Properties

Label 637.2.f.k.393.2
Level $637$
Weight $2$
Character 637.393
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(295,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 393.2
Root \(-1.02197 + 1.77010i\) of defining polynomial
Character \(\chi\) \(=\) 637.393
Dual form 637.2.f.k.295.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.777343 - 1.34640i) q^{2} +(0.244626 + 0.423704i) q^{3} +(-0.208526 + 0.361177i) q^{4} -1.19151 q^{5} +(0.380316 - 0.658727i) q^{6} -2.46099 q^{8} +(1.38032 - 2.39078i) q^{9} +(0.926214 + 1.60425i) q^{10} +(-1.05807 - 1.83263i) q^{11} -0.204043 q^{12} +(2.86133 - 2.19381i) q^{13} +(-0.291474 - 0.504848i) q^{15} +(2.33009 + 4.03583i) q^{16} +(0.453151 - 0.784881i) q^{17} -4.29192 q^{18} +(-3.34514 + 5.79395i) q^{19} +(0.248461 - 0.430346i) q^{20} +(-1.64497 + 2.84917i) q^{22} +(-1.79866 - 3.11538i) q^{23} +(-0.602021 - 1.04273i) q^{24} -3.58030 q^{25} +(-5.17797 - 2.14715i) q^{26} +2.81840 q^{27} +(-4.25772 - 7.37459i) q^{29} +(-0.453151 + 0.784881i) q^{30} -5.28780 q^{31} +(1.16156 - 2.01189i) q^{32} +(0.517662 - 0.896617i) q^{33} -1.40902 q^{34} +(0.575663 + 0.997077i) q^{36} +(-2.49579 - 4.32284i) q^{37} +10.4013 q^{38} +(1.62948 + 0.675696i) q^{39} +2.93230 q^{40} +(-0.768181 - 1.33053i) q^{41} +(-2.71636 + 4.70488i) q^{43} +0.882538 q^{44} +(-1.64466 + 2.84864i) q^{45} +(-2.79636 + 4.84344i) q^{46} -3.18673 q^{47} +(-1.14000 + 1.97453i) q^{48} +(2.78312 + 4.82051i) q^{50} +0.443410 q^{51} +(0.195692 + 1.49091i) q^{52} -2.82477 q^{53} +(-2.19086 - 3.79469i) q^{54} +(1.26070 + 2.18360i) q^{55} -3.27323 q^{57} +(-6.61943 + 11.4652i) q^{58} +(5.12298 - 8.87327i) q^{59} +0.243120 q^{60} +(4.13423 - 7.16069i) q^{61} +(4.11044 + 7.11949i) q^{62} +5.70861 q^{64} +(-3.40931 + 2.61395i) q^{65} -1.60960 q^{66} +(1.87182 + 3.24208i) q^{67} +(0.188987 + 0.327336i) q^{68} +(0.880000 - 1.52420i) q^{69} +(1.26510 - 2.19122i) q^{71} +(-3.39694 + 5.88368i) q^{72} -5.73044 q^{73} +(-3.88018 + 6.72066i) q^{74} +(-0.875834 - 1.51699i) q^{75} +(-1.39510 - 2.41638i) q^{76} +(-0.356910 - 2.71918i) q^{78} +6.07240 q^{79} +(-2.77632 - 4.80873i) q^{80} +(-3.45150 - 5.97817i) q^{81} +(-1.19428 + 2.06856i) q^{82} -11.6309 q^{83} +(-0.539935 + 0.935195i) q^{85} +8.44619 q^{86} +(2.08310 - 3.60803i) q^{87} +(2.60390 + 4.51008i) q^{88} +(8.87557 + 15.3729i) q^{89} +5.11387 q^{90} +1.50027 q^{92} +(-1.29353 - 2.24046i) q^{93} +(2.47719 + 4.29061i) q^{94} +(3.98577 - 6.90356i) q^{95} +1.13659 q^{96} +(-3.10217 + 5.37312i) q^{97} -5.84188 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + q^{3} - 4 q^{4} - 2 q^{5} - 9 q^{6} - 6 q^{8} + 3 q^{9} + 4 q^{10} + 4 q^{11} - 10 q^{12} - 2 q^{13} - 2 q^{15} + 8 q^{16} + 5 q^{17} - 6 q^{18} - q^{19} - q^{20} - 5 q^{22} - q^{23}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.777343 1.34640i −0.549665 0.952047i −0.998297 0.0583310i \(-0.981422\pi\)
0.448632 0.893716i \(-0.351911\pi\)
\(3\) 0.244626 + 0.423704i 0.141235 + 0.244626i 0.927962 0.372675i \(-0.121559\pi\)
−0.786727 + 0.617301i \(0.788226\pi\)
\(4\) −0.208526 + 0.361177i −0.104263 + 0.180588i
\(5\) −1.19151 −0.532860 −0.266430 0.963854i \(-0.585844\pi\)
−0.266430 + 0.963854i \(0.585844\pi\)
\(6\) 0.380316 0.658727i 0.155264 0.268924i
\(7\) 0 0
\(8\) −2.46099 −0.870091
\(9\) 1.38032 2.39078i 0.460105 0.796926i
\(10\) 0.926214 + 1.60425i 0.292894 + 0.507308i
\(11\) −1.05807 1.83263i −0.319020 0.552559i 0.661264 0.750153i \(-0.270020\pi\)
−0.980284 + 0.197595i \(0.936687\pi\)
\(12\) −0.204043 −0.0589021
\(13\) 2.86133 2.19381i 0.793590 0.608453i
\(14\) 0 0
\(15\) −0.291474 0.504848i −0.0752584 0.130351i
\(16\) 2.33009 + 4.03583i 0.582521 + 1.00896i
\(17\) 0.453151 0.784881i 0.109905 0.190362i −0.805826 0.592152i \(-0.798279\pi\)
0.915732 + 0.401790i \(0.131612\pi\)
\(18\) −4.29192 −1.01162
\(19\) −3.34514 + 5.79395i −0.767428 + 1.32922i 0.171525 + 0.985180i \(0.445130\pi\)
−0.938953 + 0.344045i \(0.888203\pi\)
\(20\) 0.248461 0.430346i 0.0555575 0.0962284i
\(21\) 0 0
\(22\) −1.64497 + 2.84917i −0.350708 + 0.607444i
\(23\) −1.79866 3.11538i −0.375048 0.649601i 0.615287 0.788303i \(-0.289040\pi\)
−0.990334 + 0.138702i \(0.955707\pi\)
\(24\) −0.602021 1.04273i −0.122887 0.212847i
\(25\) −3.58030 −0.716060
\(26\) −5.17797 2.14715i −1.01548 0.421091i
\(27\) 2.81840 0.542401
\(28\) 0 0
\(29\) −4.25772 7.37459i −0.790639 1.36943i −0.925572 0.378573i \(-0.876415\pi\)
0.134932 0.990855i \(-0.456918\pi\)
\(30\) −0.453151 + 0.784881i −0.0827337 + 0.143299i
\(31\) −5.28780 −0.949717 −0.474859 0.880062i \(-0.657501\pi\)
−0.474859 + 0.880062i \(0.657501\pi\)
\(32\) 1.16156 2.01189i 0.205337 0.355655i
\(33\) 0.517662 0.896617i 0.0901134 0.156081i
\(34\) −1.40902 −0.241644
\(35\) 0 0
\(36\) 0.575663 + 0.997077i 0.0959438 + 0.166180i
\(37\) −2.49579 4.32284i −0.410306 0.710670i 0.584617 0.811309i \(-0.301245\pi\)
−0.994923 + 0.100639i \(0.967911\pi\)
\(38\) 10.4013 1.68731
\(39\) 1.62948 + 0.675696i 0.260926 + 0.108198i
\(40\) 2.93230 0.463637
\(41\) −0.768181 1.33053i −0.119970 0.207794i 0.799786 0.600286i \(-0.204946\pi\)
−0.919755 + 0.392492i \(0.871613\pi\)
\(42\) 0 0
\(43\) −2.71636 + 4.70488i −0.414242 + 0.717488i −0.995349 0.0963397i \(-0.969286\pi\)
0.581107 + 0.813827i \(0.302620\pi\)
\(44\) 0.882538 0.133048
\(45\) −1.64466 + 2.84864i −0.245172 + 0.424650i
\(46\) −2.79636 + 4.84344i −0.412301 + 0.714126i
\(47\) −3.18673 −0.464833 −0.232416 0.972616i \(-0.574663\pi\)
−0.232416 + 0.972616i \(0.574663\pi\)
\(48\) −1.14000 + 1.97453i −0.164545 + 0.284999i
\(49\) 0 0
\(50\) 2.78312 + 4.82051i 0.393593 + 0.681723i
\(51\) 0.443410 0.0620898
\(52\) 0.195692 + 1.49091i 0.0271376 + 0.206752i
\(53\) −2.82477 −0.388012 −0.194006 0.981000i \(-0.562148\pi\)
−0.194006 + 0.981000i \(0.562148\pi\)
\(54\) −2.19086 3.79469i −0.298139 0.516391i
\(55\) 1.26070 + 2.18360i 0.169993 + 0.294436i
\(56\) 0 0
\(57\) −3.27323 −0.433550
\(58\) −6.61943 + 11.4652i −0.869173 + 1.50545i
\(59\) 5.12298 8.87327i 0.666956 1.15520i −0.311795 0.950149i \(-0.600930\pi\)
0.978751 0.205052i \(-0.0657363\pi\)
\(60\) 0.243120 0.0313866
\(61\) 4.13423 7.16069i 0.529333 0.916832i −0.470081 0.882623i \(-0.655775\pi\)
0.999415 0.0342093i \(-0.0108913\pi\)
\(62\) 4.11044 + 7.11949i 0.522026 + 0.904176i
\(63\) 0 0
\(64\) 5.70861 0.713576
\(65\) −3.40931 + 2.61395i −0.422873 + 0.324220i
\(66\) −1.60960 −0.198129
\(67\) 1.87182 + 3.24208i 0.228679 + 0.396083i 0.957417 0.288709i \(-0.0932261\pi\)
−0.728738 + 0.684793i \(0.759893\pi\)
\(68\) 0.188987 + 0.327336i 0.0229181 + 0.0396953i
\(69\) 0.880000 1.52420i 0.105939 0.183493i
\(70\) 0 0
\(71\) 1.26510 2.19122i 0.150140 0.260050i −0.781139 0.624357i \(-0.785361\pi\)
0.931279 + 0.364307i \(0.118694\pi\)
\(72\) −3.39694 + 5.88368i −0.400334 + 0.693398i
