Properties

Label 64.10.b.a.33.1
Level $64$
Weight $10$
Character 64.33
Analytic conductor $32.962$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [64,10,Mod(33,64)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(64, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("64.33");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 64.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9622935145\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 33.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 64.33
Dual form 64.10.b.a.33.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-190.000i q^{3} -16417.0 q^{9} +O(q^{10})\) \(q-190.000i q^{3} -16417.0 q^{9} +66042.0i q^{11} -597510. q^{17} +990146. i q^{19} +1.95312e6 q^{25} -620540. i q^{27} +1.25480e7 q^{33} +3.43064e7 q^{41} +4.47821e7i q^{43} -4.03536e7 q^{49} +1.13527e8i q^{51} +1.88128e8 q^{57} +8.42438e7i q^{59} -6.28172e7i q^{67} +4.22325e8 q^{73} -3.71094e8i q^{75} -4.41038e8 q^{81} +1.44638e8i q^{83} -1.08985e9 q^{89} -1.73825e9 q^{97} -1.08421e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32834 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32834 q^{9} - 1195020 q^{17} + 3906250 q^{25} + 25095960 q^{33} + 68612724 q^{41} - 80707214 q^{49} + 376255480 q^{57} + 844649860 q^{73} - 882076822 q^{81} - 2179698012 q^{89} - 3476509420 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/64\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(63\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 190.000i − 1.35428i −0.735855 0.677139i \(-0.763219\pi\)
0.735855 0.677139i \(-0.236781\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −16417.0 −0.834070
\(10\) 0 0
\(11\) 66042.0i 1.36004i 0.733191 + 0.680022i \(0.238030\pi\)
−0.733191 + 0.680022i \(0.761970\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −597510. −1.73510 −0.867551 0.497348i \(-0.834307\pi\)
−0.867551 + 0.497348i \(0.834307\pi\)
\(18\) 0 0
\(19\) 990146.i 1.74304i 0.490358 + 0.871521i \(0.336866\pi\)
−0.490358 + 0.871521i \(0.663134\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.95312e6 1.00000
\(26\) 0 0
\(27\) − 620540.i − 0.224715i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 1.25480e7 1.84188
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.43064e7 1.89604 0.948020 0.318212i \(-0.103082\pi\)
0.948020 + 0.318212i \(0.103082\pi\)
\(42\) 0 0
\(43\) 4.47821e7i 1.99754i 0.0495450 + 0.998772i \(0.484223\pi\)
−0.0495450 + 0.998772i \(0.515777\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −4.03536e7 −1.00000
\(50\) 0 0
\(51\) 1.13527e8i 2.34981i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.88128e8 2.36057
\(58\) 0 0
\(59\) 8.42438e7i 0.905116i 0.891735 + 0.452558i \(0.149488\pi\)
−0.891735 + 0.452558i \(0.850512\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 6.28172e7i − 0.380840i −0.981703 0.190420i \(-0.939015\pi\)
0.981703 0.190420i \(-0.0609849\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 4.22325e8 1.74058 0.870290 0.492540i \(-0.163932\pi\)
0.870290 + 0.492540i \(0.163932\pi\)
\(74\) 0 0
\(75\) − 3.71094e8i − 1.35428i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −4.41038e8 −1.13840
\(82\) 0 0
\(83\) 1.44638e8i 0.334526i 0.985912 + 0.167263i \(0.0534929\pi\)
−0.985912 + 0.167263i \(0.946507\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.08985e9 −1.84124 −0.920622 0.390455i \(-0.872318\pi\)
−0.920622 + 0.390455i \(0.872318\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.73825e9 −1.99361 −0.996806 0.0798619i \(-0.974552\pi\)
−0.996806 + 0.0798619i \(0.974552\pi\)
\(98\) 0 0
\(99\) − 1.08421e9i − 1.13437i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.28426e9i − 0.947165i −0.880749 0.473583i \(-0.842961\pi\)
