\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 792)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 6336.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843 q^{5} +0.828427 q^{7} +1.00000 q^{11} -4.82843 q^{13} -2.00000 q^{17} +2.00000 q^{19} -2.82843 q^{23} +3.00000 q^{25} -3.65685 q^{29} -9.65685 q^{31} +2.34315 q^{35} -7.65685 q^{37} -0.343146 q^{41} +0.343146 q^{43} -12.4853 q^{47} -6.31371 q^{49} +6.82843 q^{53} +2.82843 q^{55} -1.65685 q^{59} -3.17157 q^{61} -13.6569 q^{65} +11.3137 q^{67} +4.48528 q^{71} -13.3137 q^{73} +0.828427 q^{77} -4.82843 q^{79} +9.65685 q^{83} -5.65685 q^{85} -16.0000 q^{89} -4.00000 q^{91} +5.65685 q^{95} +5.31371 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7} + 2 q^{11} - 4 q^{13} - 4 q^{17} + 4 q^{19} + 6 q^{25} + 4 q^{29} - 8 q^{31} + 16 q^{35} - 4 q^{37} - 12 q^{41} + 12 q^{43} - 8 q^{47} + 10 q^{49} + 8 q^{53} + 8 q^{59} - 12 q^{61} - 16 q^{65}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.82843 1.26491 0.632456 0.774597i \(-0.282047\pi\)
0.632456 + 0.774597i \(0.282047\pi\)
\(6\) 0 0
\(7\) 0.828427 0.313116 0.156558 0.987669i \(-0.449960\pi\)
0.156558 + 0.987669i \(0.449960\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.82843 −1.33916 −0.669582 0.742738i \(-0.733527\pi\)
−0.669582 + 0.742738i \(0.733527\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.82843 −0.589768 −0.294884 0.955533i \(-0.595281\pi\)
−0.294884 + 0.955533i \(0.595281\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.65685 −0.679061 −0.339530 0.940595i \(-0.610268\pi\)
−0.339530 + 0.940595i \(0.610268\pi\)
\(30\) 0 0
\(31\) −9.65685 −1.73442 −0.867211 0.497941i \(-0.834090\pi\)
−0.867211 + 0.497941i \(0.834090\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.34315 0.396064
\(36\) 0 0
\(37\) −7.65685 −1.25878 −0.629390 0.777090i \(-0.716695\pi\)
−0.629390 + 0.777090i \(0.716695\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.343146 −0.0535904 −0.0267952 0.999641i \(-0.508530\pi\)
−0.0267952 + 0.999641i \(0.508530\pi\)
\(42\) 0 0
\(43\) 0.343146 0.0523292 0.0261646 0.999658i \(-0.491671\pi\)
0.0261646 + 0.999658i \(0.491671\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.4853 −1.82117 −0.910583 0.413327i \(-0.864367\pi\)
−0.910583 + 0.413327i \(0.864367\pi\)
\(48\) 0 0
\(49\) −6.31371 −0.901958
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.82843 0.937957 0.468978 0.883210i \(-0.344622\pi\)
0.468978 + 0.883210i \(0.344622\pi\)
\(54\) 0 0
\(55\) 2.82843 0.381385
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.65685 −0.215704 −0.107852 0.994167i \(-0.534397\pi\)
−0.107852 + 0.994167i \(0.534397\pi\)
\(60\) 0 0
\(61\) −3.17157 −0.406078 −0.203039 0.979171i \(-0.565082\pi\)
−0.203039 + 0.979171i \(0.565082\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −13.6569 −1.69392
\(66\) 0 0
\(67\) 11.3137 1.38219 0.691095 0.722764i \(-0.257129\pi\)
0.691095 + 0.722764i \(0.257129\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.48528 0.532305 0.266152 0.963931i \(-0.414248\pi\)
0.266152 + 0.963931i \(0.414248\pi\)
\(72\) 0 0
\(73\) −13.3137 −1.55825 −0.779126 0.626868i \(-0.784337\pi\)
−0.779126 + 0.626868i \(0.784337\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.828427 0.0944080
\(78\) 0 0
\(79\) −4.82843 −0.543240 −0.271620 0.962405i \(-0.587559\pi\)
−0.271620 + 0.962405i \(0.587559\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.65685 1.05998 0.529989 0.848005i \(-0.322196\pi\)
0.529989 + 0.848005i \(0.322196\pi\)
\(84\) 0 0
\(85\) −5.65685 −0.613572
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −16.0000 −1.69600 −0.847998 0.529999i \(-0.822192\pi\)