\(73\) −5.73044 −0.670697 −0.335349 0.942094i \(-0.608854\pi\)
−0.335349 + 0.942094i \(0.608854\pi\)
\(74\) −3.88018 + 6.72066i −0.451061 + 0.781261i
\(75\) −0.875834 1.51699i −0.101133 0.175167i
\(76\) −1.39510 2.41638i −0.160028 0.277177i
\(77\) 0 0
\(78\) −0.356910 2.71918i −0.0404121 0.307886i
\(79\) 6.07240 0.683198 0.341599 0.939846i \(-0.389031\pi\)
0.341599 + 0.939846i \(0.389031\pi\)
\(80\) −2.77632 4.80873i −0.310402 0.537633i
\(81\) −3.45150 5.97817i −0.383500 0.664241i
\(82\) −1.19428 + 2.06856i −0.131886 + 0.228434i
\(83\) −11.6309 −1.27665 −0.638327 0.769766i \(-0.720373\pi\)
−0.638327 + 0.769766i \(0.720373\pi\)
\(84\) 0 0
\(85\) −0.539935 + 0.935195i −0.0585642 + 0.101436i
\(86\) 8.44619 0.910776
\(87\) 2.08310 3.60803i 0.223331 0.386821i
\(88\) 2.60390 + 4.51008i 0.277576 + 0.480776i
\(89\) 8.87557 + 15.3729i 0.940808 + 1.62953i 0.763934 + 0.645295i \(0.223265\pi\)
0.176875 + 0.984233i \(0.443401\pi\)
\(90\) 5.11387 0.539049
\(91\) 0 0
\(92\) 1.50027 0.156414
\(93\) −1.29353 2.24046i −0.134133 0.232325i
\(94\) 2.47719 + 4.29061i 0.255502 + 0.442543i
\(95\) 3.98577 6.90356i 0.408932 0.708291i
\(96\) 1.13659 0.116003
\(97\) −3.10217 + 5.37312i −0.314978 + 0.545557i −0.979433 0.201771i \(-0.935330\pi\)
0.664455 + 0.747328i \(0.268664\pi\)
\(98\) 0 0
\(99\) −5.84188 −0.587131
\(100\) 0.746584 1.29312i 0.0746584 0.129312i
\(101\) 3.61133 + 6.25501i 0.359341 + 0.622397i 0.987851 0.155405i \(-0.0496682\pi\)
−0.628510 + 0.777802i \(0.716335\pi\)
\(102\) −0.344682 0.597007i −0.0341286 0.0591125i
\(103\) 9.92645 0.978082 0.489041 0.872261i \(-0.337347\pi\)
0.489041 + 0.872261i \(0.337347\pi\)
\(104\) −7.04170 + 5.39894i −0.690496 + 0.529409i
\(105\) 0 0
\(106\) 2.19582 + 3.80327i 0.213277 + 0.369406i
\(107\) 1.10003 + 1.90531i 0.106344 + 0.184193i 0.914287 0.405068i \(-0.132752\pi\)
−0.807942 + 0.589261i \(0.799419\pi\)
\(108\) −0.587708 + 1.01794i −0.0565523 + 0.0979514i
\(109\) 13.7458 1.31661 0.658305 0.752751i \(-0.271274\pi\)
0.658305 + 0.752751i \(0.271274\pi\)
\(110\) 1.96000 3.39481i 0.186878 0.323683i
\(111\) 1.22107 2.11496i 0.115899 0.200743i
\(112\) 0 0
\(113\) 8.04736 13.9384i 0.757032 1.31122i −0.187326 0.982298i \(-0.559982\pi\)
0.944358 0.328920i \(-0.106685\pi\)
\(114\) 2.54442 + 4.40707i 0.238307 + 0.412760i
\(115\) 2.14313 + 3.71201i 0.199848 + 0.346147i
\(116\) 3.55138 0.329737
\(117\) −1.29536 9.86895i −0.119756 0.912385i
\(118\) −15.9293 −1.46641
\(119\) 0 0
\(120\) 0.717315 + 1.24243i 0.0654816 + 0.113418i
\(121\) 3.26098 5.64818i 0.296453 0.513471i
\(122\) −12.8549 −1.16382
\(123\) 0.375834 0.650963i 0.0338878 0.0586954i
\(124\) 1.10264 1.90983i 0.0990202 0.171508i
\(125\) 10.2235 0.914420
\(126\) 0 0
\(127\) 7.83921 + 13.5779i 0.695617 + 1.20484i 0.969972 + 0.243216i \(0.0782023\pi\)
−0.274355 + 0.961628i \(0.588464\pi\)
\(128\) −6.76067 11.7098i −0.597565 1.03501i
\(129\) −2.65797 −0.234021
\(130\) 6.16962 + 2.55835i 0.541111 + 0.224382i
\(131\) −9.53769 −0.833312 −0.416656 0.909064i \(-0.636798\pi\)
−0.416656 + 0.909064i \(0.636798\pi\)
\(132\) 0.215892 + 0.373935i 0.0187910 + 0.0325469i
\(133\) 0 0
\(134\) 2.91009 5.04042i 0.251393 0.435426i
\(135\) −3.35815 −0.289024
\(136\) −1.11520 + 1.93158i −0.0956277 + 0.165632i
\(137\) 1.38231 2.39422i 0.118098 0.204552i −0.800916 0.598777i \(-0.795654\pi\)
0.919014 + 0.394225i \(0.128987\pi\)
\(138\) −2.73625 −0.232925
\(139\) 11.3983 19.7425i 0.966795 1.67454i 0.262081 0.965046i \(-0.415591\pi\)
0.704714 0.709492i \(-0.251075\pi\)
\(140\) 0 0
\(141\) −0.779557 1.35023i −0.0656505 0.113710i
\(142\) −3.93368 −0.330107
\(143\) −7.04792 2.92256i −0.589377 0.244397i
\(144\) 12.8650 1.07209
\(145\) 5.07312 + 8.78691i 0.421300 + 0.729713i
\(146\) 4.45452 + 7.71546i 0.368659 + 0.638536i
\(147\) 0 0
\(148\) 2.08175 0.171119
\(149\) 7.20581 12.4808i 0.590323 1.02247i −0.403866 0.914818i \(-0.632334\pi\)
0.994189 0.107651i \(-0.0343329\pi\)
\(150\) −1.36165 + 2.35844i −0.111178 + 0.192566i
\(151\) 15.2580 1.24168 0.620840 0.783937i \(-0.286792\pi\)
0.620840 + 0.783937i \(0.286792\pi\)
\(152\) 8.23236 14.2589i 0.667732 1.15655i
\(153\) −1.25098 2.16677i −0.101136 0.175173i
\(154\) 0 0
\(155\) 6.30048 0.506067
\(156\) −0.583834 + 0.447631i −0.0467442 + 0.0358392i
\(157\) −11.4149 −0.911008 −0.455504 0.890234i \(-0.650541\pi\)
−0.455504 + 0.890234i \(0.650541\pi\)
\(158\) −4.72034 8.17587i −0.375530 0.650437i
\(159\) −0.691012 1.19687i −0.0548008 0.0949178i
\(160\) −1.38402 + 2.39719i −0.109416 + 0.189514i
\(161\) 0 0
\(162\) −5.36600 + 9.29418i −0.421592 + 0.730220i
\(163\) 7.20385 12.4774i 0.564249 0.977308i −0.432870 0.901456i \(-0.642499\pi\)
0.997119 0.0758514i \(-0.0241675\pi\)
\(164\) 0.640742 0.0500335
\(165\) −0.616800 + 1.06833i −0.0480178 + 0.0831693i
\(166\) 9.04118 + 15.6598i 0.701731 + 1.21543i
\(167\) −3.88595 6.73066i −0.300704 0.520834i 0.675592 0.737276i \(-0.263888\pi\)
−0.976296 + 0.216442i \(0.930555\pi\)
\(168\) 0 0
\(169\) 3.37442 12.5544i 0.259571 0.965724i
\(170\) 1.67886 0.128763
\(171\) 9.23471 + 15.9950i 0.706196 + 1.22317i
\(172\) −1.13286 1.96218i −0.0863800 0.149615i
\(173\) −3.04731 + 5.27809i −0.231682 + 0.401286i −0.958303 0.285753i \(-0.907756\pi\)
0.726621 + 0.687039i \(0.241090\pi\)
\(174\) −6.47713 −0.491030
\(175\) 0 0
\(176\) 4.93078 8.54037i 0.371672 0.643754i
\(177\) 5.01286 0.376789
\(178\) 13.7987 23.9001i 1.03426 1.79139i
\(179\) −9.26488 16.0472i −0.692490 1.19943i −0.971020 0.239000i \(-0.923181\pi\)
0.278530 0.960428i \(-0.410153\pi\)
\(180\) −0.685909 1.18803i −0.0511246 0.0885504i
\(181\) −5.60520 −0.416631 −0.208316 0.978062i \(-0.566798\pi\)
−0.208316 + 0.978062i \(0.566798\pi\)
\(182\) 0 0
\(183\) 4.04535 0.299041
\(184\) 4.42650 + 7.66692i 0.326326 + 0.565212i
\(185\) 2.97377 + 5.15071i 0.218636 + 0.378688i
\(186\) −2.01104 + 3.48322i −0.147456 + 0.255402i
\(187\) −1.91786 −0.140248
\(188\) 0.664516 1.15097i 0.0484648 0.0839435i
\(189\) 0 0
\(190\) −12.3933 −0.899102
\(191\) −0.251851 + 0.436219i −0.0182233 + 0.0315637i −0.874993 0.484135i \(-0.839134\pi\)
0.856770 + 0.515699i \(0.172468\pi\)
\(192\) 1.39647 + 2.41876i 0.100782 + 0.174559i
\(193\) 1.85622 + 3.21507i 0.133614 + 0.231426i 0.925067 0.379804i \(-0.124009\pi\)
−0.791453 + 0.611230i \(0.790675\pi\)
\(194\) 9.64581 0.692529
\(195\) −1.94154 0.805100i −0.139037 0.0576544i
\(196\) 0 0
\(197\) 3.72225 + 6.44713i 0.265200 + 0.459339i 0.967616 0.252427i \(-0.0812288\pi\)
−0.702416 + 0.711766i \(0.747895\pi\)
\(198\) 4.54115 + 7.86550i 0.322725 + 0.558977i
\(199\) −3.75278 + 6.50001i −0.266028 + 0.460773i −0.967832 0.251596i \(-0.919045\pi\)
0.701805 + 0.712369i \(0.252378\pi\)
\(200\) 8.81108 0.623038
\(201\) −0.915789 + 1.58619i −0.0645948 + 0.111881i
