Properties

Label 6384.2.a.cf
Level $6384$
Weight $2$
Character orbit 6384.a
Self dual yes
Analytic conductor $50.976$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6384,2,Mod(1,6384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6384.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6384 = 2^{4} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6384.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.9764966504\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.368464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + (\beta_{3} + 1) q^{5} - q^{7} + q^{9} + ( - \beta_{4} + \beta_{3} - \beta_{2} - 2) q^{11} + (\beta_{3} + \beta_{2} - \beta_1 - 1) q^{13} + (\beta_{3} + 1) q^{15} + ( - \beta_{4} - \beta_{2} + \beta_1 + 2) q^{17}+ \cdots + ( - \beta_{4} + \beta_{3} - \beta_{2} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{3} + 4 q^{5} - 5 q^{7} + 5 q^{9} - 8 q^{11} - 6 q^{13} + 4 q^{15} + 12 q^{17} + 5 q^{19} - 5 q^{21} - 12 q^{23} + 15 q^{25} + 5 q^{27} + 4 q^{29} + 8 q^{31} - 8 q^{33} - 4 q^{35} + 2 q^{37} - 6 q^{39}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 3\nu^{2} - 2\nu + 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - \nu^{3} - 7\nu^{2} + 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{4} + 2\nu^{3} + 6\nu^{2} - 4\nu - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + \beta_{3} - \beta_{2} + \beta _1 + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{4} + 3\beta_{3} - \beta_{2} + 5\beta _1 + 13 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{4} + 6\beta_{3} - 4\beta_{2} + 6\beta _1 + 26 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.17837
−1.78948
−1.09027
3.14884
0.552543
0 1.00000 0 −3.42801 0 −1.00000 0 1.00000 0
1.2 0 1.00000 0 −0.430991 0 −1.00000 0 1.00000 0
1.3 0 1.00000 0 0.388134 0 −1.00000 0 1.00000 0
1.4 0 1.00000 0 3.68348 0 −1.00000 0 1.00000 0
1.5 0 1.00000 0 3.78739 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6384.2.a.cf 5
4.b odd 2 1 399.2.a.g 5
12.b even 2 1 1197.2.a.o 5
20.d odd 2 1 9975.2.a.bp 5
28.d even 2 1 2793.2.a.bg 5
76.d even 2 1 7581.2.a.w 5
84.h odd 2 1 8379.2.a.cb 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.a.g 5 4.b odd 2 1
1197.2.a.o 5 12.b even 2 1
2793.2.a.bg 5 28.d even 2 1
6384.2.a.cf 5 1.a even 1 1 trivial
7581.2.a.w 5 76.d even 2 1
8379.2.a.cb 5 84.h odd 2 1
9975.2.a.bp 5 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6384))\):

\( T_{5}^{5} - 4T_{5}^{4} - 12T_{5}^{3} + 48T_{5}^{2} + 4T_{5} - 8 \) Copy content Toggle raw display
\( T_{11}^{5} + 8T_{11}^{4} - 32T_{11}^{3} - 304T_{11}^{2} + 224T_{11} + 2816 \) Copy content Toggle raw display
\( T_{13}^{5} + 6T_{13}^{4} - 40T_{13}^{3} - 224T_{13}^{2} + 384T_{13} + 1984 \) Copy content Toggle raw display
\( T_{17}^{5} - 12T_{17}^{4} + 20T_{17}^{3} + 248T_{17}^{2} - 1116T_{17} + 1256 \) Copy content Toggle raw display
\( T_{23}^{5} + 12T_{23}^{4} - 16T_{23}^{3} - 464T_{23}^{2} - 352T_{23} + 2432 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( (T - 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 4 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$7$ \( (T + 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 8 T^{4} + \cdots + 2816 \) Copy content Toggle raw display
$13$ \( T^{5} + 6 T^{4} + \cdots + 1984 \) Copy content Toggle raw display
$17$ \( T^{5} - 12 T^{4} + \cdots + 1256 \) Copy content Toggle raw display
$19$ \( (T - 1)^{5} \) Copy content Toggle raw display
$23$ \( T^{5} + 12 T^{4} + \cdots + 2432 \) Copy content Toggle raw display
$29$ \( T^{5} - 4 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$31$ \( T^{5} - 8 T^{4} + \cdots + 1408 \) Copy content Toggle raw display
$37$ \( T^{5} - 2 T^{4} + \cdots - 416 \) Copy content Toggle raw display
$41$ \( T^{5} - 10 T^{4} + \cdots - 416 \) Copy content Toggle raw display
$43$ \( T^{5} - 16 T^{4} + \cdots + 1984 \) Copy content Toggle raw display
$47$ \( T^{5} - 2 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$53$ \( T^{5} - 104 T^{3} + \cdots - 5416 \) Copy content Toggle raw display
$59$ \( T^{5} - 4 T^{4} + \cdots - 2048 \) Copy content Toggle raw display
$61$ \( T^{5} + 14 T^{4} + \cdots + 16736 \) Copy content Toggle raw display
$67$ \( T^{5} - 20 T^{4} + \cdots - 512 \) Copy content Toggle raw display
$71$ \( T^{5} - 6 T^{4} + \cdots + 1696 \) Copy content Toggle raw display
$73$ \( T^{5} - 10 T^{4} + \cdots - 11552 \) Copy content Toggle raw display
$79$ \( T^{5} - 192 T^{3} + \cdots - 512 \) Copy content Toggle raw display
$83$ \( T^{5} + 6 T^{4} + \cdots + 8912 \) Copy content Toggle raw display
$89$ \( T^{5} - 26 T^{4} + \cdots - 168352 \) Copy content Toggle raw display
$97$ \( T^{5} + 18 T^{4} + \cdots - 4448 \) Copy content Toggle raw display
show more
show less