Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [637,2,Mod(4,637)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(637, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([10, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("637.4");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 637 = 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 637.bz (of order \(42\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.08647060876\) |
Analytic rank: | \(0\) |
Dimension: | \(756\) |
Relative dimension: | \(63\) over \(\Q(\zeta_{42})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{42}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −1.21061 | − | 2.51386i | 2.20537 | − | 0.680267i | −3.60692 | + | 4.52294i | 0.0440739 | + | 0.142884i | −4.37994 | − | 4.72045i | −1.16487 | + | 2.37551i | 10.2962 | + | 2.35003i | 1.92218 | − | 1.31052i | 0.305834 | − | 0.283773i |
4.2 | −1.17308 | − | 2.43592i | −0.945504 | + | 0.291649i | −3.31061 | + | 4.15137i | −0.595404 | − | 1.93025i | 1.81958 | + | 1.96104i | 2.50774 | − | 0.843362i | 8.72425 | + | 1.99125i | −1.66980 | + | 1.13845i | −4.00349 | + | 3.71469i |
4.3 | −1.12064 | − | 2.32702i | 0.960400 | − | 0.296244i | −2.91224 | + | 3.65183i | 0.762546 | + | 2.47211i | −1.76562 | − | 1.90289i | −0.582914 | − | 2.58074i | 6.72535 | + | 1.53502i | −1.64411 | + | 1.12093i | 4.89813 | − | 4.54480i |
4.4 | −1.09947 | − | 2.28306i | −1.42464 | + | 0.439442i | −2.75658 | + | 3.45664i | 1.11652 | + | 3.61968i | 2.56961 | + | 2.76938i | −1.77744 | + | 1.95977i | 5.98153 | + | 1.36525i | −0.642240 | + | 0.437872i | 7.03638 | − | 6.52881i |
4.5 | −1.07047 | − | 2.22286i | −3.09970 | + | 0.956132i | −2.54820 | + | 3.19535i | −0.389940 | − | 1.26415i | 5.44349 | + | 5.86668i | 1.08627 | + | 2.41247i | 5.01993 | + | 1.14577i | 6.21525 | − | 4.23749i | −2.39262 | + | 2.22002i |
4.6 | −1.04741 | − | 2.17497i | 2.86346 | − | 0.883262i | −2.38644 | + | 2.99250i | −1.10513 | − | 3.58273i | −4.92028 | − | 5.30280i | 0.696071 | − | 2.55254i | 4.30114 | + | 0.981707i | 4.94056 | − | 3.36842i | −6.63480 | + | 6.15619i |
4.7 | −1.04079 | − | 2.16123i | 0.381790 | − | 0.117767i | −2.34067 | + | 2.93511i | 0.210839 | + | 0.683523i | −0.651883 | − | 0.702563i | 2.64574 | − | 0.00872039i | 4.10230 | + | 0.936324i | −2.34682 | + | 1.60004i | 1.25781 | − | 1.16708i |
4.8 | −1.02936 | − | 2.13750i | −2.28640 | + | 0.705259i | −2.26233 | + | 2.83687i | −0.329479 | − | 1.06814i | 3.86103 | + | 4.16120i | −1.23633 | − | 2.33912i | 3.76664 | + | 0.859710i | 2.25150 | − | 1.53504i | −1.94400 | + | 1.80377i |
4.9 | −0.941441 | − | 1.95492i | −1.22564 | + | 0.378060i | −1.68843 | + | 2.11723i | 0.135805 | + | 0.440268i | 1.89295 | + | 2.04011i | −2.35928 | + | 1.19741i | 1.49777 | + | 0.341857i | −1.11945 | + | 0.763228i | 0.732838 | − | 0.679975i |
4.10 | −0.938275 | − | 1.94835i | 1.73522 | − | 0.535243i | −1.66872 | + | 2.09251i | −0.694611 | − | 2.25187i | −2.67095 | − | 2.87860i | −0.169018 | + | 2.64035i | 1.42609 | + | 0.325495i | 0.245774 | − | 0.167566i | −3.73570 | + | 3.46622i |