\(202\) 5.61449 9.72458i 0.395034 0.684219i
\(203\) 0 0
\(204\) −0.0924624 + 0.160149i −0.00647366 + 0.0112127i
\(205\) 0.915297 + 1.58534i 0.0639271 + 0.110725i
\(206\) −7.71626 13.3650i −0.537617 0.931181i
\(207\) −9.93091 −0.690246
\(208\) 15.5210 + 6.43608i 1.07619 + 0.446262i
\(209\) 14.1576 0.979299
\(210\) 0 0
\(211\) −1.89531 3.28278i −0.130479 0.225996i 0.793383 0.608723i \(-0.208318\pi\)
−0.923861 + 0.382728i \(0.874985\pi\)
\(212\) 0.589037 1.02024i 0.0404553 0.0700706i
\(213\) 1.23791 0.0848200
\(214\) 1.71020 2.96216i 0.116907 0.202489i
\(215\) 3.23658 5.60592i 0.220733 0.382320i
\(216\) −6.93605 −0.471938
\(217\) 0 0
\(218\) −10.6852 18.5073i −0.723695 1.25348i
\(219\) −1.40181 2.42801i −0.0947258 0.164070i
\(220\) −1.05155 −0.0708958
\(221\) −0.425262 3.23993i −0.0286062 0.217941i
\(222\) −3.79676 −0.254822
\(223\) −2.43440 4.21650i −0.163019 0.282358i 0.772931 0.634490i \(-0.218790\pi\)
−0.935950 + 0.352133i \(0.885457\pi\)
\(224\) 0 0
\(225\) −4.94195 + 8.55971i −0.329463 + 0.570647i
\(226\) −25.0223 −1.66446
\(227\) −12.0884 + 20.9376i −0.802332 + 1.38968i 0.115745 + 0.993279i \(0.463075\pi\)
−0.918077 + 0.396402i \(0.870259\pi\)
\(228\) 0.682552 1.18222i 0.0452031 0.0782941i
\(229\) −21.7123 −1.43479 −0.717394 0.696668i \(-0.754665\pi\)
−0.717394 + 0.696668i \(0.754665\pi\)
\(230\) 3.33190 5.77101i 0.219699 0.380529i
\(231\) 0 0
\(232\) 10.4782 + 18.1488i 0.687928 + 1.19153i
\(233\) 3.79684 0.248739 0.124370 0.992236i \(-0.460309\pi\)
0.124370 + 0.992236i \(0.460309\pi\)
\(234\) −12.2806 + 9.41564i −0.802808 + 0.615520i
\(235\) 3.79703 0.247691
\(236\) 2.13655 + 3.70061i 0.139077 + 0.240889i
\(237\) 1.48547 + 2.57290i 0.0964914 + 0.167128i
\(238\) 0 0
\(239\) 21.9100 1.41724 0.708619 0.705592i \(-0.249319\pi\)
0.708619 + 0.705592i \(0.249319\pi\)
\(240\) 1.35832 2.35268i 0.0876792 0.151865i
\(241\) 10.3744 17.9690i 0.668273 1.15748i −0.310114 0.950699i \(-0.600367\pi\)
0.978387 0.206783i \(-0.0662994\pi\)
\(242\) −10.1396 −0.651798
\(243\) 5.91625 10.2472i 0.379527 0.657361i
\(244\) 1.72418 + 2.98637i 0.110380 + 0.191183i
\(245\) 0 0
\(246\) −1.16861 −0.0745077
\(247\) 3.13926 + 23.9170i 0.199747 + 1.52180i
\(248\) 13.0132 0.826341
\(249\) −2.84521 4.92805i −0.180308 0.312302i
\(250\) −7.94719 13.7649i −0.502624 0.870571i
\(251\) −6.62891 + 11.4816i −0.418413 + 0.724713i −0.995780 0.0917718i \(-0.970747\pi\)
0.577367 + 0.816485i \(0.304080\pi\)
\(252\) 0 0
\(253\) −3.80622 + 6.59257i −0.239295 + 0.414472i
\(254\) 12.1875 21.1094i 0.764713 1.32452i
\(255\) −0.528328 −0.0330852
\(256\) −4.80213 + 8.31753i −0.300133 + 0.519845i
\(257\) 6.58555 + 11.4065i 0.410795 + 0.711518i 0.994977 0.100105i \(-0.0319178\pi\)
−0.584182 + 0.811623i \(0.698584\pi\)
\(258\) 2.06616 + 3.57869i 0.128633 + 0.222799i
\(259\) 0 0
\(260\) −0.233169 1.77644i −0.0144605 0.110170i
\(261\) −23.5080 −1.45511
\(262\) 7.41406 + 12.8415i 0.458042 + 0.793352i
\(263\) 9.57028 + 16.5762i 0.590129 + 1.02213i 0.994215 + 0.107412i \(0.0342564\pi\)
−0.404086 + 0.914721i \(0.632410\pi\)
\(264\) −1.27396 + 2.20657i −0.0784069 + 0.135805i
\(265\) 3.36575 0.206756
\(266\) 0 0
\(267\) −4.34239 + 7.52123i −0.265750 + 0.460292i
\(268\) −1.56129 −0.0953708
\(269\) 14.2411 24.6663i 0.868296 1.50393i 0.00455867 0.999990i \(-0.498549\pi\)
0.863737 0.503943i \(-0.168118\pi\)
\(270\) 2.61044 + 4.52141i 0.158866 + 0.275164i
\(271\) −8.97371 15.5429i −0.545114 0.944165i −0.998600 0.0529014i \(-0.983153\pi\)
0.453486 0.891263i \(-0.350180\pi\)
\(272\) 4.22353 0.256089
\(273\) 0 0
\(274\) −4.29811 −0.259658
\(275\) 3.78821 + 6.56137i 0.228437 + 0.395665i
\(276\) 0.367005 + 0.635671i 0.0220911 + 0.0382629i
\(277\) −6.71943 + 11.6384i −0.403732 + 0.699284i −0.994173 0.107797i \(-0.965620\pi\)
0.590441 + 0.807081i \(0.298954\pi\)
\(278\) −35.4417 −2.12565
\(279\) −7.29884 + 12.6420i −0.436970 + 0.756855i
\(280\) 0 0
\(281\) −29.9530 −1.78685 −0.893424 0.449214i \(-0.851704\pi\)
−0.893424 + 0.449214i \(0.851704\pi\)
\(282\) −1.21197 + 2.09919i −0.0721716 + 0.125005i
\(283\) 4.94561 + 8.56604i 0.293986 + 0.509199i 0.974748 0.223306i \(-0.0716848\pi\)
−0.680763 + 0.732504i \(0.738351\pi\)
\(284\) 0.527613 + 0.913852i 0.0313080 + 0.0542271i
\(285\) 3.90009 0.231021
\(286\) 1.54373 + 11.7611i 0.0912824 + 0.695451i
\(287\) 0 0
\(288\) −3.20665 5.55408i −0.188954 0.327277i
\(289\) 8.08931 + 14.0111i 0.475842 + 0.824182i
\(290\) 7.88712 13.6609i 0.463148 0.802195i
\(291\) −3.03548 −0.177943
\(292\) 1.19494 2.06970i 0.0699288 0.121120i
\(293\) −3.95529 + 6.85076i −0.231071 + 0.400226i −0.958123 0.286356i \(-0.907556\pi\)
0.727053 + 0.686581i \(0.240889\pi\)
\(294\) 0 0
\(295\) −6.10409 + 10.5726i −0.355394 + 0.615561i
\(296\) 6.14212 + 10.6385i 0.357003 + 0.618348i
\(297\) −2.98206 5.16508i −0.173037 0.299708i
\(298\) −22.4056 −1.29792
\(299\) −11.9811 4.96821i −0.692886 0.287319i
\(300\) 0.730535 0.0421775
\(301\) 0 0
\(302\) −11.8607 20.5434i −0.682508 1.18214i
\(303\) −1.76685 + 3.06027i −0.101503 + 0.175808i
\(304\) −31.1779 −1.78817
\(305\) −4.92598 + 8.53204i −0.282061 + 0.488543i
\(306\) −1.94489 + 3.36865i −0.111182 + 0.192573i
\(307\) 1.27238 0.0726187 0.0363094 0.999341i \(-0.488440\pi\)
0.0363094 + 0.999341i \(0.488440\pi\)
\(308\) 0 0
\(309\) 2.42827 + 4.20588i 0.138139 + 0.239264i
\(310\) −4.89763 8.48295i −0.278167 0.481799i
\(311\) 24.7635 1.40421 0.702103 0.712075i \(-0.252244\pi\)
0.702103 + 0.712075i \(0.252244\pi\)
\(312\) −4.01013 1.66288i −0.227029 0.0941421i
\(313\) 2.37651 0.134328 0.0671642 0.997742i \(-0.478605\pi\)
0.0671642 + 0.997742i \(0.478605\pi\)
\(314\) 8.87330 + 15.3690i 0.500749 + 0.867323i
\(315\) 0 0
\(316\) −1.26625 + 2.19321i −0.0712322 + 0.123378i
\(317\) −19.7796 −1.11093 −0.555466 0.831539i \(-0.687460\pi\)
−0.555466 + 0.831539i \(0.687460\pi\)
\(318\) −1.07431 + 1.86076i −0.0602442 + 0.104346i
\(319\) −9.00993 + 15.6057i −0.504459 + 0.873749i
\(320\) −6.80187 −0.380236
\(321\) −0.538192 + 0.932176i −0.0300390 + 0.0520290i
\(322\) 0 0
\(323\) 3.03171 + 5.25108i 0.168689 + 0.292178i
\(324\) 2.87890 0.159939
\(325\) −10.2444 + 7.85449i −0.568258 + 0.435689i
\(326\) −22.3995 −1.24059
\(327\) 3.36258 + 5.82416i 0.185951 + 0.322077i
\(328\) 1.89049 + 3.27442i 0.104385 + 0.180799i
\(329\) 0 0
\(330\) 1.91786 0.105575
\(331\) −1.96386 + 3.40151i −0.107944 + 0.186964i −0.914937 0.403596i \(-0.867760\pi\)
0.806993 + 0.590561i \(0.201093\pi\)
\(332\) 2.42533 4.20080i 0.133107 0.230549i
\(333\) −13.7799 −0.755136
\(334\) −6.04143 + 10.4641i −0.330572 + 0.572568i
\(335\) −2.23029 3.86298i −0.121854 0.211057i
\(336\) 0 0
\(337\) −7.14099 −0.388995 −0.194497 0.980903i \(-0.562308\pi\)
−0.194497 + 0.980903i \(0.562308\pi\)
\(338\) −19.5263 + 5.21577i −1.06209 + 0.283701i