−0.847998 + 0.529999i \(0.822192\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.65685 0.580381
\(96\) 0 0
\(97\) 5.31371 0.539525 0.269763 0.962927i \(-0.413055\pi\)
0.269763 + 0.962927i \(0.413055\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) 11.1716 1.07004 0.535021 0.844839i \(-0.320304\pi\)
0.535021 + 0.844839i \(0.320304\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.31371 −0.688016 −0.344008 0.938967i \(-0.611785\pi\)
−0.344008 + 0.938967i \(0.611785\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.65685 −0.151884
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) 11.1716 0.991317 0.495658 0.868518i \(-0.334927\pi\)
0.495658 + 0.868518i \(0.334927\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.9706 1.13324 0.566622 0.823978i \(-0.308250\pi\)
0.566622 + 0.823978i \(0.308250\pi\)
\(132\) 0 0
\(133\) 1.65685 0.143667
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.34315 −0.541932 −0.270966 0.962589i \(-0.587343\pi\)
−0.270966 + 0.962589i \(0.587343\pi\)
\(138\) 0 0
\(139\) −9.31371 −0.789978 −0.394989 0.918686i \(-0.629252\pi\)
−0.394989 + 0.918686i \(0.629252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.82843 −0.403773
\(144\) 0 0
\(145\) −10.3431 −0.858952
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.6569 −1.28266 −0.641330 0.767265i \(-0.721617\pi\)
−0.641330 + 0.767265i \(0.721617\pi\)
\(150\) 0 0
\(151\) 14.4853 1.17880 0.589398 0.807843i \(-0.299365\pi\)
0.589398 + 0.807843i \(0.299365\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −27.3137 −2.19389
\(156\) 0 0
\(157\) 7.65685 0.611083 0.305542 0.952179i \(-0.401162\pi\)
0.305542 + 0.952179i \(0.401162\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.34315 −0.184666
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) 10.3137 0.793362
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −19.6569 −1.49448 −0.747241 0.664553i \(-0.768622\pi\)
−0.747241 + 0.664553i \(0.768622\pi\)
\(174\) 0 0
\(175\) 2.48528 0.187870
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.6569 1.61871 0.809355 0.587320i \(-0.199817\pi\)
0.809355 + 0.587320i \(0.199817\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −21.6569 −1.59224
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.82843 0.494088 0.247044 0.969004i \(-0.420541\pi\)
0.247044 + 0.969004i \(0.420541\pi\)
\(192\) 0 0
\(193\) 4.34315 0.312626 0.156313 0.987708i \(-0.450039\pi\)
0.156313 + 0.987708i \(0.450039\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.3137 0.948562 0.474281 0.880373i \(-0.342708\pi\)
0.474281 + 0.880373i \(0.342708\pi\)
\(198\) 0 0
\(199\) 25.6569 1.81877 0.909383 0.415960i \(-0.136554\pi\)
0.909383 + 0.415960i \(0.136554\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.02944 −0.212625
\(204\) 0 0
\(205\) −0.970563 −0.0677870
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 15.6569 1.07786 0.538931 0.842350i \(-0.318828\pi\)
0.538931 + 0.842350i \(0.318828\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.970563 0.0661918
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.65685 0.649590
\(222\) 0 0
\(223\) −11.3137 −0.757622 −0.378811 0.925474i \(-0.623667\pi\)
−0.378811 + 0.925474i \(0.623667\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −26.6274 −1.76732 −0.883662 0.468126i \(-0.844929\pi\)
−0.883662 + 0.468126i \(0.844929\pi\)
\(228\) 0 0
\(229\) 18.9706 1.25361 0.626805 0.779176i \(-0.284362\pi\)
0.626805 + 0.779176i \(0.284362\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.9706 1.76690 0.883450 0.468525i \(-0.155214\pi\)
0.883450 + 0.468525i \(0.155214\pi\)
\(234\) 0 0
\(235\) −35.3137 −2.30361
