Properties

Label 64.19.c.e
Level 6464
Weight 1919
Character orbit 64.c
Analytic conductor 131.447131.447
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [64,19,Mod(63,64)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(64, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 19, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("64.63"); S:= CuspForms(chi, 19); N := Newforms(S);
 
Level: N N == 64=26 64 = 2^{6}
Weight: k k == 19 19
Character orbit: [χ][\chi] == 64.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-860880] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 131.447128134131.447128134
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x83x710969x6835887x5+20786973x417082875145x3++71 ⁣ ⁣30 x^{8} - 3 x^{7} - 10969 x^{6} - 835887 x^{5} + 20786973 x^{4} - 17082875145 x^{3} + \cdots + 71\!\cdots\!30 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 211236 2^{112}\cdot 3^{6}
Twist minimal: no (minimal twist has level 4)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+(β2107610)q5+(β3+202β1)q7+(β415β291192695)q9+(β6+12β35621β1)q11+(β512β4++832347286)q13++(22498458β7++8858850972369β1)q99+O(q100) q - \beta_1 q^{3} + (\beta_{2} - 107610) q^{5} + (\beta_{3} + 202 \beta_1) q^{7} + (\beta_{4} - 15 \beta_{2} - 91192695) q^{9} + (\beta_{6} + 12 \beta_{3} - 5621 \beta_1) q^{11} + ( - \beta_{5} - 12 \beta_{4} + \cdots + 832347286) q^{13}+ \cdots + ( - 22498458 \beta_{7} + \cdots + 8858850972369 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q860880q5729541560q9+6658778288q13+213854181648q17+771822339072q21+528925732440q2511238056568912q2921541938424320q33+158886968816432q37+451509984725136q41+12 ⁣ ⁣12q97+O(q100) 8 q - 860880 q^{5} - 729541560 q^{9} + 6658778288 q^{13} + 213854181648 q^{17} + 771822339072 q^{21} + 528925732440 q^{25} - 11238056568912 q^{29} - 21541938424320 q^{33} + 158886968816432 q^{37} + 451509984725136 q^{41}+ \cdots - 12\!\cdots\!12 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x83x710969x6835887x5+20786973x417082875145x3++71 ⁣ ⁣30 x^{8} - 3 x^{7} - 10969 x^{6} - 835887 x^{5} + 20786973 x^{4} - 17082875145 x^{3} + \cdots + 71\!\cdots\!30 : Copy content Toggle raw display

β1\beta_{1}== (349ν7+53248ν6+525867ν5+212100462ν49178232109ν3+18 ⁣ ⁣30)/5772436045824 ( 349 \nu^{7} + 53248 \nu^{6} + 525867 \nu^{5} + 212100462 \nu^{4} - 9178232109 \nu^{3} + \cdots - 18\!\cdots\!30 ) / 5772436045824 Copy content Toggle raw display
β2\beta_{2}== (203ν724576ν6+1893869ν5+118153602ν488763350907ν3++32 ⁣ ⁣10)/120259084288 ( 203 \nu^{7} - 24576 \nu^{6} + 1893869 \nu^{5} + 118153602 \nu^{4} - 88763350907 \nu^{3} + \cdots + 32\!\cdots\!10 ) / 120259084288 Copy content Toggle raw display
β3\beta_{3}== (164099ν7+21180416ν6+1883223669ν5147902791470ν4+10 ⁣ ⁣90)/1443109011456 ( 164099 \nu^{7} + 21180416 \nu^{6} + 1883223669 \nu^{5} - 147902791470 \nu^{4} + \cdots - 10\!\cdots\!90 ) / 1443109011456 Copy content Toggle raw display