0.880749 0.473583i \(-0.157039\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.14906e9 0.662966 0.331483 0.943461i \(-0.392451\pi\)
0.331483 + 0.943461i \(0.392451\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00360e9 −0.849721
\(122\) 0 0
\(123\) − 6.51821e9i − 2.56776i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 8.50860e9 2.70523
\(130\) 0 0
\(131\) 6.46052e9i 1.91667i 0.285651 + 0.958334i \(0.407790\pi\)
−0.285651 + 0.958334i \(0.592210\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.96601e9 −1.44691 −0.723455 0.690372i \(-0.757447\pi\)
−0.723455 + 0.690372i \(0.757447\pi\)
\(138\) 0 0
\(139\) 8.67328e9i 1.97068i 0.170592 + 0.985342i \(0.445432\pi\)
−0.170592 + 0.985342i \(0.554568\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 7.66719e9i 1.35428i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 9.80932e9 1.44720
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.16898e10i 1.29707i 0.761186 + 0.648534i \(0.224618\pi\)
−0.761186 + 0.648534i \(0.775382\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.06045e10 1.00000
\(170\) 0 0
\(171\) − 1.62552e10i − 1.45382i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.60063e10 1.22578
\(178\) 0 0
\(179\) 9.60977e9i 0.699640i 0.936817 + 0.349820i \(0.113757\pi\)
−0.936817 + 0.349820i \(0.886243\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 3.94608e10i − 2.35982i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −3.59461e10 −1.86485 −0.932424 0.361366i \(-0.882310\pi\)
−0.932424 + 0.361366i \(0.882310\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −1.19353e10 −0.515763
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.53912e10 −2.37062
\(210\) 0 0
\(211\) 5.65801e10i 1.96514i 0.185906 + 0.982568i \(0.440478\pi\)
−0.185906 + 0.982568i \(0.559522\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 8.02417e10i − 2.35723i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −3.20645e10 −0.834070
\(226\) 0 0
\(227\) − 5.30439e10i − 1.32593i −0.748653 0.662963i \(-0.769299\pi\)
0.748653 0.662963i \(-0.230701\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.57028e9 0.212727 0.106364 0.994327i \(-0.466079\pi\)
0.106364 + 0.994327i \(0.466079\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 4.94901e10 0.945022 0.472511 0.881325i \(-0.343348\pi\)
0.472511 + 0.881325i \(0.343348\pi\)
\(242\) 0 0
\(243\) 7.15832e10i 1.31699i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 2.74812e10 0.453041
\(250\) 0 0
\(251\) − 1.24468e11i − 1.97936i −0.143286 0.989681i \(-0.545767\pi\)
0.143286 0.989681i \(-0.454233\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.39114e11 1.98918 0.994588 0.103900i \(-0.0331322\pi\)
0.994588 + 0.103900i \(0.0331322\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.07071e11i 2.49356i
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.28988e11i 1.36004i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.93462e11 −1.85105 −0.925523 0.378691i \(-0.876374\pi\)
−0.925523 + 0.378691i \(0.876374\pi\)
\(282\) 0 0
\(283\) − 2.82227e10i − 0.261553i −0.991412 0.130777i \(-0.958253\pi\)
0.991412 0.130777i \(-0.0417471\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.38430e11 2.01058
\(290\) 0 0
\(291\) 3.30268e11i 2.69991i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4.09817e10 0.305623
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.83476e11i − 1.17885i −0.807825 0.589423i \(-0.799355\pi\)
0.807825 0.589423i \(-0.200645\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 1.81231e11 1.06729 0.533645 0.845709i \(-0.320822\pi\)
0.533645 + 0.845709i \(0.320822\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −2.44009e11 −1.28273
\(322\) 0 0
\(323\) − 5.91622e11i − 3.02436i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.36797e11i 1.54221i 0.636711 + 0.771103i \(0.280295\pi\)