\(339\) 7.87437 0.427677
\(340\) −0.225181 0.390024i −0.0122121 0.0211520i
\(341\) 5.59486 + 9.69059i 0.302979 + 0.524775i
\(342\) 14.3571 24.8672i 0.776342 1.34466i
\(343\) 0 0
\(344\) 6.68494 11.5787i 0.360428 0.624280i
\(345\) −1.04853 + 1.81611i −0.0564509 + 0.0977759i
\(346\) 9.47522 0.509391
\(347\) −5.03498 + 8.72085i −0.270292 + 0.468160i −0.968937 0.247309i \(-0.920454\pi\)
0.698644 + 0.715469i \(0.253787\pi\)
\(348\) 0.868758 + 1.50473i 0.0465703 + 0.0806622i
\(349\) 3.14418 + 5.44588i 0.168304 + 0.291512i 0.937824 0.347112i \(-0.112838\pi\)
−0.769520 + 0.638623i \(0.779504\pi\)
\(350\) 0 0
\(351\) 8.06437 6.18302i 0.430444 0.330025i
\(352\) −4.91606 −0.262027
\(353\) −17.0836 29.5897i −0.909269 1.57490i −0.815083 0.579345i \(-0.803308\pi\)
−0.0941861 0.995555i \(-0.530025\pi\)
\(354\) −3.89671 6.74930i −0.207108 0.358721i
\(355\) −1.50738 + 2.61087i −0.0800036 + 0.138570i
\(356\) −7.40313 −0.392365
\(357\) 0 0
\(358\) −14.4040 + 24.9484i −0.761274 + 1.31857i
\(359\) 18.6865 0.986238 0.493119 0.869962i \(-0.335857\pi\)
0.493119 + 0.869962i \(0.335857\pi\)
\(360\) 4.04750 7.01047i 0.213322 0.369484i
\(361\) −12.8799 22.3087i −0.677891 1.17414i
\(362\) 4.35716 + 7.54683i 0.229007 + 0.396653i
\(363\) 3.19088 0.167478
\(364\) 0 0
\(365\) 6.82788 0.357388
\(366\) −3.14463 5.44666i −0.164372 0.284701i
\(367\) 15.5305 + 26.8997i 0.810687 + 1.40415i 0.912384 + 0.409336i \(0.134240\pi\)
−0.101696 + 0.994816i \(0.532427\pi\)
\(368\) 8.38209 14.5182i 0.436946 0.756813i
\(369\) −4.24133 −0.220795
\(370\) 4.62327 8.00775i 0.240353 0.416303i
\(371\) 0 0
\(372\) 1.07894 0.0559404
\(373\) 1.46852 2.54355i 0.0760371 0.131700i −0.825500 0.564403i \(-0.809107\pi\)
0.901537 + 0.432702i \(0.142440\pi\)
\(374\) 1.49084 + 2.58221i 0.0770894 + 0.133523i
\(375\) 2.50094 + 4.33175i 0.129148 + 0.223691i
\(376\) 7.84252 0.404447
\(377\) −28.3612 11.7605i −1.46068 0.605698i
\(378\) 0 0
\(379\) −5.04254 8.73394i −0.259018 0.448632i 0.706961 0.707252i \(-0.250066\pi\)
−0.965979 + 0.258620i \(0.916732\pi\)
\(380\) 1.66227 + 2.87914i 0.0852727 + 0.147697i
\(381\) −3.83534 + 6.64301i −0.196491 + 0.340332i
\(382\) 0.783100 0.0400669
\(383\) −1.84466 + 3.19504i −0.0942576 + 0.163259i −0.909299 0.416144i \(-0.863381\pi\)
0.815041 + 0.579403i \(0.196714\pi\)
\(384\) 3.30767 5.72905i 0.168794 0.292360i
\(385\) 0 0
\(386\) 2.88584 4.99842i 0.146885 0.254413i
\(387\) 7.49888 + 12.9884i 0.381190 + 0.660240i
\(388\) −1.29376 2.24086i −0.0656809 0.113763i
\(389\) 22.6667 1.14925 0.574623 0.818418i \(-0.305149\pi\)
0.574623 + 0.818418i \(0.305149\pi\)
\(390\) 0.425262 + 3.23993i 0.0215340 + 0.164060i
\(391\) −3.26027 −0.164879
\(392\) 0 0
\(393\) −2.33316 4.04116i −0.117693 0.203849i
\(394\) 5.78694 10.0233i 0.291542 0.504965i
\(395\) −7.23533 −0.364049
\(396\) 1.21818 2.10995i 0.0612160 0.106029i
\(397\) 14.5680 25.2325i 0.731146 1.26638i −0.225248 0.974302i \(-0.572319\pi\)
0.956394 0.292080i \(-0.0943475\pi\)
\(398\) 11.6688 0.584904
\(399\) 0 0
\(400\) −8.34241 14.4495i −0.417120 0.722474i
\(401\) −4.06026 7.03258i −0.202760 0.351190i 0.746657 0.665209i \(-0.231658\pi\)
−0.949417 + 0.314019i \(0.898324\pi\)
\(402\) 2.84753 0.142022
\(403\) −15.1302 + 11.6004i −0.753687 + 0.577858i
\(404\) −3.01222 −0.149864
\(405\) 4.11250 + 7.12305i 0.204352 + 0.353947i
\(406\) 0 0
\(407\) −5.28144 + 9.14773i −0.261791 + 0.453436i
\(408\) −1.09123 −0.0540238
\(409\) 4.16131 7.20759i 0.205763 0.356393i −0.744612 0.667497i \(-0.767366\pi\)
0.950376 + 0.311105i \(0.100699\pi\)
\(410\) 1.42300 2.46471i 0.0702769 0.121723i
\(411\) 1.35259 0.0667184
\(412\) −2.06992 + 3.58520i −0.101978 + 0.176630i
\(413\) 0 0
\(414\) 7.71973 + 13.3710i 0.379404 + 0.657147i
\(415\) 13.8583 0.680278
\(416\) −1.09007 8.30492i −0.0534453 0.407182i
\(417\) 11.1533 0.546180
\(418\) −11.0053 19.0617i −0.538286 0.932339i
\(419\) 6.50832 + 11.2727i 0.317952 + 0.550710i 0.980061 0.198699i \(-0.0636715\pi\)
−0.662108 + 0.749408i \(0.730338\pi\)
\(420\) 0 0
\(421\) −8.89681 −0.433604 −0.216802 0.976216i \(-0.569563\pi\)
−0.216802 + 0.976216i \(0.569563\pi\)
\(422\) −2.94662 + 5.10369i −0.143439 + 0.248444i
\(423\) −4.39870 + 7.61877i −0.213872 + 0.370437i
\(424\) 6.95174 0.337606
\(425\) −1.62242 + 2.81011i −0.0786988 + 0.136310i
\(426\) −0.962279 1.66672i −0.0466225 0.0807526i
\(427\) 0 0
\(428\) −0.917539 −0.0443509
\(429\) −0.485802 3.70117i −0.0234548 0.178694i
\(430\) −10.0637 −0.485316
\(431\) 4.47872 + 7.75736i 0.215732 + 0.373659i 0.953499 0.301397i \(-0.0974529\pi\)
−0.737767 + 0.675056i \(0.764120\pi\)
\(432\) 6.56711 + 11.3746i 0.315960 + 0.547259i
\(433\) 0.0864547 0.149744i 0.00415475 0.00719624i −0.863941 0.503594i \(-0.832011\pi\)
0.868095 + 0.496398i \(0.165344\pi\)
\(434\) 0 0
\(435\) −2.48203 + 4.29901i −0.119004 + 0.206122i
\(436\) −2.86636 + 4.96467i −0.137274 + 0.237765i
\(437\) 24.0671 1.15129
\(438\) −2.17938 + 3.77480i −0.104135 + 0.180367i
\(439\) −4.77080 8.26327i −0.227698 0.394384i 0.729428 0.684058i \(-0.239787\pi\)
−0.957125 + 0.289674i \(0.906453\pi\)
\(440\) −3.10257 5.37382i −0.147909 0.256187i
\(441\) 0 0
\(442\) −4.03166 + 3.09111i −0.191767 + 0.147029i
\(443\) −13.8735 −0.659151 −0.329576 0.944129i \(-0.606906\pi\)
−0.329576 + 0.944129i \(0.606906\pi\)
\(444\) 0.509249 + 0.882045i 0.0241679 + 0.0418600i
\(445\) −10.5753 18.3170i −0.501319 0.868310i
\(446\) −3.78473 + 6.55534i −0.179212 + 0.310404i
\(447\) 7.05091 0.333496
\(448\) 0 0
\(449\) 10.6456 18.4388i 0.502398 0.870180i −0.497598 0.867408i \(-0.665784\pi\)
0.999996 0.00277167i \(-0.000882252\pi\)
\(450\) 15.3664 0.724377
\(451\) −1.62558 + 2.81558i −0.0765455 + 0.132581i
\(452\) 3.35616 + 5.81304i 0.157861 + 0.273423i
\(453\) 3.73251 + 6.46489i 0.175368 + 0.303747i
\(454\) 37.5872 1.76406
\(455\) 0 0
\(456\) 8.05539 0.377228
\(457\) −4.84282 8.38801i −0.226538 0.392375i 0.730242 0.683189i \(-0.239407\pi\)
−0.956780 + 0.290814i \(0.906074\pi\)
\(458\) 16.8779 + 29.2334i 0.788652 + 1.36599i
\(459\) 1.27716 2.21211i 0.0596128 0.103252i
\(460\) −1.78759 −0.0833468
\(461\) 0.687178 1.19023i 0.0320051 0.0554344i −0.849579 0.527461i \(-0.823144\pi\)
0.881584 + 0.472027i \(0.156477\pi\)
\(462\) 0 0
\(463\) 31.7710 1.47653 0.738263 0.674513i \(-0.235646\pi\)
0.738263 + 0.674513i \(0.235646\pi\)
\(464\) 19.8417 34.3669i 0.921128 1.59544i
\(465\) 1.54126 + 2.66954i 0.0714742 + 0.123797i
\(466\) −2.95145 5.11206i −0.136723 0.236812i
\(467\) −29.1209 −1.34756 −0.673778 0.738934i \(-0.735330\pi\)
−0.673778 + 0.738934i \(0.735330\pi\)
\(468\) 3.83456 + 1.59007i 0.177252 + 0.0735012i
\(469\) 0 0
\(470\) −2.95160 5.11231i −0.136147 0.235813i
\(471\) −2.79238 4.83654i −0.128666 0.222856i
\(472\) −12.6076 + 21.8370i −0.580312 + 1.00513i
\(473\) 11.4964 0.528605