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.6274 1.46365 0.731823 0.681495i \(-0.238670\pi\)
0.731823 + 0.681495i \(0.238670\pi\)
\(240\) 0 0
\(241\) 3.65685 0.235559 0.117779 0.993040i \(-0.462422\pi\)
0.117779 + 0.993040i \(0.462422\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −17.8579 −1.14090
\(246\) 0 0
\(247\) −9.65685 −0.614451
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −10.3431 −0.652854 −0.326427 0.945222i \(-0.605845\pi\)
−0.326427 + 0.945222i \(0.605845\pi\)
\(252\) 0 0
\(253\) −2.82843 −0.177822
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.31371 0.206703 0.103352 0.994645i \(-0.467043\pi\)
0.103352 + 0.994645i \(0.467043\pi\)
\(258\) 0 0
\(259\) −6.34315 −0.394144
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 29.6569 1.82872 0.914360 0.404902i \(-0.132694\pi\)
0.914360 + 0.404902i \(0.132694\pi\)
\(264\) 0 0
\(265\) 19.3137 1.18643
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.48528 −0.273472 −0.136736 0.990607i \(-0.543661\pi\)
−0.136736 + 0.990607i \(0.543661\pi\)
\(270\) 0 0
\(271\) −25.7990 −1.56718 −0.783589 0.621280i \(-0.786613\pi\)
−0.783589 + 0.621280i \(0.786613\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.00000 0.180907
\(276\) 0 0
\(277\) 31.4558 1.89000 0.944999 0.327072i \(-0.106062\pi\)
0.944999 + 0.327072i \(0.106062\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.31371 −0.0783693 −0.0391846 0.999232i \(-0.512476\pi\)
−0.0391846 + 0.999232i \(0.512476\pi\)
\(282\) 0 0
\(283\) 30.9706 1.84101 0.920504 0.390732i \(-0.127778\pi\)
0.920504 + 0.390732i \(0.127778\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.284271 −0.0167800
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) −4.68629 −0.272846
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.6569 0.789796
\(300\) 0 0
\(301\) 0.284271 0.0163851
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.97056 −0.513653
\(306\) 0 0
\(307\) 13.3137 0.759853 0.379927 0.925017i \(-0.375949\pi\)
0.379927 + 0.925017i \(0.375949\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −26.8284 −1.52130 −0.760650 0.649162i \(-0.775120\pi\)
−0.760650 + 0.649162i \(0.775120\pi\)
\(312\) 0 0
\(313\) 25.3137 1.43082 0.715408 0.698707i \(-0.246241\pi\)
0.715408 + 0.698707i \(0.246241\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.8284 −0.608185 −0.304093 0.952643i \(-0.598353\pi\)
−0.304093 + 0.952643i \(0.598353\pi\)
\(318\) 0 0
\(319\) −3.65685 −0.204745
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) −14.4853 −0.803499
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10.3431 −0.570236
\(330\) 0 0
\(331\) −18.6274 −1.02386 −0.511928 0.859029i \(-0.671068\pi\)
−0.511928 + 0.859029i \(0.671068\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 32.0000 1.74835
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.65685 −0.522948
\(342\) 0 0
\(343\) −11.0294 −0.595534
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.9706 0.696296 0.348148 0.937440i \(-0.386811\pi\)
0.348148 + 0.937440i \(0.386811\pi\)
\(348\) 0 0
\(349\) 13.7990 0.738643 0.369321 0.929302i \(-0.379590\pi\)
0.369321 + 0.929302i \(0.379590\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.00000 −0.425797 −0.212899 0.977074i \(-0.568290\pi\)
−0.212899 + 0.977074i \(0.568290\pi\)
\(354\) 0 0
\(355\) 12.6863 0.673318
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.2843 −1.49279 −0.746393 0.665505i \(-0.768216\pi\)
−0.746393 + 0.665505i \(0.768216\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −37.6569 −1.97105
\(366\) 0 0
\(367\) −3.31371 −0.172974 −0.0864871 0.996253i \(-0.527564\pi\)
−0.0864871 + 0.996253i \(0.527564\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.65685 0.293689