−0.636711 + 0.771103i \(0.719705\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.75370e11 0.740663 0.370331 0.928900i \(-0.379244\pi\)
0.370331 + 0.928900i \(0.379244\pi\)
\(338\) 0 0
\(339\) − 2.18322e11i − 0.897840i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 5.36579e11i − 1.98678i −0.114767 0.993392i \(-0.536612\pi\)
0.114767 0.993392i \(-0.463388\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.20922e11 −1.78561 −0.892805 0.450443i \(-0.851266\pi\)
−0.892805 + 0.450443i \(0.851266\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6.57701e11 −2.03820
\(362\) 0 0
\(363\) 3.80684e11i 1.15076i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −5.63208e11 −1.58143
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 3.17598e11i 0.790682i 0.918535 + 0.395341i \(0.129374\pi\)
−0.918535 + 0.395341i \(0.870626\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 7.35188e11i − 1.66609i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 1.22750e12 2.59570
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.01120e12 −1.95293 −0.976465 0.215677i \(-0.930804\pi\)
−0.976465 + 0.215677i \(0.930804\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.01244e12 1.78901 0.894506 0.447056i \(-0.147527\pi\)
0.894506 + 0.447056i \(0.147527\pi\)
\(410\) 0 0
\(411\) 1.13354e12i 1.95952i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.64792e12 2.66885
\(418\) 0 0
\(419\) − 1.03045e12i − 1.63329i −0.577138 0.816646i \(-0.695831\pi\)
0.577138 0.816646i \(-0.304169\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.16701e12 −1.73510
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 1.17467e12 1.60590 0.802951 0.596045i \(-0.203262\pi\)
0.802951 + 0.596045i \(0.203262\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 6.62485e11 0.834070
\(442\) 0 0
\(443\) 1.33331e12i 1.64480i 0.568908 + 0.822401i \(0.307366\pi\)
−0.568908 + 0.822401i \(0.692634\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.16206e11 0.715513 0.357757 0.933815i \(-0.383542\pi\)
0.357757 + 0.933815i \(0.383542\pi\)
\(450\) 0 0
\(451\) 2.26566e12i 2.57870i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.26286e11 −0.778906 −0.389453 0.921046i \(-0.627336\pi\)
−0.389453 + 0.921046i \(0.627336\pi\)
\(458\) 0 0
\(459\) 3.70779e11i 0.389904i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.19702e12i − 1.16459i −0.812977 0.582296i \(-0.802154\pi\)
0.812977 0.582296i \(-0.197846\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.95750e12 −2.71675
\(474\) 0 0
\(475\) 1.93388e12i 1.74304i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 2.22106e12 1.75659
\(490\) 0 0
\(491\) − 2.51449e12i − 1.95247i −0.216720 0.976234i \(-0.569536\pi\)
0.216720 0.976234i \(-0.430464\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 7.46860e11i − 0.539245i −0.962966 0.269623i \(-0.913101\pi\)
0.962966 0.269623i \(-0.0868990\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.01485e12i − 1.35428i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6.14425e11 0.391689
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.11801e12 −1.85399 −0.926996 0.375070i \(-0.877619\pi\)
−0.926996 + 0.375070i \(0.877619\pi\)
\(522\) 0 0
\(523\) − 1.93137e12i − 1.12878i −0.825509 0.564389i \(-0.809112\pi\)
0.825509 0.564389i \(-0.190888\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −1.80115e12 −1.00000
\(530\) 0 0
\(531\) − 1.38303e12i − 0.754930i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.82586e12 0.947507
\(538\) 0 0
\(539\) − 2.66503e12i − 1.36004i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.96711e11i 0.141707i 0.997487 + 0.0708535i \(0.0225723\pi\)
−0.997487 + 0.0708535i \(0.977428\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −7.49754e12 −3.19585