β4\beta_{4}== (1281ν7+6627328ν6+155568089ν570792780870ν4+98 ⁣ ⁣78)/120259084288 ( - 1281 \nu^{7} + 6627328 \nu^{6} + 155568089 \nu^{5} - 70792780870 \nu^{4} + \cdots - 98\!\cdots\!78 ) / 120259084288 Copy content Toggle raw display
β5\beta_{5}== (103453ν71875968ν61446588053ν571155841554ν4++13 ⁣ ⁣38)/30064771072 ( 103453 \nu^{7} - 1875968 \nu^{6} - 1446588053 \nu^{5} - 71155841554 \nu^{4} + \cdots + 13\!\cdots\!38 ) / 30064771072 Copy content Toggle raw display
β6\beta_{6}== (10150111ν7135335936ν6+74463550713ν5+9702533103354ν4+16 ⁣ ⁣10)/2886218022912 ( 10150111 \nu^{7} - 135335936 \nu^{6} + 74463550713 \nu^{5} + 9702533103354 \nu^{4} + \cdots - 16\!\cdots\!10 ) / 2886218022912 Copy content Toggle raw display
β7\beta_{7}== (81903265ν7+625807360ν6985551982713ν591240663441914ν4++67 ⁣ ⁣30)/2886218022912 ( 81903265 \nu^{7} + 625807360 \nu^{6} - 985551982713 \nu^{5} - 91240663441914 \nu^{4} + \cdots + 67\!\cdots\!30 ) / 2886218022912 Copy content Toggle raw display
ν\nu== (β7+β68β516β415β31872β2+5444β1+100663296)/268435456 ( \beta_{7} + \beta_{6} - 8\beta_{5} - 16\beta_{4} - 15\beta_{3} - 1872\beta_{2} + 5444\beta _1 + 100663296 ) / 268435456 Copy content Toggle raw display
ν2\nu^{2}== (7β71031β68β58208β4+22633β3++736419119104)/268435456 ( - 7 \beta_{7} - 1031 \beta_{6} - 8 \beta_{5} - 8208 \beta_{4} + 22633 \beta_{3} + \cdots + 736419119104 ) / 268435456 Copy content Toggle raw display
ν3\nu^{3}== (1171β7+78995β6+4712β5678704β4+2464611β3++87456573554688)/268435456 ( 1171 \beta_{7} + 78995 \beta_{6} + 4712 \beta_{5} - 678704 \beta_{4} + 2464611 \beta_{3} + \cdots + 87456573554688 ) / 268435456 Copy content Toggle raw display
ν4\nu^{4}== (938323β7+6058669β67867688β598957904β4++56 ⁣ ⁣48)/268435456 ( - 938323 \beta_{7} + 6058669 \beta_{6} - 7867688 \beta_{5} - 98957904 \beta_{4} + \cdots + 56\!\cdots\!48 ) / 268435456 Copy content Toggle raw display
ν5\nu^{5}== (161202677β7+765179403β61308895448β54418474416β4++44 ⁣ ⁣56)/268435456 ( - 161202677 \beta_{7} + 765179403 \beta_{6} - 1308895448 \beta_{5} - 4418474416 \beta_{4} + \cdots + 44\!\cdots\!56 ) / 268435456 Copy content Toggle raw display
ν6\nu^{6}== (10493167501β7104457993331β6179426196648β5+439762740912β4++68 ⁣ ⁣04)/268435456 ( 10493167501 \beta_{7} - 104457993331 \beta_{6} - 179426196648 \beta_{5} + 439762740912 \beta_{4} + \cdots + 68\!\cdots\!04 ) / 268435456 Copy content Toggle raw display
ν7\nu^{7}== (4466073973275β7+1854603989531β68565850414808β5++41 ⁣ ⁣88)/268435456 ( 4466073973275 \beta_{7} + 1854603989531 \beta_{6} - 8565850414808 \beta_{5} + \cdots + 41\!\cdots\!88 ) / 268435456 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/64Z)×\left(\mathbb{Z}/64\mathbb{Z}\right)^\times.