\(474\) 2.30943 4.00006i 0.106076 0.183729i
\(475\) 11.9766 20.7441i 0.549525 0.951804i
\(476\) 0 0
\(477\) −3.89908 + 6.75341i −0.178527 + 0.309217i
\(478\) −17.0316 29.4995i −0.779005 1.34928i
\(479\) −4.86092 8.41936i −0.222101 0.384690i 0.733345 0.679857i \(-0.237958\pi\)
−0.955446 + 0.295167i \(0.904625\pi\)
\(480\) −1.35426 −0.0618134
\(481\) −16.6248 6.89379i −0.758024 0.314330i
\(482\) −32.2578 −1.46930
\(483\) 0 0
\(484\) 1.36000 + 2.35558i 0.0618180 + 0.107072i
\(485\) 3.69627 6.40213i 0.167839 0.290706i
\(486\) −18.3958 −0.834452
\(487\) 8.55666 14.8206i 0.387739 0.671584i −0.604406 0.796676i \(-0.706589\pi\)
0.992145 + 0.125093i \(0.0399228\pi\)
\(488\) −10.1743 + 17.6224i −0.460568 + 0.797728i
\(489\) 7.04899 0.318766
\(490\) 0 0
\(491\) 12.8607 + 22.2753i 0.580394 + 1.00527i 0.995432 + 0.0954681i \(0.0304348\pi\)
−0.415038 + 0.909804i \(0.636232\pi\)
\(492\) 0.156742 + 0.271485i 0.00706647 + 0.0122395i
\(493\) −7.71757 −0.347582
\(494\) 29.7615 22.8184i 1.33903 1.02665i
\(495\) 6.96067 0.312859
\(496\) −12.3210 21.3407i −0.553231 0.958224i
\(497\) 0 0
\(498\) −4.42341 + 7.66157i −0.198218 + 0.343323i
\(499\) 5.40396 0.241914 0.120957 0.992658i \(-0.461404\pi\)
0.120957 + 0.992658i \(0.461404\pi\)
\(500\) −2.13187 + 3.69250i −0.0953400 + 0.165134i
\(501\) 1.90121 3.29299i 0.0849396 0.147120i
\(502\) 20.6118 0.919948
\(503\) 6.30847 10.9266i 0.281281 0.487193i −0.690420 0.723409i \(-0.742574\pi\)
0.971700 + 0.236216i \(0.0759074\pi\)
\(504\) 0 0
\(505\) −4.30294 7.45292i −0.191478 0.331650i
\(506\) 11.8350 0.526129
\(507\) 6.14483 1.64138i 0.272901 0.0728960i
\(508\) −6.53870 −0.290108
\(509\) 0.979379 + 1.69633i 0.0434102 + 0.0751887i 0.886914 0.461934i \(-0.152844\pi\)
−0.843504 + 0.537123i \(0.819511\pi\)
\(510\) 0.410692 + 0.711340i 0.0181858 + 0.0314987i
\(511\) 0 0
\(512\) −12.1111 −0.535240
\(513\) −9.42794 + 16.3297i −0.416254 + 0.720973i
\(514\) 10.2385 17.7335i 0.451599 0.782193i
\(515\) −11.8275 −0.521181
\(516\) 0.554255 0.959998i 0.0243997 0.0422615i
\(517\) 3.37178 + 5.84010i 0.148291 + 0.256847i
\(518\) 0 0
\(519\) −2.98180 −0.130886
\(520\) 8.39027 6.43289i 0.367938 0.282101i
\(521\) −39.0954 −1.71280 −0.856401 0.516312i \(-0.827305\pi\)
−0.856401 + 0.516312i \(0.827305\pi\)
\(522\) 18.2738 + 31.6512i 0.799823 + 1.38533i
\(523\) 4.35634 + 7.54540i 0.190489 + 0.329937i 0.945413 0.325876i \(-0.105659\pi\)
−0.754923 + 0.655813i \(0.772326\pi\)
\(524\) 1.98885 3.44479i 0.0868834 0.150486i
\(525\) 0 0
\(526\) 14.8788 25.7708i 0.648746 1.12366i
\(527\) −2.39618 + 4.15030i −0.104379 + 0.180790i
\(528\) 4.82479 0.209972
\(529\) 5.02961 8.71154i 0.218679 0.378763i
\(530\) −2.61634 4.53164i −0.113647 0.196842i
\(531\) −14.1427 24.4958i −0.613740 1.06303i
\(532\) 0 0
\(533\) −5.11694 2.12184i −0.221639 0.0919072i
\(534\) 13.5021 0.584293
\(535\) −1.31070 2.27020i −0.0566665 0.0981493i
\(536\) −4.60652 7.97873i −0.198971 0.344629i
\(537\) 4.53286 7.85114i 0.195607 0.338802i
\(538\) −44.2809 −1.90909
\(539\) 0 0
\(540\) 0.700261 1.21289i 0.0301344 0.0521944i
\(541\) −21.4994 −0.924330 −0.462165 0.886794i \(-0.652927\pi\)
−0.462165 + 0.886794i \(0.652927\pi\)
\(542\) −13.9513 + 24.1644i −0.599260 + 1.03795i
\(543\) −1.37118 2.37495i −0.0588428 0.101919i
\(544\) −1.05273 1.82338i −0.0451353 0.0781767i
\(545\) −16.3783 −0.701569
\(546\) 0 0
\(547\) −30.2968 −1.29540 −0.647699 0.761896i \(-0.724269\pi\)
−0.647699 + 0.761896i \(0.724269\pi\)
\(548\) 0.576493 + 0.998514i 0.0246265 + 0.0426544i
\(549\) −11.4131 19.7680i −0.487098 0.843679i
\(550\) 5.88947 10.2009i 0.251128 0.434967i
\(551\) 56.9707 2.42703
\(552\) −2.16567 + 3.75105i −0.0921770 + 0.159655i
\(553\) 0 0
\(554\) 20.8932 0.887668
\(555\) −1.45492 + 2.51999i −0.0617579 + 0.106968i
\(556\) 4.75369 + 8.23364i 0.201601 + 0.349184i
\(557\) 8.84201 + 15.3148i 0.374648 + 0.648909i 0.990274 0.139129i \(-0.0444302\pi\)
−0.615626 + 0.788038i \(0.711097\pi\)
\(558\) 22.6948 0.960749
\(559\) 2.54918 + 19.4214i 0.107819 + 0.821437i
\(560\) 0 0
\(561\) −0.469159 0.812606i −0.0198079 0.0343083i
\(562\) 23.2838 + 40.3287i 0.982167 + 1.70116i
\(563\) 20.8695 36.1471i 0.879545 1.52342i 0.0277042 0.999616i \(-0.491180\pi\)
0.851841 0.523801i \(-0.175486\pi\)
\(564\) 0.650230 0.0273796
\(565\) −9.58852 + 16.6078i −0.403392 + 0.698696i
\(566\) 7.68887 13.3175i 0.323187 0.559777i
\(567\) 0 0
\(568\) −3.11340 + 5.39257i −0.130636 + 0.226267i
\(569\) −2.73388 4.73521i −0.114610 0.198510i 0.803014 0.595960i \(-0.203229\pi\)
−0.917624 + 0.397450i \(0.869895\pi\)
\(570\) −3.03171 5.25108i −0.126984 0.219943i
\(571\) 9.35242 0.391387 0.195693 0.980665i \(-0.437304\pi\)
0.195693 + 0.980665i \(0.437304\pi\)
\(572\) 2.52523 1.93612i 0.105585 0.0809532i
\(573\) −0.246437 −0.0102951
\(574\) 0 0
\(575\) 6.43976 + 11.1540i 0.268557 + 0.465154i
\(576\) 7.87968 13.6480i 0.328320 0.568667i
\(577\) −3.36925 −0.140264 −0.0701318 0.997538i \(-0.522342\pi\)
−0.0701318 + 0.997538i \(0.522342\pi\)
\(578\) 12.5763 21.7829i 0.523107 0.906048i
\(579\) −0.908159 + 1.57298i −0.0377418 + 0.0653707i
\(580\) −4.23151 −0.175704
\(581\) 0 0
\(582\) 2.35961 + 4.08697i 0.0978091 + 0.169410i
\(583\) 2.98881 + 5.17676i 0.123784 + 0.214400i
\(584\) 14.1026 0.583568
\(585\) 1.54344 + 11.7590i 0.0638134 + 0.486174i
\(586\) 12.2985 0.508045
\(587\) 6.57639 + 11.3906i 0.271437 + 0.470142i 0.969230 0.246157i \(-0.0791679\pi\)
−0.697793 + 0.716299i \(0.745835\pi\)
\(588\) 0 0
\(589\) 17.6884 30.6373i 0.728840 1.26239i
\(590\) 18.9799 0.781390
\(591\) −1.82112 + 3.15427i −0.0749108 + 0.129749i
\(592\) 11.6308 20.1452i 0.478024 0.827961i
\(593\) 38.5916 1.58477 0.792384 0.610022i \(-0.208839\pi\)
0.792384 + 0.610022i \(0.208839\pi\)
\(594\) −4.63617 + 8.03008i −0.190224 + 0.329478i
\(595\) 0 0
\(596\) 3.00519 + 5.20515i 0.123097 + 0.213211i
\(597\) −3.67211 −0.150289
\(598\) 2.62426 + 19.9934i 0.107314 + 0.817589i
\(599\) 18.4152 0.752426 0.376213 0.926533i \(-0.377226\pi\)
0.376213 + 0.926533i \(0.377226\pi\)
\(600\) 2.15542 + 3.73329i 0.0879946 + 0.152411i
\(601\) 20.7018 + 35.8566i 0.844445 + 1.46262i 0.886102 + 0.463490i \(0.153403\pi\)
−0.0416571 + 0.999132i \(0.513264\pi\)
\(602\) 0 0
\(603\) 10.3348 0.420865
\(604\) −3.18169 + 5.51085i −0.129461 + 0.224233i
\(605\) −3.88549 + 6.72987i −0.157968 + 0.273608i
\(606\) 5.49380 0.223170
\(607\) −6.15255 + 10.6565i −0.249724 + 0.432535i −0.963449 0.267891i \(-0.913673\pi\)
0.713725 + 0.700426i \(0.247007\pi\)
\(608\) 7.77119 + 13.4601i 0.315163 + 0.545879i
\(609\) 0 0
\(610\) 15.3167 0.620155
\(611\) −9.11830 + 6.99108i −0.368887 + 0.282829i
\(612\) 1.04345 0.0421789
\(613\) −13.1112 22.7093i −0.529556 0.917219i −0.999406 0.0344720i \(-0.989025\pi\)
0.469849 0.882747i \(-0.344308\pi\)