\(372\) 0 0
\(373\) −20.1421 −1.04292 −0.521460 0.853276i \(-0.674612\pi\)
−0.521460 + 0.853276i \(0.674612\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.6569 0.909374
\(378\) 0 0
\(379\) −0.686292 −0.0352524 −0.0176262 0.999845i \(-0.505611\pi\)
−0.0176262 + 0.999845i \(0.505611\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.4853 1.65992 0.829960 0.557823i \(-0.188363\pi\)
0.829960 + 0.557823i \(0.188363\pi\)
\(384\) 0 0
\(385\) 2.34315 0.119418
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −21.1716 −1.07344 −0.536721 0.843760i \(-0.680337\pi\)
−0.536721 + 0.843760i \(0.680337\pi\)
\(390\) 0 0
\(391\) 5.65685 0.286079
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −13.6569 −0.687151
\(396\) 0 0
\(397\) −6.68629 −0.335575 −0.167788 0.985823i \(-0.553662\pi\)
−0.167788 + 0.985823i \(0.553662\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −25.6569 −1.28124 −0.640621 0.767857i \(-0.721323\pi\)
−0.640621 + 0.767857i \(0.721323\pi\)
\(402\) 0 0
\(403\) 46.6274 2.32268
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.65685 −0.379536
\(408\) 0 0
\(409\) −12.3431 −0.610329 −0.305165 0.952300i \(-0.598711\pi\)
−0.305165 + 0.952300i \(0.598711\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.37258 −0.0675404
\(414\) 0 0
\(415\) 27.3137 1.34078
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −36.2843 −1.77260 −0.886301 0.463109i \(-0.846734\pi\)
−0.886301 + 0.463109i \(0.846734\pi\)
\(420\) 0 0
\(421\) −15.6569 −0.763068 −0.381534 0.924355i \(-0.624604\pi\)
−0.381534 + 0.924355i \(0.624604\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) −2.62742 −0.127150
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.3431 −0.498212 −0.249106 0.968476i \(-0.580137\pi\)
−0.249106 + 0.968476i \(0.580137\pi\)
\(432\) 0 0
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.65685 −0.270604
\(438\) 0 0
\(439\) −20.1421 −0.961332 −0.480666 0.876904i \(-0.659605\pi\)
−0.480666 + 0.876904i \(0.659605\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.9706 −0.996342 −0.498171 0.867079i \(-0.665995\pi\)
−0.498171 + 0.867079i \(0.665995\pi\)
\(444\) 0 0
\(445\) −45.2548 −2.14528
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.3431 −0.865667 −0.432833 0.901474i \(-0.642486\pi\)
−0.432833 + 0.901474i \(0.642486\pi\)
\(450\) 0 0
\(451\) −0.343146 −0.0161581
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.3137 −0.530395
\(456\) 0 0
\(457\) 27.6569 1.29373 0.646867 0.762603i \(-0.276079\pi\)
0.646867 + 0.762603i \(0.276079\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.31371 −0.247484 −0.123742 0.992314i \(-0.539490\pi\)
−0.123742 + 0.992314i \(0.539490\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.686292 0.0317578 0.0158789 0.999874i \(-0.494945\pi\)
0.0158789 + 0.999874i \(0.494945\pi\)
\(468\) 0 0
\(469\) 9.37258 0.432786
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.343146 0.0157779
\(474\) 0 0
\(475\) 6.00000 0.275299
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.9706 1.14093 0.570467 0.821320i \(-0.306762\pi\)
0.570467 + 0.821320i \(0.306762\pi\)
\(480\) 0 0
\(481\) 36.9706 1.68571
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 15.0294 0.682452
\(486\) 0 0
\(487\) 9.65685 0.437594 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −26.6274 −1.20168 −0.600839 0.799370i \(-0.705167\pi\)
−0.600839 + 0.799370i \(0.705167\pi\)
\(492\) 0 0
\(493\) 7.31371 0.329393
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.71573 0.166673
\(498\) 0 0
\(499\) −43.3137 −1.93899 −0.969494 0.245115i \(-0.921174\pi\)