nn 55 6363
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
63.1
130.763 + 7.78570i
−116.282 46.4306i
−67.8767 + 106.586i
54.8957 117.008i
54.8957 + 117.008i
−67.8767 106.586i
−116.282 + 46.4306i
130.763 7.78570i
0 30905.2i 0 −991387. 0 6.49702e7i 0 −5.67711e8 0
63.2 0 27088.6i 0 2.11965e6 0 3.35455e7i 0 −3.46370e8 0
63.3 0 14439.2i 0 −2.88086e6 0 4.40005e7i 0 1.78931e8 0
63.4 0 4128.11i 0 1.32216e6 0 1.88890e7i 0 3.70379e8 0
63.5 0 4128.11i 0 1.32216e6 0 1.88890e7i 0 3.70379e8 0
63.6 0 14439.2i 0 −2.88086e6 0 4.40005e7i 0 1.78931e8 0
63.7 0 27088.6i 0 2.11965e6 0 3.35455e7i 0 −3.46370e8 0
63.8 0 30905.2i 0 −991387. 0 6.49702e7i 0 −5.67711e8 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 63.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 64.19.c.e 8
4.b odd 2 1 inner 64.19.c.e 8
8.b even 2 1 4.19.b.a 8
8.d odd 2 1 4.19.b.a 8
24.f even 2 1 36.19.d.c 8
24.h odd 2 1 36.19.d.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.19.b.a 8 8.b even 2 1
4.19.b.a 8 8.d odd 2 1
36.19.d.c 8 24.f even 2 1
36.19.d.c 8 24.h odd 2 1
64.19.c.e 8 1.a even 1 1 trivial
64.19.c.e 8 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T38+1914452736T36++24 ⁣ ⁣00 T_{3}^{8} + 1914452736 T_{3}^{6} + \cdots + 24\!\cdots\!00 acting on S19new(64,[χ])S_{19}^{\mathrm{new}}(64, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8++24 ⁣ ⁣00 T^{8} + \cdots + 24\!\cdots\!00 Copy content Toggle raw display
55 (T4++80 ⁣ ⁣00)2 (T^{4} + \cdots + 80\!\cdots\!00)^{2} Copy content Toggle raw display
77 T8++32 ⁣ ⁣00 T^{8} + \cdots + 32\!\cdots\!00 Copy content Toggle raw display
1111 T8++16 ⁣ ⁣00 T^{8} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
1313 (T4+57 ⁣ ⁣60)2 (T^{4} + \cdots - 57\!\cdots\!60)^{2} Copy content Toggle raw display
1717 (T4+57 ⁣ ⁣80)2 (T^{4} + \cdots - 57\!\cdots\!80)^{2} Copy content Toggle raw display
1919 T8++11 ⁣ ⁣00 T^{8} + \cdots + 11\!\cdots\!00 Copy content Toggle raw display
2323 T8++21 ⁣ ⁣00 T^{8} + \cdots + 21\!\cdots\!00 Copy content Toggle raw display
2929 (T4+48 ⁣ ⁣16)2 (T^{4} + \cdots - 48\!\cdots\!16)^{2} Copy content Toggle raw display
3131 T8++54 ⁣ ⁣00 T^{8} + \cdots + 54\!\cdots\!00 Copy content Toggle raw display
3737 (T4+30 ⁣ ⁣40)2 (T^{4} + \cdots - 30\!\cdots\!40)^{2} Copy content Toggle raw display
4141 (T4+21 ⁣ ⁣44)2 (T^{4} + \cdots - 21\!\cdots\!44)^{2} Copy content Toggle raw display
4343 T8++49 ⁣ ⁣00 T^{8} + \cdots + 49\!\cdots\!00 Copy content Toggle raw display
4747 T8++70 ⁣ ⁣00 T^{8} + \cdots + 70\!\cdots\!00 Copy content Toggle raw display
5353 (T4++18 ⁣ ⁣20)2 (T^{4} + \cdots + 18\!\cdots\!20)^{2} Copy content Toggle raw display
5959 T8++61 ⁣ ⁣00 T^{8} + \cdots + 61\!\cdots\!00 Copy content Toggle raw display
6161 (T4++14 ⁣ ⁣56)2 (T^{4} + \cdots + 14\!\cdots\!56)^{2} Copy content Toggle raw display
6767 T8++66 ⁣ ⁣00 T^{8} + \cdots + 66\!\cdots\!00 Copy content Toggle raw display
7171 T8++84 ⁣ ⁣00 T^{8} + \cdots + 84\!\cdots\!00 Copy content Toggle raw display
7373 (T4++16 ⁣ ⁣60)2 (T^{4} + \cdots + 16\!\cdots\!60)^{2} Copy content Toggle raw display
7979 T8++26 ⁣ ⁣00 T^{8} + \cdots + 26\!\cdots\!00 Copy content Toggle raw display
8383 T8++18 ⁣ ⁣00 T^{8} + \cdots + 18\!\cdots\!00 Copy content Toggle raw display
8989 (T4++45 ⁣ ⁣04)2 (T^{4} + \cdots + 45\!\cdots\!04)^{2} Copy content Toggle raw display
9797 (T4++26 ⁣ ⁣80)2 (T^{4} + \cdots + 26\!\cdots\!80)^{2} Copy content Toggle raw display
show more
show less