\(562\) 0 0
\(563\) 5.89578e11i 0.247317i 0.992325 + 0.123658i \(0.0394627\pi\)
−0.992325 + 0.123658i \(0.960537\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.30935e12 −0.523660 −0.261830 0.965114i \(-0.584326\pi\)
−0.261830 + 0.965114i \(0.584326\pi\)
\(570\) 0 0
\(571\) 4.66528e12i 1.83660i 0.395883 + 0.918301i \(0.370438\pi\)
−0.395883 + 0.918301i \(0.629562\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 3.79461e12 1.42520 0.712600 0.701571i \(-0.247518\pi\)
0.712600 + 0.701571i \(0.247518\pi\)
\(578\) 0 0
\(579\) 6.82975e12i 2.52552i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 5.17152e12i − 1.79782i −0.438132 0.898911i \(-0.644360\pi\)
0.438132 0.898911i \(-0.355640\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.58011e12 −0.524736 −0.262368 0.964968i \(-0.584503\pi\)
−0.262368 + 0.964968i \(0.584503\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 6.39189e12 1.99845 0.999227 0.0393057i \(-0.0125146\pi\)
0.999227 + 0.0393057i \(0.0125146\pi\)
\(602\) 0 0
\(603\) 1.03127e12i 0.317647i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.11849e12 0.866285 0.433142 0.901325i \(-0.357405\pi\)
0.433142 + 0.901325i \(0.357405\pi\)
\(618\) 0 0
\(619\) − 7.10317e12i − 1.94466i −0.233605 0.972332i \(-0.575052\pi\)
0.233605 0.972332i \(-0.424948\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.81470e12 1.00000
\(626\) 0 0
\(627\) 1.24243e13i 3.21047i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 1.07502e13 2.66134
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.97864e12 1.16480 0.582398 0.812904i \(-0.302115\pi\)
0.582398 + 0.812904i \(0.302115\pi\)
\(642\) 0 0
\(643\) 5.01320e11i 0.115655i 0.998327 + 0.0578277i \(0.0184174\pi\)
−0.998327 + 0.0578277i \(0.981583\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −5.56363e12 −1.23100
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6.93331e12 −1.45177
\(658\) 0 0
\(659\) − 7.95235e11i − 0.164252i −0.996622 0.0821260i \(-0.973829\pi\)
0.996622 0.0821260i \(-0.0261710\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.04817e13 1.96954 0.984770 0.173861i \(-0.0556244\pi\)
0.984770 + 0.173861i \(0.0556244\pi\)
\(674\) 0 0
\(675\) − 1.21199e12i − 0.224715i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.00783e13 −1.79567
\(682\) 0 0
\(683\) 9.72628e12i 1.71023i 0.518441 + 0.855114i \(0.326513\pi\)
−0.518441 + 0.855114i \(0.673487\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.95012e12i 0.325395i 0.986676 + 0.162697i \(0.0520194\pi\)
−0.986676 + 0.162697i \(0.947981\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −2.04984e13 −3.28982
\(698\) 0 0
\(699\) − 1.81835e12i − 0.288092i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 9.40312e12i − 1.27982i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 4.91985e12 0.645176
\(730\) 0 0
\(731\) − 2.67577e13i − 3.46594i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.14858e12 0.517959
\(738\) 0 0
\(739\) − 3.26770e12i − 0.403034i −0.979485 0.201517i \(-0.935413\pi\)
0.979485 0.201517i \(-0.0645872\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 2.37452e12i − 0.279018i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) −2.36489e13 −2.68061
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.25460e12 0.567948 0.283974 0.958832i \(-0.408347\pi\)
0.283974 + 0.958832i \(0.408347\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 9.79474e12 1.01001 0.505004 0.863117i \(-0.331491\pi\)
0.505004 + 0.863117i \(0.331491\pi\)
\(770\) 0 0
\(771\) − 2.64317e13i − 2.69390i
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.39683e13i 3.30488i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 9.82749e12i − 0.913180i −0.889677 0.456590i \(-0.849071\pi\)