−0.969494 + 0.245115i \(0.921174\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19.3137 −0.861156 −0.430578 0.902553i \(-0.641690\pi\)
−0.430578 + 0.902553i \(0.641690\pi\)
\(504\) 0 0
\(505\) −39.5980 −1.76209
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −39.7990 −1.76406 −0.882030 0.471194i \(-0.843823\pi\)
−0.882030 + 0.471194i \(0.843823\pi\)
\(510\) 0 0
\(511\) −11.0294 −0.487914
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −12.4853 −0.549102
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.9706 −1.26922 −0.634612 0.772831i \(-0.718840\pi\)
−0.634612 + 0.772831i \(0.718840\pi\)
\(522\) 0 0
\(523\) −10.9706 −0.479709 −0.239855 0.970809i \(-0.577100\pi\)
−0.239855 + 0.970809i \(0.577100\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.3137 0.841318
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.65685 0.0717663
\(534\) 0 0
\(535\) 11.3137 0.489134
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.31371 −0.271951
\(540\) 0 0
\(541\) 19.1716 0.824250 0.412125 0.911127i \(-0.364787\pi\)
0.412125 + 0.911127i \(0.364787\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 31.5980 1.35351
\(546\) 0 0
\(547\) 2.68629 0.114858 0.0574288 0.998350i \(-0.481710\pi\)
0.0574288 + 0.998350i \(0.481710\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.31371 −0.311574
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.3137 0.733605 0.366803 0.930299i \(-0.380452\pi\)
0.366803 + 0.930299i \(0.380452\pi\)
\(558\) 0 0
\(559\) −1.65685 −0.0700775
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 39.3137 1.65688 0.828438 0.560081i \(-0.189230\pi\)
0.828438 + 0.560081i \(0.189230\pi\)
\(564\) 0 0
\(565\) −20.6863 −0.870279
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.31371 0.390451 0.195225 0.980758i \(-0.437456\pi\)
0.195225 + 0.980758i \(0.437456\pi\)
\(570\) 0 0
\(571\) 28.6274 1.19802 0.599010 0.800742i \(-0.295561\pi\)
0.599010 + 0.800742i \(0.295561\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8.48528 −0.353861
\(576\) 0 0
\(577\) −28.6274 −1.19177 −0.595887 0.803068i \(-0.703200\pi\)
−0.595887 + 0.803068i \(0.703200\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 6.82843 0.282805
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.65685 0.0683857 0.0341928 0.999415i \(-0.489114\pi\)
0.0341928 + 0.999415i \(0.489114\pi\)
\(588\) 0 0
\(589\) −19.3137 −0.795807
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) −4.68629 −0.192119
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.51472 −0.307043 −0.153522 0.988145i \(-0.549061\pi\)
−0.153522 + 0.988145i \(0.549061\pi\)
\(600\) 0 0
\(601\) −17.3137 −0.706241 −0.353120 0.935578i \(-0.614879\pi\)
−0.353120 + 0.935578i \(0.614879\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.82843 0.114992
\(606\) 0 0
\(607\) −36.8284 −1.49482 −0.747410 0.664363i \(-0.768703\pi\)
−0.747410 + 0.664363i \(0.768703\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 60.2843 2.43884
\(612\) 0 0
\(613\) 4.82843 0.195018 0.0975092 0.995235i \(-0.468912\pi\)
0.0975092 + 0.995235i \(0.468912\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −31.3137 −1.26064 −0.630321 0.776334i \(-0.717077\pi\)
−0.630321 + 0.776334i \(0.717077\pi\)
\(618\) 0 0
\(619\) −0.686292 −0.0275844 −0.0137922 0.999905i \(-0.504390\pi\)
−0.0137922 + 0.999905i \(0.504390\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13.2548 −0.531044
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.3137 0.610598
\(630\) 0 0
\(631\) 11.0294 0.439075 0.219537 0.975604i \(-0.429545\pi\)
0.219537 + 0.975604i \(0.429545\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 31.5980 1.25393
\(636\) 0 0
\(637\) 30.4853 1.20787
