Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [637,2,Mod(5,637)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(637, base_ring=CyclotomicField(84))
chi = DirichletCharacter(H, H._module([58, 63]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("637.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 637 = 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 637.cc (of order \(84\), degree \(24\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.08647060876\) |
Analytic rank: | \(0\) |
Dimension: | \(1536\) |
Relative dimension: | \(64\) over \(\Q(\zeta_{84})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{84}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −1.63766 | + | 2.21895i | 1.73964 | − | 2.55158i | −1.65230 | − | 5.35663i | 0.940466 | − | 0.809336i | 2.81290 | + | 8.03880i | −1.64446 | − | 2.07262i | 9.38585 | + | 3.28425i | −2.38821 | − | 6.08505i | 0.255714 | + | 3.41226i |
5.2 | −1.60364 | + | 2.17285i | −1.54581 | + | 2.26729i | −1.56013 | − | 5.05780i | 1.55493 | − | 1.33812i | −2.44757 | − | 6.99474i | 2.20094 | + | 1.46828i | 8.39375 | + | 2.93710i | −1.65505 | − | 4.21700i | 0.414004 | + | 5.52450i |
5.3 | −1.57654 | + | 2.13614i | 0.252953 | − | 0.371014i | −1.48810 | − | 4.82430i | −1.76353 | + | 1.51764i | 0.393746 | + | 1.12526i | −2.26746 | + | 1.36331i | 7.63958 | + | 2.67320i | 1.02236 | + | 2.60492i | −0.461611 | − | 6.15977i |
5.4 | −1.54555 | + | 2.09414i | 0.593096 | − | 0.869913i | −1.40720 | − | 4.56204i | −1.35096 | + | 1.16260i | 0.905062 | + | 2.58652i | 2.32068 | − | 1.27060i | 6.81513 | + | 2.38472i | 0.691038 | + | 1.76074i | −0.346667 | − | 4.62595i |
5.5 | −1.50015 | + | 2.03263i | −1.46486 | + | 2.14855i | −1.29163 | − | 4.18737i | −1.42651 | + | 1.22761i | −2.16971 | − | 6.20067i | −2.43746 | − | 1.02898i | 5.68000 | + | 1.98752i | −1.37445 | − | 3.50203i | −0.355302 | − | 4.74118i |
5.6 | −1.49274 | + | 2.02259i | 0.837048 | − | 1.22772i | −1.27309 | − | 4.12726i | 2.40257 | − | 2.06758i | 1.23369 | + | 3.52568i | 0.937355 | + | 2.47414i | 5.50271 | + | 1.92548i | 0.289366 | + | 0.737293i | 0.595454 | + | 7.94578i |
5.7 | −1.36834 | + | 1.85404i | −0.493898 | + | 0.724416i | −0.975588 | − | 3.16278i | 3.27431 | − | 2.81777i | −0.667273 | − | 1.90696i | −1.25371 | − | 2.32985i | 2.84887 | + | 0.996861i | 0.815181 | + | 2.07705i | 0.743880 | + | 9.92638i |
5.8 | −1.35490 | + | 1.83582i | −0.508081 | + | 0.745218i | −0.944978 | − | 3.06354i | 1.28061 | − | 1.10205i | −0.679688 | − | 1.94244i | −1.53884 | + | 2.15220i | 2.59722 | + | 0.908805i | 0.798820 | + | 2.03536i | 0.288078 | + | 3.84414i |
5.9 | −1.35325 | + | 1.83359i | 1.40042 | − | 2.05404i | −0.941247 | − | 3.05145i | −2.95043 | + | 2.53905i | 1.87114 | + | 5.34742i | 2.53254 | + | 0.765672i | 2.56683 | + | 0.898172i | −1.16188 | − | 2.96042i | −0.662903 | − | 8.84583i |
5.10 | −1.34462 | + | 1.82190i | −1.12975 | + | 1.65704i | −0.921798 | − | 2.98840i | −2.71346 | + | 2.33512i | −1.49987 | − | 4.28638i | 1.54732 | − | 2.14611i | 2.40944 | + | 0.843101i | −0.373414 | − | 0.951442i | −0.605776 | − | 8.08351i |