4.11 | −0.871546 | − | 1.80978i | −0.0408124 | + | 0.0125890i | −1.26875 | + | 1.59096i | −1.20544 | − | 3.90795i | 0.0583532 | + | 0.0628898i | 1.10936 | + | 2.40194i | 0.0683642 | + | 0.0156037i | −2.47721 | + | 1.68893i | −6.02195 | + | 5.58755i |
4.12 | −0.864819 | − | 1.79582i | 2.15696 | − | 0.665335i | −1.23006 | + | 1.54245i | 0.973630 | + | 3.15643i | −3.06020 | − | 3.29811i | 1.71343 | + | 2.01597i | −0.0527318 | − | 0.0120357i | 1.73110 | − | 1.18024i | 4.82635 | − | 4.47820i |
4.13 | −0.836520 | − | 1.73705i | 3.16602 | − | 0.976589i | −1.07060 | + | 1.34249i | 0.868353 | + | 2.81513i | −4.34483 | − | 4.68261i | −2.56241 | − | 0.658818i | −0.531731 | − | 0.121364i | 6.59126 | − | 4.49385i | 4.16363 | − | 3.86329i |
4.14 | −0.782958 | − | 1.62583i | −2.82293 | + | 0.870760i | −0.783320 | + | 0.982252i | 1.12803 | + | 3.65698i | 3.62595 | + | 3.90784i | 2.10109 | − | 1.60792i | −1.30830 | − | 0.298612i | 4.73202 | − | 3.22623i | 5.06243 | − | 4.69725i |
4.15 | −0.764618 | − | 1.58775i | −1.09944 | + | 0.339134i | −0.689318 | + | 0.864377i | 0.542823 | + | 1.75979i | 1.37911 | + | 1.48633i | 1.71305 | − | 2.01630i | −1.53669 | − | 0.350739i | −1.38495 | + | 0.944244i | 2.37905 | − | 2.20743i |
4.16 | −0.754795 | − | 1.56735i | −0.426042 | + | 0.131416i | −0.639884 | + | 0.802389i | −0.992234 | − | 3.21674i | 0.527549 | + | 0.568563i | −0.839736 | − | 2.50895i | −1.65141 | − | 0.376925i | −2.31448 | + | 1.57798i | −4.29282 | + | 3.98316i |
4.17 | −0.709328 | − | 1.47293i | 0.808193 | − | 0.249294i | −0.419411 | + | 0.525924i | −0.0463428 | − | 0.150240i | −0.940468 | − | 1.01358i | −2.52127 | + | 0.802000i | −2.11554 | − | 0.482858i | −1.88769 | + | 1.28700i | −0.188421 | + | 0.174829i |
4.18 | −0.689843 | − | 1.43247i | 2.37403 | − | 0.732290i | −0.329116 | + | 0.412698i | 0.0745143 | + | 0.241569i | −2.68669 | − | 2.89556i | 1.80877 | − | 1.93089i | −2.28191 | − | 0.520830i | 2.62104 | − | 1.78699i | 0.294638 | − | 0.273385i |
4.19 | −0.553189 | − | 1.14871i | −1.61228 | + | 0.497321i | 0.233465 | − | 0.292756i | −0.149862 | − | 0.485842i | 1.46317 | + | 1.57692i | 1.56147 | + | 2.13584i | −2.95145 | − | 0.673650i | −0.126610 | + | 0.0863216i | −0.475189 | + | 0.440911i |
4.20 | −0.505856 | − | 1.05042i | −2.35374 | + | 0.726034i | 0.399487 | − | 0.500941i | −1.13742 | − | 3.68744i | 1.95329 | + | 2.10515i | −2.48525 | + | 0.907488i | −3.00158 | − | 0.685090i | 2.53427 | − | 1.72783i | −3.29799 | + | 3.06008i |
See next 80 embeddings (of 756 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
637.bz | even | 42 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 637.2.bz.a | yes | 756 |
13.e | even | 6 | 1 | 637.2.bp.a | ✓ | 756 | |
49.g | even | 21 | 1 | 637.2.bp.a | ✓ | 756 | |
637.bz | even | 42 | 1 | inner | 637.2.bz.a | yes | 756 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
637.2.bp.a | ✓ | 756 | 13.e | even | 6 | 1 | |
637.2.bp.a | ✓ | 756 | 49.g | even | 21 | 1 | |
637.2.bz.a | yes | 756 | 1.a | even | 1 | 1 | trivial |
637.2.bz.a | yes | 756 | 637.bz | even | 42 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(637, [\chi])\).