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 28.2843 1.11716 0.558581 0.829450i \(-0.311346\pi\)
0.558581 + 0.829450i \(0.311346\pi\)
\(642\) 0 0
\(643\) −34.6274 −1.36557 −0.682786 0.730618i \(-0.739232\pi\)
−0.682786 + 0.730618i \(0.739232\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.7990 0.463866 0.231933 0.972732i \(-0.425495\pi\)
0.231933 + 0.972732i \(0.425495\pi\)
\(648\) 0 0
\(649\) −1.65685 −0.0650372
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27.1127 1.06100 0.530501 0.847684i \(-0.322004\pi\)
0.530501 + 0.847684i \(0.322004\pi\)
\(654\) 0 0
\(655\) 36.6863 1.43345
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.686292 −0.0267341 −0.0133671 0.999911i \(-0.504255\pi\)
−0.0133671 + 0.999911i \(0.504255\pi\)
\(660\) 0 0
\(661\) −11.6569 −0.453399 −0.226700 0.973965i \(-0.572794\pi\)
−0.226700 + 0.973965i \(0.572794\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.68629 0.181727
\(666\) 0 0
\(667\) 10.3431 0.400488
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.17157 −0.122437
\(672\) 0 0
\(673\) −8.34315 −0.321605 −0.160802 0.986987i \(-0.551408\pi\)
−0.160802 + 0.986987i \(0.551408\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −23.9411 −0.920132 −0.460066 0.887885i \(-0.652174\pi\)
−0.460066 + 0.887885i \(0.652174\pi\)
\(678\) 0 0
\(679\) 4.40202 0.168934
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −40.9706 −1.56770 −0.783848 0.620953i \(-0.786746\pi\)
−0.783848 + 0.620953i \(0.786746\pi\)
\(684\) 0 0
\(685\) −17.9411 −0.685495
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −32.9706 −1.25608
\(690\) 0 0
\(691\) 45.9411 1.74768 0.873841 0.486211i \(-0.161621\pi\)
0.873841 + 0.486211i \(0.161621\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −26.3431 −0.999252
\(696\) 0 0
\(697\) 0.686292 0.0259951
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 44.6274 1.68555 0.842777 0.538263i \(-0.180919\pi\)
0.842777 + 0.538263i \(0.180919\pi\)
\(702\) 0 0
\(703\) −15.3137 −0.577567
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.5980 −0.436187
\(708\) 0 0
\(709\) 39.6569 1.48934 0.744672 0.667430i \(-0.232606\pi\)
0.744672 + 0.667430i \(0.232606\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 27.3137 1.02291
\(714\) 0 0
\(715\) −13.6569 −0.510737
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.51472 −0.131077 −0.0655384 0.997850i \(-0.520876\pi\)
−0.0655384 + 0.997850i \(0.520876\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.9706 −0.407436
\(726\) 0 0
\(727\) 20.9706 0.777755 0.388878 0.921289i \(-0.372863\pi\)
0.388878 + 0.921289i \(0.372863\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.686292 −0.0253834
\(732\) 0 0
\(733\) 25.7990 0.952907 0.476454 0.879200i \(-0.341922\pi\)
0.476454 + 0.879200i \(0.341922\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.3137 0.416746
\(738\) 0 0
\(739\) −34.9706 −1.28641 −0.643206 0.765693i \(-0.722396\pi\)
−0.643206 + 0.765693i \(0.722396\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.97056 0.329098 0.164549 0.986369i \(-0.447383\pi\)
0.164549 + 0.986369i \(0.447383\pi\)
\(744\) 0 0
\(745\) −44.2843 −1.62245
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.31371 0.121080
\(750\) 0 0
\(751\) 43.5980 1.59091 0.795456 0.606011i \(-0.207231\pi\)
0.795456 + 0.606011i \(0.207231\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 40.9706 1.49107
\(756\) 0 0
\(757\) 0.343146 0.0124718 0.00623592 0.999981i \(-0.498015\pi\)
0.00623592 + 0.999981i \(0.498015\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −32.6274 −1.18274 −0.591371 0.806399i \(-0.701413\pi\)
−0.591371 + 0.806399i \(0.701413\pi\)