5.11 | −1.22641 | + | 1.66173i | 0.404276 | − | 0.592964i | −0.667749 | − | 2.16479i | −0.181173 | + | 0.155912i | 0.489537 | + | 1.39902i | −1.36433 | − | 2.26685i | 0.517442 | + | 0.181061i | 0.907856 | + | 2.31318i | −0.0368907 | − | 0.492273i |
5.12 | −1.18544 | + | 1.60622i | −0.759813 | + | 1.11444i | −0.585148 | − | 1.89700i | 0.466503 | − | 0.401459i | −0.889319 | − | 2.54153i | 2.57227 | − | 0.619199i | −0.0278862 | − | 0.00975780i | 0.431360 | + | 1.09909i | 0.0918169 | + | 1.22521i |
5.13 | −1.16139 | + | 1.57363i | 1.48120 | − | 2.17253i | −0.537965 | − | 1.74404i | 0.658683 | − | 0.566843i | 1.69849 | + | 4.85401i | −1.88360 | + | 1.85797i | −0.322828 | − | 0.112962i | −1.42988 | − | 3.64328i | 0.127011 | + | 1.69485i |
5.14 | −1.14612 | + | 1.55294i | −1.52877 | + | 2.24229i | −0.508510 | − | 1.64855i | −1.44363 | + | 1.24234i | −1.72999 | − | 4.94402i | 0.162718 | + | 2.64074i | −0.500632 | − | 0.175179i | −1.59472 | − | 4.06329i | −0.274709 | − | 3.66574i |
5.15 | −0.965249 | + | 1.30787i | 1.90895 | − | 2.79991i | −0.189298 | − | 0.613688i | 1.01089 | − | 0.869942i | 1.81930 | + | 5.19926i | 2.12237 | − | 1.57972i | −2.08321 | − | 0.728945i | −3.09940 | − | 7.89713i | 0.162006 | + | 2.16182i |
5.16 | −0.964100 | + | 1.30631i | −1.85936 | + | 2.72718i | −0.187445 | − | 0.607682i | 2.21985 | − | 1.91034i | −1.76993 | − | 5.05817i | −0.991663 | − | 2.45288i | −2.09036 | − | 0.731448i | −2.88426 | − | 7.34898i | 0.355332 | + | 4.74157i |
5.17 | −0.951593 | + | 1.28936i | 0.675753 | − | 0.991148i | −0.167416 | − | 0.542751i | 1.44494 | − | 1.24347i | 0.634907 | + | 1.81446i | 2.61034 | + | 0.431429i | −2.16602 | − | 0.757923i | 0.570291 | + | 1.45308i | 0.228291 | + | 3.04633i |
5.18 | −0.935405 | + | 1.26743i | 0.854263 | − | 1.25297i | −0.141882 | − | 0.459971i | −0.846774 | + | 0.728708i | 0.788973 | + | 2.25475i | −1.18137 | − | 2.36736i | −2.25797 | − | 0.790099i | 0.255845 | + | 0.651882i | −0.131509 | − | 1.75486i |
5.19 | −0.930356 | + | 1.26059i | −0.305422 | + | 0.447972i | −0.134009 | − | 0.434446i | −1.50993 | + | 1.29940i | −0.280557 | − | 0.801785i | 1.92699 | + | 1.81293i | −2.28529 | − | 0.799657i | 0.988627 | + | 2.51898i | −0.233235 | − | 3.11230i |
5.20 | −0.800052 | + | 1.08403i | 0.176501 | − | 0.258879i | 0.0544684 | + | 0.176582i | −2.40607 | + | 2.07059i | 0.139424 | + | 0.398450i | −0.602973 | + | 2.57613i | −2.77838 | − | 0.972197i | 1.06016 | + | 2.70124i | −0.319605 | − | 4.26483i |
See next 80 embeddings (of 1536 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.d | odd | 4 | 1 | inner |
49.h | odd | 42 | 1 | inner |
637.cc | even | 84 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 637.2.cc.a | ✓ | 1536 |
13.d | odd | 4 | 1 | inner | 637.2.cc.a | ✓ | 1536 |
49.h | odd | 42 | 1 | inner | 637.2.cc.a | ✓ | 1536 |
637.cc | even | 84 | 1 | inner | 637.2.cc.a | ✓ | 1536 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
637.2.cc.a | ✓ | 1536 | 1.a | even | 1 | 1 | trivial |
637.2.cc.a | ✓ | 1536 | 13.d | odd | 4 | 1 | inner |
637.2.cc.a | ✓ | 1536 | 49.h | odd | 42 | 1 | inner |
637.2.cc.a | ✓ | 1536 | 637.cc | even | 84 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(637, [\chi])\).