Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [637,2,Mod(489,637)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(637, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("637.489");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 637 = 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 637.i (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.08647060876\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(28\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
489.1 | −1.87195 | − | 1.87195i | − | 0.0697458i | 5.00838i | 1.60950 | − | 1.60950i | −0.130560 | + | 0.130560i | 0 | 5.63154 | − | 5.63154i | 2.99514 | −6.02579 | |||||||||
489.2 | −1.87195 | − | 1.87195i | 0.0697458i | 5.00838i | −1.60950 | + | 1.60950i | 0.130560 | − | 0.130560i | 0 | 5.63154 | − | 5.63154i | 2.99514 | 6.02579 | ||||||||||
489.3 | −1.67405 | − | 1.67405i | − | 1.42381i | 3.60486i | 1.67159 | − | 1.67159i | −2.38352 | + | 2.38352i | 0 | 2.68660 | − | 2.68660i | 0.972778 | −5.59662 | |||||||||
489.4 | −1.67405 | − | 1.67405i | 1.42381i | 3.60486i | −1.67159 | + | 1.67159i | 2.38352 | − | 2.38352i | 0 | 2.68660 | − | 2.68660i | 0.972778 | 5.59662 | ||||||||||
489.5 | −1.31218 | − | 1.31218i | − | 2.95980i | 1.44363i | −0.400884 | + | 0.400884i | −3.88379 | + | 3.88379i | 0 | −0.730060 | + | 0.730060i | −5.76043 | 1.05206 | |||||||||
489.6 | −1.31218 | − | 1.31218i | 2.95980i | 1.44363i | 0.400884 | − | 0.400884i | 3.88379 | − | 3.88379i | 0 | −0.730060 | + | 0.730060i | −5.76043 | −1.05206 | ||||||||||
489.7 | −1.16293 | − | 1.16293i | − | 2.79366i | 0.704814i | −1.90208 | + | 1.90208i | −3.24884 | + | 3.24884i | 0 | −1.50621 | + | 1.50621i | −4.80456 | 4.42397 | |||||||||
489.8 | −1.16293 | − | 1.16293i | 2.79366i | 0.704814i | 1.90208 | − | 1.90208i | 3.24884 | − | 3.24884i | 0 | −1.50621 | + | 1.50621i | −4.80456 | −4.42397 | ||||||||||
489.9 | −1.04867 | − | 1.04867i | − | 0.884495i | 0.199431i | −2.77428 | + | 2.77428i | −0.927546 | + | 0.927546i | 0 | −1.88821 | + | 1.88821i | 2.21767 | 5.81862 | |||||||||
489.10 | −1.04867 | − | 1.04867i | 0.884495i | 0.199431i | 2.77428 | − | 2.77428i | 0.927546 | − | 0.927546i | 0 | −1.88821 | + | 1.88821i | 2.21767 | −5.81862 | ||||||||||
489.11 | −0.313676 | − | 0.313676i | − | 2.15152i | − | 1.80322i | −1.37124 | + | 1.37124i | −0.674879 | + | 0.674879i | 0 | −1.19298 | + | 1.19298i | −1.62904 | 0.860251 | ||||||||
489.12 | −0.313676 | − | 0.313676i | 2.15152i | − | 1.80322i | 1.37124 | − | 1.37124i | 0.674879 | − | 0.674879i | 0 | −1.19298 | + | 1.19298i | −1.62904 | −0.860251 | |||||||||
489.13 | −0.0315097 | − | 0.0315097i | − | 0.476410i | − | 1.99801i | −2.33607 | + | 2.33607i | −0.0150115 | + | 0.0150115i | 0 | −0.125976 | + | 0.125976i | 2.77303 | 0.147218 | ||||||||
489.14 | −0.0315097 | − | 0.0315097i | 0.476410i | − | 1.99801i | 2.33607 | − | 2.33607i | 0.0150115 | − | 0.0150115i | 0 | −0.125976 | + | 0.125976i | 2.77303 | −0.147218 | |||||||||
489.15 | 0.319250 | + | 0.319250i | − | 3.18289i | − | 1.79616i | 0.0250354 | − | 0.0250354i | 1.01614 | − | 1.01614i | 0 | 1.21192 | − | 1.21192i | −7.13080 | 0.0159851 | ||||||||
489.16 | 0.319250 | + | 0.319250i | 3.18289i | − | 1.79616i | −0.0250354 | + | 0.0250354i | −1.01614 | + | 1.01614i | 0 | 1.21192 | − | 1.21192i | −7.13080 | −0.0159851 | |||||||||
489.17 | 0.356966 | + | 0.356966i | − | 1.89794i | − | 1.74515i | 0.631571 | − | 0.631571i | 0.677500 | − | 0.677500i | 0 | 1.33689 | − | 1.33689i | −0.602176 | 0.450899 | ||||||||
489.18 | 0.356966 | + | 0.356966i | 1.89794i | − | 1.74515i | −0.631571 | + | 0.631571i | −0.677500 | + | 0.677500i | 0 | 1.33689 | − | 1.33689i | −0.602176 | −0.450899 | |||||||||
489.19 | 0.477302 | + | 0.477302i | − | 0.696451i | − | 1.54437i | 2.64777 | − | 2.64777i | 0.332417 | − | 0.332417i | 0 | 1.69173 | − | 1.69173i | 2.51496 | 2.52757 | ||||||||
489.20 | 0.477302 | + | 0.477302i | 0.696451i | − | 1.54437i | −2.64777 | + | 2.64777i | −0.332417 | + | 0.332417i | 0 | 1.69173 | − | 1.69173i | 2.51496 | −2.52757 | |||||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
91.i | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 637.2.i.b | ✓ | 56 |
7.b | odd | 2 | 1 | inner | 637.2.i.b | ✓ | 56 |
7.c | even | 3 | 2 | 637.2.bc.c | 112 | ||
7.d | odd | 6 | 2 | 637.2.bc.c | 112 | ||
13.d | odd | 4 | 1 | inner | 637.2.i.b | ✓ | 56 |
91.i | even | 4 | 1 | inner | 637.2.i.b | ✓ | 56 |
91.z | odd | 12 | 2 | 637.2.bc.c | 112 | ||
91.bb | even | 12 | 2 | 637.2.bc.c | 112 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
637.2.i.b | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
637.2.i.b | ✓ | 56 | 7.b | odd | 2 | 1 | inner |
637.2.i.b | ✓ | 56 | 13.d | odd | 4 | 1 | inner |
637.2.i.b | ✓ | 56 | 91.i | even | 4 | 1 | inner |
637.2.bc.c | 112 | 7.c | even | 3 | 2 | ||
637.2.bc.c | 112 | 7.d | odd | 6 | 2 | ||
637.2.bc.c | 112 | 91.z | odd | 12 | 2 | ||
637.2.bc.c | 112 | 91.bb | even | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{28} + 105 T_{2}^{24} + 16 T_{2}^{21} + 3788 T_{2}^{20} + 192 T_{2}^{19} + 24 T_{2}^{17} + \cdots + 4 \) acting on \(S_{2}^{\mathrm{new}}(637, [\chi])\).