\(762\) 0 0
\(763\) 9.25483 0.335047
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) −27.6569 −0.997332 −0.498666 0.866794i \(-0.666177\pi\)
−0.498666 + 0.866794i \(0.666177\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.5147 0.701896 0.350948 0.936395i \(-0.385859\pi\)
0.350948 + 0.936395i \(0.385859\pi\)
\(774\) 0 0
\(775\) −28.9706 −1.04065
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.686292 −0.0245889
\(780\) 0 0
\(781\) 4.48528 0.160496
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 21.6569 0.772966
\(786\) 0 0
\(787\) −31.6569 −1.12844 −0.564222 0.825623i \(-0.690824\pi\)
−0.564222 + 0.825623i \(0.690824\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.05887 −0.215429
\(792\) 0 0
\(793\) 15.3137 0.543806
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.1421 1.06769 0.533845 0.845583i \(-0.320747\pi\)
0.533845 + 0.845583i \(0.320747\pi\)
\(798\) 0 0
\(799\) 24.9706 0.883395
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −13.3137 −0.469831
\(804\) 0 0
\(805\) −6.62742 −0.233586
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −41.5980 −1.46251 −0.731254 0.682106i \(-0.761064\pi\)
−0.731254 + 0.682106i \(0.761064\pi\)
\(810\) 0 0
\(811\) 12.3431 0.433426 0.216713 0.976235i \(-0.430466\pi\)
0.216713 + 0.976235i \(0.430466\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11.3137 −0.396302
\(816\) 0 0
\(817\) 0.686292 0.0240103
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 48.6274 1.69711 0.848554 0.529108i \(-0.177473\pi\)
0.848554 + 0.529108i \(0.177473\pi\)
\(822\) 0 0
\(823\) −35.3137 −1.23096 −0.615479 0.788153i \(-0.711038\pi\)
−0.615479 + 0.788153i \(0.711038\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.9706 −0.451031 −0.225515 0.974240i \(-0.572407\pi\)
−0.225515 + 0.974240i \(0.572407\pi\)
\(828\) 0 0
\(829\) −20.6274 −0.716420 −0.358210 0.933641i \(-0.616613\pi\)
−0.358210 + 0.933641i \(0.616613\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12.6274 0.437514
\(834\) 0 0
\(835\) −45.2548 −1.56611
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.17157 −0.178543 −0.0892713 0.996007i \(-0.528454\pi\)
−0.0892713 + 0.996007i \(0.528454\pi\)
\(840\) 0 0
\(841\) −15.6274 −0.538876
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 29.1716 1.00353
\(846\) 0 0
\(847\) 0.828427 0.0284651
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 21.6569 0.742387
\(852\) 0 0
\(853\) −15.8579 −0.542963 −0.271481 0.962444i \(-0.587514\pi\)
−0.271481 + 0.962444i \(0.587514\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.9706 0.511385 0.255692 0.966758i \(-0.417697\pi\)
0.255692 + 0.966758i \(0.417697\pi\)
\(858\) 0 0
\(859\) 13.9411 0.475665 0.237833 0.971306i \(-0.423563\pi\)
0.237833 + 0.971306i \(0.423563\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.7696 0.979327 0.489663 0.871912i \(-0.337120\pi\)
0.489663 + 0.871912i \(0.337120\pi\)
\(864\) 0 0
\(865\) −55.5980 −1.89039
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.82843 −0.163793
\(870\) 0 0
\(871\) −54.6274 −1.85098
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.68629 −0.158426
\(876\) 0 0
\(877\) −23.4558 −0.792048 −0.396024 0.918240i \(-0.629610\pi\)
−0.396024 + 0.918240i \(0.629610\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.6274 0.358047 0.179023 0.983845i \(-0.442706\pi\)
0.179023 + 0.983845i \(0.442706\pi\)
\(882\) 0 0
\(883\) 28.6863 0.965371 0.482685 0.875794i \(-0.339662\pi\)
0.482685 + 0.875794i \(0.339662\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −45.6569 −1.53301 −0.766504 0.642240i \(-0.778005\pi\)
−0.766504 + 0.642240i \(0.778005\pi\)
\(888\) 0 0
\(889\) 9.25483 0.310397