\(614\) −0.989078 1.71313i −0.0399160 0.0691365i
\(615\) −0.447810 + 0.775630i −0.0180575 + 0.0312764i
\(616\) 0 0
\(617\) 9.41259 16.3031i 0.378936 0.656337i −0.611971 0.790880i \(-0.709623\pi\)
0.990908 + 0.134543i \(0.0429565\pi\)
\(618\) 3.77519 6.53882i 0.151860 0.263030i
\(619\) −15.8083 −0.635389 −0.317695 0.948193i \(-0.602909\pi\)
−0.317695 + 0.948193i \(0.602909\pi\)
\(620\) −1.31381 + 2.27559i −0.0527639 + 0.0913898i
\(621\) −5.06935 8.78038i −0.203426 0.352344i
\(622\) −19.2497 33.3415i −0.771843 1.33687i
\(623\) 0 0
\(624\) 1.06984 + 8.15073i 0.0428277 + 0.326290i
\(625\) 5.72006 0.228802
\(626\) −1.84737 3.19973i −0.0738356 0.127887i
\(627\) 3.46331 + 5.99862i 0.138311 + 0.239562i
\(628\) 2.38030 4.12280i 0.0949843 0.164518i
\(629\) −4.52389 −0.180379
\(630\) 0 0
\(631\) 8.33817 14.4421i 0.331937 0.574933i −0.650954 0.759117i \(-0.725631\pi\)
0.982892 + 0.184184i \(0.0589644\pi\)
\(632\) −14.9441 −0.594445
\(633\) 0.927285 1.60610i 0.0368563 0.0638369i
\(634\) 15.3755 + 26.6312i 0.610640 + 1.05766i
\(635\) −9.34050 16.1782i −0.370667 0.642013i
\(636\) 0.576375 0.0228548
\(637\) 0 0
\(638\) 28.0152 1.10913
\(639\) −3.49248 6.04916i −0.138161 0.239301i
\(640\) 8.05542 + 13.9524i 0.318418 + 0.551517i
\(641\) −24.6232 + 42.6487i −0.972559 + 1.68452i −0.284792 + 0.958589i \(0.591925\pi\)
−0.687767 + 0.725932i \(0.741409\pi\)
\(642\) 1.67344 0.0660454
\(643\) −21.4355 + 37.1275i −0.845335 + 1.46416i 0.0399940 + 0.999200i \(0.487266\pi\)
−0.885330 + 0.464964i \(0.846067\pi\)
\(644\) 0 0
\(645\) 3.16700 0.124701
\(646\) 4.71336 8.16378i 0.185445 0.321200i
\(647\) −2.12929 3.68804i −0.0837112 0.144992i 0.821130 0.570741i \(-0.193344\pi\)
−0.904841 + 0.425749i \(0.860011\pi\)
\(648\) 8.49410 + 14.7122i 0.333680 + 0.577950i
\(649\) −21.6819 −0.851089
\(650\) 18.5387 + 7.68744i 0.727148 + 0.301526i
\(651\) 0 0
\(652\) 3.00437 + 5.20373i 0.117660 + 0.203794i
\(653\) 1.04776 + 1.81477i 0.0410020 + 0.0710176i 0.885798 0.464071i \(-0.153612\pi\)
−0.844796 + 0.535088i \(0.820278\pi\)
\(654\) 5.22776 9.05475i 0.204422 0.354069i
\(655\) 11.3643 0.444038
\(656\) 3.57986 6.20049i 0.139770 0.242089i
\(657\) −7.90982 + 13.7002i −0.308592 + 0.534496i
\(658\) 0 0
\(659\) −12.7259 + 22.0419i −0.495732 + 0.858632i −0.999988 0.00492170i \(-0.998433\pi\)
0.504256 + 0.863554i \(0.331767\pi\)
\(660\) −0.257237 0.445548i −0.0100129 0.0173429i
\(661\) −13.9054 24.0848i −0.540857 0.936792i −0.998855 0.0478387i \(-0.984767\pi\)
0.457998 0.888953i \(-0.348567\pi\)
\(662\) 6.10639 0.237332
\(663\) 1.26874 0.972756i 0.0492739 0.0377787i
\(664\) 28.6234 1.11080
\(665\) 0 0
\(666\) 10.7117 + 18.5533i 0.415072 + 0.718925i
\(667\) −15.3164 + 26.5288i −0.593055 + 1.02720i
\(668\) 3.24128 0.125409
\(669\) 1.19103 2.06293i 0.0460480 0.0797574i
\(670\) −3.46740 + 6.00572i −0.133957 + 0.232021i
\(671\) −17.4972 −0.675472
\(672\) 0 0
\(673\) −7.76033 13.4413i −0.299139 0.518124i 0.676800 0.736167i \(-0.263366\pi\)
−0.975939 + 0.218043i \(0.930033\pi\)
\(674\) 5.55100 + 9.61462i 0.213817 + 0.370341i
\(675\) −10.0907 −0.388392
\(676\) 3.83071 + 3.83668i 0.147335 + 0.147565i
\(677\) 34.5626 1.32835 0.664175 0.747577i \(-0.268783\pi\)
0.664175 + 0.747577i \(0.268783\pi\)
\(678\) −6.12109 10.6020i −0.235079 0.407169i
\(679\) 0 0
\(680\) 1.32877 2.30150i 0.0509562 0.0882587i
\(681\) −11.8285 −0.453269
\(682\) 8.69826 15.0658i 0.333074 0.576900i
\(683\) −23.5032 + 40.7087i −0.899325 + 1.55768i −0.0709661 + 0.997479i \(0.522608\pi\)
−0.828359 + 0.560198i \(0.810725\pi\)
\(684\) −7.70269 −0.294520
\(685\) −1.64703 + 2.85275i −0.0629299 + 0.108998i
\(686\) 0 0
\(687\) −5.31138 9.19958i −0.202642 0.350986i
\(688\) −25.3174 −0.965218
\(689\) −8.08261 + 6.19701i −0.307923 + 0.236087i
\(690\) 3.26027 0.124116
\(691\) −9.50301 16.4597i −0.361512 0.626156i 0.626698 0.779262i \(-0.284406\pi\)
−0.988210 + 0.153106i \(0.951073\pi\)
\(692\) −1.27088 2.20123i −0.0483117 0.0836784i
\(693\) 0 0
\(694\) 15.6556 0.594280
\(695\) −13.5813 + 23.5234i −0.515166 + 0.892294i
\(696\) −5.12648 + 8.87933i −0.194319 + 0.336570i
\(697\) −1.39241 −0.0527413
\(698\) 4.88822 8.46665i 0.185022 0.320467i
\(699\) 0.928805 + 1.60874i 0.0351306 + 0.0608480i
\(700\) 0 0
\(701\) −45.4648 −1.71718 −0.858591 0.512662i \(-0.828659\pi\)
−0.858591 + 0.512662i \(0.828659\pi\)
\(702\) −14.5936 6.05152i −0.550800 0.228400i
\(703\) 33.3951 1.25952
\(704\) −6.04010 10.4618i −0.227645 0.394293i
\(705\) 0.928851 + 1.60882i 0.0349826 + 0.0605916i
\(706\) −26.5597 + 46.0027i −0.999586 + 1.73133i
\(707\) 0 0
\(708\) −1.04531 + 1.81053i −0.0392851 + 0.0680438i
\(709\) 4.89390 8.47648i 0.183794 0.318341i −0.759375 0.650653i \(-0.774495\pi\)
0.943170 + 0.332312i \(0.107829\pi\)
\(710\) 4.68702 0.175901
\(711\) 8.38183 14.5178i 0.314343 0.544459i
\(712\) −21.8427 37.8326i −0.818589 1.41784i
\(713\) 9.51099 + 16.4735i 0.356189 + 0.616938i
\(714\) 0 0
\(715\) 8.39768 + 3.48226i 0.314055 + 0.130229i
\(716\) 7.72786 0.288804
\(717\) 5.35974 + 9.28334i 0.200163 + 0.346693i
\(718\) −14.5259 25.1595i −0.542100 0.938945i
\(719\) 13.9201 24.1104i 0.519133 0.899165i −0.480620 0.876929i \(-0.659588\pi\)
0.999753 0.0222358i \(-0.00707846\pi\)
\(720\) −15.3288 −0.571271
\(721\) 0 0
\(722\) −20.0243 + 34.6830i −0.745226 + 1.29077i
\(723\) 10.1514 0.377533
\(724\) 1.16883 2.02447i 0.0434391 0.0752388i
\(725\) 15.2439 + 26.4033i 0.566145 + 0.980592i
\(726\) −2.48041 4.29619i −0.0920566 0.159447i
\(727\) −14.5650 −0.540186 −0.270093 0.962834i \(-0.587055\pi\)
−0.270093 + 0.962834i \(0.587055\pi\)
\(728\) 0 0
\(729\) −14.9199 −0.552589
\(730\) −5.30761 9.19305i −0.196444 0.340250i
\(731\) 2.46185 + 4.26405i 0.0910547 + 0.157711i
\(732\) −0.843560 + 1.46109i −0.0311789 + 0.0540034i
\(733\) 17.6606 0.652309 0.326155 0.945316i \(-0.394247\pi\)
0.326155 + 0.945316i \(0.394247\pi\)
\(734\) 24.1451 41.8206i 0.891213 1.54363i
\(735\) 0 0
\(736\) −8.35705 −0.308045
\(737\) 3.96102 6.86069i 0.145906 0.252717i
\(738\) 3.29697 + 5.71052i 0.121363 + 0.210207i
\(739\) −4.48279 7.76443i −0.164902 0.285619i 0.771718 0.635964i \(-0.219398\pi\)
−0.936621 + 0.350345i \(0.886064\pi\)
\(740\) −2.48042 −0.0911822
\(741\) −9.36579 + 7.18084i −0.344061 + 0.263795i
\(742\) 0 0
\(743\) 13.1839 + 22.8352i 0.483671 + 0.837743i 0.999824 0.0187532i \(-0.00596968\pi\)
−0.516153 + 0.856497i \(0.672636\pi\)
\(744\) 3.18337 + 5.51376i 0.116708 + 0.202144i
\(745\) −8.58580 + 14.8710i −0.314560 + 0.544833i
\(746\) −4.56618 −0.167180
\(747\) −16.0543 + 27.8068i −0.587395 + 1.01740i
\(748\) 0.399923 0.692688i 0.0146226 0.0253272i
\(749\) 0 0
\(750\) 3.88818 6.73452i 0.141976 0.245910i
\(751\) 10.1438 + 17.5696i 0.370152 + 0.641123i 0.989589 0.143924i \(-0.0459721\pi\)
−0.619436 + 0.785047i \(0.712639\pi\)
