Properties

Label 6370.2.a.l
Level $6370$
Weight $2$
Character orbit 6370.a
Self dual yes
Analytic conductor $50.865$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6370,2,Mod(1,6370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6370, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6370.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6370 = 2 \cdot 5 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6370.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.8647060876\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - 2 q^{3} + q^{4} + q^{5} - 2 q^{6} + q^{8} + q^{9} + q^{10} - 2 q^{11} - 2 q^{12} + q^{13} - 2 q^{15} + q^{16} - 2 q^{17} + q^{18} - 6 q^{19} + q^{20} - 2 q^{22} + 6 q^{23} - 2 q^{24}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −2.00000 1.00000 1.00000 −2.00000 0 1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6370.2.a.l 1
7.b odd 2 1 130.2.a.c 1
21.c even 2 1 1170.2.a.d 1
28.d even 2 1 1040.2.a.b 1
35.c odd 2 1 650.2.a.c 1
35.f even 4 2 650.2.b.g 2
56.e even 2 1 4160.2.a.t 1
56.h odd 2 1 4160.2.a.c 1
84.h odd 2 1 9360.2.a.by 1
91.b odd 2 1 1690.2.a.e 1
91.i even 4 2 1690.2.d.e 2
91.n odd 6 2 1690.2.e.a 2
91.t odd 6 2 1690.2.e.g 2
91.bc even 12 4 1690.2.l.a 4
105.g even 2 1 5850.2.a.cb 1
105.k odd 4 2 5850.2.e.u 2
140.c even 2 1 5200.2.a.bd 1
455.h odd 2 1 8450.2.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.a.c 1 7.b odd 2 1
650.2.a.c 1 35.c odd 2 1
650.2.b.g 2 35.f even 4 2
1040.2.a.b 1 28.d even 2 1
1170.2.a.d 1 21.c even 2 1
1690.2.a.e 1 91.b odd 2 1
1690.2.d.e 2 91.i even 4 2
1690.2.e.a 2 91.n odd 6 2
1690.2.e.g 2 91.t odd 6 2
1690.2.l.a 4 91.bc even 12 4
4160.2.a.c 1 56.h odd 2 1
4160.2.a.t 1 56.e even 2 1
5200.2.a.bd 1 140.c even 2 1
5850.2.a.cb 1 105.g even 2 1
5850.2.e.u 2 105.k odd 4 2
6370.2.a.l 1 1.a even 1 1 trivial
8450.2.a.n 1 455.h odd 2 1
9360.2.a.by 1 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6370))\):

\( T_{3} + 2 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display
\( T_{17} + 2 \) Copy content Toggle raw display
\( T_{23} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 2 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T + 6 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T - 2 \) Copy content Toggle raw display
$31$ \( T - 6 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T + 10 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T - 2 \) Copy content Toggle raw display
$59$ \( T + 10 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 12 \) Copy content Toggle raw display
$71$ \( T - 10 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 14 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less