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −24.9706 −0.835608
\(894\) 0 0
\(895\) 61.2548 2.04752
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 35.3137 1.17778
\(900\) 0 0
\(901\) −13.6569 −0.454976
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.9706 0.564121
\(906\) 0 0
\(907\) −47.3137 −1.57103 −0.785513 0.618845i \(-0.787601\pi\)
−0.785513 + 0.618845i \(0.787601\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11.5147 −0.381500 −0.190750 0.981639i \(-0.561092\pi\)
−0.190750 + 0.981639i \(0.561092\pi\)
\(912\) 0 0
\(913\) 9.65685 0.319595
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10.7452 0.354837
\(918\) 0 0
\(919\) 51.4558 1.69737 0.848686 0.528897i \(-0.177394\pi\)
0.848686 + 0.528897i \(0.177394\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −21.6569 −0.712844
\(924\) 0 0
\(925\) −22.9706 −0.755267
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.6569 −0.579303 −0.289651 0.957132i \(-0.593539\pi\)
−0.289651 + 0.957132i \(0.593539\pi\)
\(930\) 0 0
\(931\) −12.6274 −0.413847
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.65685 −0.184999
\(936\) 0 0
\(937\) 19.9411 0.651448 0.325724 0.945465i \(-0.394392\pi\)
0.325724 + 0.945465i \(0.394392\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 40.6274 1.32442 0.662208 0.749320i \(-0.269620\pi\)
0.662208 + 0.749320i \(0.269620\pi\)
\(942\) 0 0
\(943\) 0.970563 0.0316059
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.0000 1.03986 0.519930 0.854209i \(-0.325958\pi\)
0.519930 + 0.854209i \(0.325958\pi\)
\(948\) 0 0
\(949\) 64.2843 2.08676
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 43.6569 1.41418 0.707092 0.707121i \(-0.250007\pi\)
0.707092 + 0.707121i \(0.250007\pi\)
\(954\) 0 0
\(955\) 19.3137 0.624977
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.25483 −0.169687
\(960\) 0 0
\(961\) 62.2548 2.00822
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.2843 0.395445
\(966\) 0 0
\(967\) −17.5147 −0.563235 −0.281618 0.959527i \(-0.590871\pi\)
−0.281618 + 0.959527i \(0.590871\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 9.65685 0.309903 0.154952 0.987922i \(-0.450478\pi\)
0.154952 + 0.987922i \(0.450478\pi\)
\(972\) 0 0
\(973\) −7.71573 −0.247355
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.34315 0.202935 0.101468 0.994839i \(-0.467646\pi\)
0.101468 + 0.994839i \(0.467646\pi\)
\(978\) 0 0
\(979\) −16.0000 −0.511362
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −38.1421 −1.21655 −0.608273 0.793728i \(-0.708137\pi\)
−0.608273 + 0.793728i \(0.708137\pi\)
\(984\) 0 0
\(985\) 37.6569 1.19985
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.970563 −0.0308621
\(990\) 0 0
\(991\) −16.2843 −0.517287 −0.258643 0.965973i \(-0.583275\pi\)
−0.258643 + 0.965973i \(0.583275\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 72.5685 2.30058
\(996\) 0 0
\(997\) 7.17157 0.227126 0.113563 0.993531i \(-0.463774\pi\)
0.113563 + 0.993531i \(0.463774\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.a.cp.1.2 2
3.2 odd 2 6336.2.a.co.1.1 2
4.3 odd 2 6336.2.a.cq.1.2 2
8.3 odd 2 792.2.a.j.1.1 yes 2
8.5 even 2 1584.2.a.u.1.1 2
12.11 even 2 6336.2.a.cr.1.1 2
24.5 odd 2 1584.2.a.v.1.2 2
24.11 even 2 792.2.a.i.1.2 2
88.43 even 2 8712.2.a.bi.1.1 2
264.131 odd 2 8712.2.a.bh.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.a.i.1.2 2 24.11 even 2
792.2.a.j.1.1 yes 2 8.3 odd 2
1584.2.a.u.1.1 2 8.5 even 2
1584.2.a.v.1.2 2 24.5 odd 2
6336.2.a.co.1.1 2 3.2 odd 2
6336.2.a.cp.1.2 2 1.1 even 1 trivial
6336.2.a.cq.1.2 2 4.3 odd 2
6336.2.a.cr.1.1 2 12.11 even 2
8712.2.a.bh.1.2 2 264.131 odd 2
8712.2.a.bi.1.1 2 88.43 even 2