0.889677 0.456590i \(-0.150929\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 1.78921e13 1.53573
\(802\) 0 0
\(803\) 2.78912e13i 2.36727i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.98350e13 −1.62804 −0.814019 0.580838i \(-0.802725\pi\)
−0.814019 + 0.580838i \(0.802725\pi\)
\(810\) 0 0
\(811\) − 7.05897e12i − 0.572991i −0.958082 0.286495i \(-0.907510\pi\)
0.958082 0.286495i \(-0.0924903\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4.43408e13 −3.48180
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 2.45078e13 1.84188
\(826\) 0 0
\(827\) 2.68972e13i 1.99955i 0.0212605 + 0.999774i \(0.493232\pi\)
−0.0212605 + 0.999774i \(0.506768\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.41117e13 1.73510
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 1.45071e13 1.00000
\(842\) 0 0
\(843\) 3.67578e13i 2.50683i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −5.36232e12 −0.354216
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.87124e13 1.81826 0.909130 0.416514i \(-0.136748\pi\)
0.909130 + 0.416514i \(0.136748\pi\)
\(858\) 0 0
\(859\) 8.30931e12i 0.520709i 0.965513 + 0.260355i \(0.0838395\pi\)
−0.965513 + 0.260355i \(0.916160\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 4.53018e13i − 2.72288i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 2.85369e13 1.66281
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.28982e13 0.721338 0.360669 0.932694i \(-0.382548\pi\)
0.360669 + 0.932694i \(0.382548\pi\)
\(882\) 0 0
\(883\) 1.07779e13i 0.596639i 0.954466 + 0.298319i \(0.0964260\pi\)
−0.954466 + 0.298319i \(0.903574\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 2.91271e13i − 1.54827i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.06639e13i 1.99515i 0.0695888 + 0.997576i \(0.477831\pi\)
−0.0695888 + 0.997576i \(0.522169\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −9.55216e12 −0.454970
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −3.48605e13 −1.59649
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.64173e13 0.723153 0.361576 0.932343i \(-0.382239\pi\)
0.361576 + 0.932343i \(0.382239\pi\)
\(930\) 0 0
\(931\) − 3.99560e13i − 1.74304i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.92957e13 −1.66539 −0.832697 0.553729i \(-0.813204\pi\)
−0.832697 + 0.553729i \(0.813204\pi\)
\(938\) 0 0
\(939\) − 3.44338e13i − 1.44541i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.90820e13i 1.98311i 0.129680 + 0.991556i \(0.458605\pi\)
−0.129680 + 0.991556i \(0.541395\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.21437e13 0.869625 0.434813 0.900521i \(-0.356815\pi\)
0.434813 + 0.900521i \(0.356815\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.64396e13 −1.00000
\(962\) 0 0
\(963\) 2.10837e13i 0.790002i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) −1.12408e14 −4.09582
\(970\) 0 0
\(971\) 4.44928e11i 0.0160621i 0.999968 + 0.00803107i \(0.00255640\pi\)
−0.999968 + 0.00803107i \(0.997444\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.33557e13 −1.52237 −0.761185 0.648535i \(-0.775382\pi\)
−0.761185 + 0.648535i \(0.775382\pi\)
\(978\) 0 0
\(979\) − 7.19758e13i − 2.50417i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 6.39914e13 2.08858
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.10.b.a.33.1 2
4.3 odd 2 inner 64.10.b.a.33.2 yes 2
8.3 odd 2 CM 64.10.b.a.33.1 2
8.5 even 2 inner 64.10.b.a.33.2 yes 2
16.3 odd 4 256.10.a.a.1.1 1
16.5 even 4 256.10.a.a.1.1 1
16.11 odd 4 256.10.a.d.1.1 1
16.13 even 4 256.10.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.10.b.a.33.1 2 1.1 even 1 trivial
64.10.b.a.33.1 2 8.3 odd 2 CM
64.10.b.a.33.2 yes 2 4.3 odd 2 inner
64.10.b.a.33.2 yes 2 8.5 even 2 inner
256.10.a.a.1.1 1 16.3 odd 4
256.10.a.a.1.1 1 16.5 even 4
256.10.a.d.1.1 1 16.11 odd 4
256.10.a.d.1.1 1 16.13 even 4