\(752\) −7.42536 12.8611i −0.270775 0.468996i
\(753\) −6.48641 −0.236378
\(754\) 6.21203 + 47.3274i 0.226229 + 1.72356i
\(755\) −18.1801 −0.661642
\(756\) 0 0
\(757\) −12.4992 21.6493i −0.454292 0.786857i 0.544355 0.838855i \(-0.316774\pi\)
−0.998647 + 0.0519981i \(0.983441\pi\)
\(758\) −7.83957 + 13.5785i −0.284746 + 0.493195i
\(759\) −3.72440 −0.135187
\(760\) −9.80895 + 16.9896i −0.355808 + 0.616277i
\(761\) −10.0711 + 17.4436i −0.365077 + 0.632332i −0.988789 0.149323i \(-0.952291\pi\)
0.623712 + 0.781655i \(0.285624\pi\)
\(762\) 11.9255 0.432016
\(763\) 0 0
\(764\) −0.105035 0.181926i −0.00380003 0.00658184i
\(765\) 1.49056 + 2.58173i 0.0538914 + 0.0933426i
\(766\) 5.73573 0.207240
\(767\) −4.80769 36.6282i −0.173596 1.32257i
\(768\) −4.69889 −0.169557
\(769\) −4.33610 7.51034i −0.156364 0.270830i 0.777191 0.629265i \(-0.216644\pi\)
−0.933555 + 0.358435i \(0.883311\pi\)
\(770\) 0 0
\(771\) −3.22199 + 5.58065i −0.116037 + 0.200982i
\(772\) −1.54828 −0.0557237
\(773\) −1.17283 + 2.03141i −0.0421839 + 0.0730647i −0.886346 0.463023i \(-0.846765\pi\)
0.844163 + 0.536087i \(0.180098\pi\)
\(774\) 11.6584 20.1930i 0.419053 0.725821i
\(775\) 18.9319 0.680055
\(776\) 7.63441 13.2232i 0.274059 0.474685i
\(777\) 0 0
\(778\) −17.6198 30.5184i −0.631701 1.09414i
\(779\) 10.2787 0.368273
\(780\) 0.695645 0.533357i 0.0249081 0.0190973i
\(781\) −5.35426 −0.191591
\(782\) 2.53435 + 4.38962i 0.0906281 + 0.156973i
\(783\) −12.0000 20.7845i −0.428844 0.742779i
\(784\) 0 0
\(785\) 13.6010 0.485440
\(786\) −3.62734 + 6.28274i −0.129383 + 0.224098i
\(787\) 17.0583 29.5459i 0.608063 1.05320i −0.383496 0.923543i \(-0.625280\pi\)
0.991559 0.129654i \(-0.0413866\pi\)
\(788\) −3.10474 −0.110602
\(789\) −4.68228 + 8.10994i −0.166693 + 0.288721i
\(790\) 5.62434 + 9.74164i 0.200105 + 0.346592i
\(791\) 0 0
\(792\) 14.3768 0.510858
\(793\) −3.87978 29.5588i −0.137775 1.04966i
\(794\) −45.2973 −1.60754
\(795\) 0.823349 + 1.42608i 0.0292012 + 0.0505779i
\(796\) −1.56510 2.71084i −0.0554736 0.0960830i
\(797\) 17.0422 29.5180i 0.603666 1.04558i −0.388594 0.921409i \(-0.627039\pi\)
0.992261 0.124172i \(-0.0396275\pi\)
\(798\) 0 0
\(799\) −1.44407 + 2.50121i −0.0510876 + 0.0884863i
\(800\) −4.15875 + 7.20316i −0.147034 + 0.254670i
\(801\) 49.0044 1.73148
\(802\) −6.31243 + 10.9335i −0.222900 + 0.386074i
\(803\) 6.06320 + 10.5018i 0.213966 + 0.370600i
\(804\) −0.381931 0.661524i −0.0134697 0.0233302i
\(805\) 0 0
\(806\) 27.3801 + 11.3537i 0.964423 + 0.399917i
\(807\) 13.9350 0.490534
\(808\) −8.88745 15.3935i −0.312659 0.541542i
\(809\) 13.2603 + 22.9675i 0.466206 + 0.807493i 0.999255 0.0385914i \(-0.0122871\pi\)
−0.533049 + 0.846085i \(0.678954\pi\)
\(810\) 6.39365 11.0741i 0.224650 0.389105i
\(811\) 52.5463 1.84515 0.922575 0.385818i \(-0.126081\pi\)
0.922575 + 0.385818i \(0.126081\pi\)
\(812\) 0 0
\(813\) 4.39040 7.60439i 0.153978 0.266698i
\(814\) 16.4220 0.575590
\(815\) −8.58347 + 14.8670i −0.300666 + 0.520768i
\(816\) 1.03318 + 1.78953i 0.0361686 + 0.0626459i
\(817\) −18.1732 31.4770i −0.635801 1.10124i
\(818\) −12.9391 −0.452403
\(819\) 0 0
\(820\) −0.763451 −0.0266609
\(821\) 15.3773 + 26.6343i 0.536671 + 0.929542i 0.999080 + 0.0428753i \(0.0136518\pi\)
−0.462409 + 0.886667i \(0.653015\pi\)
\(822\) −1.05143 1.82113i −0.0366728 0.0635191i
\(823\) 14.8519 25.7243i 0.517705 0.896691i −0.482084 0.876125i \(-0.660120\pi\)
0.999789 0.0205659i \(-0.00654678\pi\)
\(824\) −24.4289 −0.851021
\(825\) −1.85339 + 3.21016i −0.0645266 + 0.111763i
\(826\) 0 0
\(827\) 14.8351 0.515866 0.257933 0.966163i \(-0.416959\pi\)
0.257933 + 0.966163i \(0.416959\pi\)
\(828\) 2.07085 3.58681i 0.0719670 0.124650i
\(829\) −7.29244 12.6309i −0.253277 0.438688i 0.711149 0.703041i \(-0.248175\pi\)
−0.964426 + 0.264353i \(0.914842\pi\)
\(830\) −10.7727 18.6588i −0.373925 0.647657i
\(831\) −6.57499 −0.228084
\(832\) 16.3342 12.5236i 0.566287 0.434177i
\(833\) 0 0
\(834\) −8.66995 15.0168i −0.300216 0.519989i
\(835\) 4.63015 + 8.01966i 0.160233 + 0.277532i
\(836\) −2.95221 + 5.11339i −0.102104 + 0.176850i
\(837\) −14.9031 −0.515128
\(838\) 10.1184 17.5256i 0.349534 0.605411i
\(839\) −18.4043 + 31.8772i −0.635386 + 1.10052i 0.351047 + 0.936358i \(0.385826\pi\)
−0.986433 + 0.164164i \(0.947508\pi\)
\(840\) 0 0
\(841\) −21.7564 + 37.6832i −0.750221 + 1.29942i
\(842\) 6.91588 + 11.9787i 0.238337 + 0.412812i
\(843\) −7.32728 12.6912i −0.252365 0.437109i
\(844\) 1.58088 0.0544163
\(845\) −4.02066 + 14.9587i −0.138315 + 0.514596i
\(846\) 13.6772 0.470232
\(847\) 0 0
\(848\) −6.58196 11.4003i −0.226025 0.391488i
\(849\) −2.41965 + 4.19095i −0.0830421 + 0.143833i
\(850\) 5.04470 0.173032
\(851\) −8.97819 + 15.5507i −0.307768 + 0.533070i
\(852\) −0.258135 + 0.447103i −0.00884357 + 0.0153175i
\(853\) −4.10728 −0.140630 −0.0703152 0.997525i \(-0.522401\pi\)
−0.0703152 + 0.997525i \(0.522401\pi\)
\(854\) 0 0
\(855\) −11.0033 19.0582i −0.376303 0.651777i
\(856\) −2.70717 4.68895i −0.0925291 0.160265i
\(857\) −38.3312 −1.30937 −0.654684 0.755902i \(-0.727199\pi\)
−0.654684 + 0.755902i \(0.727199\pi\)
\(858\) −4.60561 + 3.53116i −0.157233 + 0.120552i
\(859\) −39.4369 −1.34557 −0.672785 0.739838i \(-0.734902\pi\)
−0.672785 + 0.739838i \(0.734902\pi\)
\(860\) 1.34982 + 2.33796i 0.0460284 + 0.0797236i
\(861\) 0 0
\(862\) 6.96300 12.0603i 0.237161 0.410775i
\(863\) −38.6440 −1.31546 −0.657728 0.753255i \(-0.728483\pi\)
−0.657728 + 0.753255i \(0.728483\pi\)
\(864\) 3.27375 5.67030i 0.111375 0.192907i
\(865\) 3.63090 6.28891i 0.123454 0.213829i
\(866\) −0.268820 −0.00913488
\(867\) −3.95771 + 6.85495i −0.134411 + 0.232806i
\(868\) 0 0
\(869\) −6.42502 11.1285i −0.217954 0.377507i
\(870\) 7.71757 0.261650
\(871\) 12.4684 + 5.17026i 0.422475 + 0.175188i
\(872\) −33.8283 −1.14557
\(873\) 8.56395 + 14.8332i 0.289846 + 0.502028i
\(874\) −18.7084 32.4040i −0.632822 1.09608i
\(875\) 0 0
\(876\) 1.16926 0.0395055
\(877\) 29.0371 50.2937i 0.980512 1.69830i 0.320118 0.947378i \(-0.396277\pi\)
0.660394 0.750919i \(-0.270389\pi\)
\(878\) −7.41710 + 12.8468i −0.250315 + 0.433558i
\(879\) −3.87026 −0.130541
\(880\) −5.87508 + 10.1759i −0.198049 + 0.343031i
\(881\) −10.8118 18.7266i −0.364259 0.630916i 0.624398 0.781107i \(-0.285345\pi\)
−0.988657 + 0.150191i \(0.952011\pi\)
\(882\) 0 0
\(883\) −22.7329 −0.765022 −0.382511 0.923951i \(-0.624941\pi\)
−0.382511 + 0.923951i \(0.624941\pi\)
\(884\) 1.25887 + 0.522014i 0.0423403 + 0.0175572i
\(885\) −5.97287 −0.200776
\(886\) 10.7845 + 18.6793i 0.362312 + 0.627543i
\(887\) 8.16585 + 14.1437i 0.274182 + 0.474898i 0.969929 0.243390i \(-0.0782595\pi\)
−0.695746 + 0.718288i \(0.744926\pi\)
\(888\) −3.00504 + 5.20488i −0.100843 + 0.174664i
\(889\) 0 0
\(890\) −16.4413 + 28.4772i −0.551115 + 0.954559i
\(891\) −7.30385 + 12.6506i −0.244688 + 0.423812i
\(892\) 2.03054 0.0679874
\(893\) 10.6601 18.4638i 0.356726 0.617867i
\(894\) −5.48098 9.49333i −0.183311 0.317504i
\(895\) 11.0392 + 19.1205i 0.369000 + 0.639127i
\(896\) 0 0
\(897\) −0.825840 6.29180i −0.0275740 0.210077i
\(898\) −33.1012 −1.10460
\(899\) 22.5140 + 38.9954i 0.750884 + 1.30057i
\(900\) −2.06105 3.56984i −0.0687015 0.118995i
\(901\) −1.28005 + 2.21711i −0.0426446 + 0.0738627i
\(902\) 5.05453 0.168297
\(903\) 0 0
\(904\) −19.8045 + 34.3023i −0.658687 + 1.14088i
\(905\) 6.67866 0.222006
\(906\) 5.80288 10.0509i 0.192788 0.333918i
\(907\) −7.20480 12.4791i −0.239232 0.414361i 0.721262 0.692662i \(-0.243562\pi\)
−0.960494 + 0.278301i \(0.910229\pi\)
\(908\) −5.04146 8.73207i −0.167307 0.289784i
\(909\) 19.9391 0.661339
\(910\) 0 0
\(911\) −1.32236 −0.0438118 −0.0219059 0.999760i \(-0.506973\pi\)
−0.0219059 + 0.999760i \(0.506973\pi\)
\(912\) −7.62691 13.2102i −0.252552 0.437433i
\(913\) 12.3063 + 21.3151i 0.407278 + 0.705426i
\(914\) −7.52907 + 13.0407i −0.249039 + 0.431349i
\(915\) −4.82008 −0.159347
\(916\) 4.52757 7.84197i 0.149595 0.259106i
\(917\) 0 0
\(918\) −3.97117 −0.131068
\(919\) 13.7229 23.7688i 0.452677 0.784059i −0.545875 0.837867i \(-0.683802\pi\)
0.998551 + 0.0538078i \(0.0171358\pi\)
\(920\) −5.27422 9.13522i −0.173886 0.301179i
\(921\) 0.311258 + 0.539114i 0.0102563 + 0.0177644i
\(922\) −2.13669 −0.0703682
\(923\) −1.18724 9.04520i −0.0390785 0.297726i
\(924\) 0 0
\(925\) 8.93569 + 15.4771i 0.293804 + 0.508883i
\(926\) −24.6970 42.7765i −0.811594 1.40572i
\(927\) 13.7016 23.7319i 0.450021 0.779459i
\(928\) −19.7825 −0.649391
\(929\) 14.3194 24.8020i 0.469805 0.813727i −0.529599 0.848248i \(-0.677657\pi\)
0.999404 + 0.0345217i \(0.0109908\pi\)
\(930\) 2.39618 4.15030i 0.0785737 0.136094i
\(931\) 0 0
\(932\) −0.791738 + 1.37133i −0.0259343 + 0.0449194i
\(933\) 6.05778 + 10.4924i 0.198323 + 0.343505i
\(934\) 22.6370 + 39.2084i 0.740704 + 1.28294i
\(935\) 2.28515 0.0747326
\(936\) 3.18788 + 24.2874i 0.104199 + 0.793858i
\(937\) 27.9990 0.914688 0.457344 0.889290i \(-0.348801\pi\)
0.457344 + 0.889290i \(0.348801\pi\)
\(938\) 0 0
\(939\) 0.581356 + 1.00694i 0.0189718 + 0.0328602i
\(940\) −0.791778 + 1.37140i −0.0258249 + 0.0447301i
\(941\) 28.9003 0.942124 0.471062 0.882100i \(-0.343871\pi\)
0.471062 + 0.882100i \(0.343871\pi\)
\(942\) −4.34127 + 7.51931i −0.141446 + 0.244992i
\(943\) −2.76340 + 4.78635i −0.0899887 + 0.155865i
\(944\) 47.7480 1.55406
\(945\) 0 0
\(946\) −8.93666 15.4787i −0.290556 0.503257i
\(947\) −15.0617 26.0877i −0.489441 0.847736i 0.510486 0.859886i \(-0.329466\pi\)
−0.999926 + 0.0121504i \(0.996132\pi\)
\(948\) −1.23903 −0.0402418
\(949\) −16.3967 + 12.5715i −0.532259 + 0.408087i
\(950\) −37.2398 −1.20822
\(951\) −4.83860 8.38070i −0.156902 0.271763i
\(952\) 0 0
\(953\) −2.46511 + 4.26969i −0.0798527 + 0.138309i −0.903186 0.429249i \(-0.858778\pi\)
0.823334 + 0.567558i \(0.192112\pi\)
\(954\) 12.1237 0.392519
\(955\) 0.300084 0.519760i 0.00971048 0.0168190i
\(956\) −4.56879 + 7.91337i −0.147765 + 0.255937i
\(957\) −8.81625 −0.284989
\(958\) −7.55721 + 13.0895i −0.244162 + 0.422902i
\(959\) 0 0
\(960\) −1.66391 2.88198i −0.0537025 0.0930155i
\(961\) −3.03914 −0.0980368
\(962\) 3.64137 + 27.7424i 0.117402 + 0.894451i
\(963\) 6.07357 0.195718
\(964\) 4.32665 + 7.49398i 0.139352 + 0.241365i
\(965\) −2.21171 3.83079i −0.0711974 0.123317i
\(966\) 0 0
\(967\) 29.1431 0.937180 0.468590 0.883416i \(-0.344762\pi\)
0.468590 + 0.883416i \(0.344762\pi\)
\(968\) −8.02523 + 13.9001i −0.257941 + 0.446767i
\(969\) −1.48327 + 2.56910i −0.0476495 + 0.0825313i
\(970\) −11.4931 −0.369021
\(971\) −7.28843 + 12.6239i −0.233897 + 0.405121i −0.958952 0.283570i \(-0.908481\pi\)
0.725055 + 0.688691i \(0.241814\pi\)
\(972\) 2.46738 + 4.27362i 0.0791412 + 0.137077i
\(973\) 0 0
\(974\) −26.6058 −0.852506
\(975\) −5.83403 2.41920i −0.186838 0.0774763i
\(976\) 38.5324 1.23339
\(977\) −26.2609 45.4852i −0.840161 1.45520i −0.889758 0.456432i \(-0.849127\pi\)
0.0495974 0.998769i \(-0.484206\pi\)
\(978\) −5.47948 9.49074i −0.175215 0.303481i
\(979\) 18.7819 32.5313i 0.600273 1.03970i
\(980\) 0 0
\(981\) 18.9736 32.8632i 0.605780 1.04924i
\(982\) 19.9943 34.6312i 0.638044 1.10513i
\(983\) −6.03769 −0.192572 −0.0962862 0.995354i \(-0.530696\pi\)
−0.0962862 + 0.995354i \(0.530696\pi\)
\(984\) −0.924923 + 1.60201i −0.0294855 + 0.0510703i
\(985\) −4.43511 7.68183i −0.141314 0.244764i
\(986\) 5.99920 + 10.3909i 0.191054 + 0.330914i
\(987\) 0 0
\(988\) −9.29289 3.85348i −0.295646 0.122596i
\(989\) 19.5433 0.621441
\(990\) −5.41083 9.37183i −0.171967 0.297856i
\(991\) −15.6742 27.1485i −0.497907 0.862400i 0.502090 0.864815i \(-0.332564\pi\)
−0.999997 + 0.00241558i \(0.999231\pi\)
\(992\) −6.14212 + 10.6385i −0.195012 + 0.337771i
\(993\) −1.92165 −0.0609816
\(994\) 0 0
\(995\) 4.47148 7.74483i 0.141755 0.245528i
\(996\) 2.37320 0.0751976
\(997\) −2.74017 + 4.74611i −0.0867819 + 0.150311i −0.906149 0.422958i \(-0.860992\pi\)
0.819367 + 0.573269i \(0.194325\pi\)
\(998\) −4.20073 7.27588i −0.132972 0.230314i
\(999\) −7.03414 12.1835i −0.222550 0.385468i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.f.k.393.2 12
7.2 even 3 91.2.g.b.81.2 yes 12
7.3 odd 6 637.2.h.l.471.5 12
7.4 even 3 91.2.h.b.16.5 yes 12
7.5 odd 6 637.2.g.l.263.2 12
7.6 odd 2 637.2.f.j.393.2 12
13.3 even 3 8281.2.a.bz.1.5 6
13.9 even 3 inner 637.2.f.k.295.2 12
13.10 even 6 8281.2.a.ce.1.2 6
21.2 odd 6 819.2.n.d.172.5 12
21.11 odd 6 819.2.s.d.289.2 12
91.9 even 3 91.2.h.b.74.5 yes 12
91.16 even 3 1183.2.e.h.508.2 12
91.23 even 6 1183.2.e.g.508.5 12
91.48 odd 6 637.2.f.j.295.2 12
91.55 odd 6 8281.2.a.ca.1.5 6
91.61 odd 6 637.2.h.l.165.5 12
91.62 odd 6 8281.2.a.cf.1.2 6
91.74 even 3 91.2.g.b.9.2 12
91.81 even 3 1183.2.e.h.170.2 12
91.87 odd 6 637.2.g.l.373.2 12
91.88 even 6 1183.2.e.g.170.5 12
273.74 odd 6 819.2.n.d.100.5 12
273.191 odd 6 819.2.s.d.802.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.2 12 91.74 even 3
91.2.g.b.81.2 yes 12 7.2 even 3
91.2.h.b.16.5 yes 12 7.4 even 3
91.2.h.b.74.5 yes 12 91.9 even 3
637.2.f.j.295.2 12 91.48 odd 6
637.2.f.j.393.2 12 7.6 odd 2
637.2.f.k.295.2 12 13.9 even 3 inner
637.2.f.k.393.2 12 1.1 even 1 trivial
637.2.g.l.263.2 12 7.5 odd 6
637.2.g.l.373.2 12 91.87 odd 6
637.2.h.l.165.5 12 91.61 odd 6
637.2.h.l.471.5 12 7.3 odd 6
819.2.n.d.100.5 12 273.74 odd 6
819.2.n.d.172.5 12 21.2 odd 6
819.2.s.d.289.2 12 21.11 odd 6
819.2.s.d.802.2 12 273.191 odd 6
1183.2.e.g.170.5 12 91.88 even 6
1183.2.e.g.508.5 12 91.23 even 6
1183.2.e.h.170.2 12 91.81 even 3
1183.2.e.h.508.2 12 91.16 even 3
8281.2.a.bz.1.5 6 13.3 even 3
8281.2.a.ca.1.5 6 91.55 odd 6
8281.2.a.ce.1.2 6 13.10 even 6
8281.2.a.cf.1.2 6 91.62 odd 6