Properties

Label 64.4.b.a
Level 6464
Weight 44
Character orbit 64.b
Analytic conductor 3.7763.776
Analytic rank 00
Dimension 22
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [64,4,Mod(33,64)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(64, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("64.33"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 64=26 64 = 2^{6}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 64.b (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.776122240373.77612224037
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+5βq373q9+9βq11+90q17+53βq19+125q25230βq27180q33+522q41+145βq43343q49+450βq511060q57423βq59+657βq99+O(q100) q + 5 \beta q^{3} - 73 q^{9} + 9 \beta q^{11} + 90 q^{17} + 53 \beta q^{19} + 125 q^{25} - 230 \beta q^{27} - 180 q^{33} + 522 q^{41} + 145 \beta q^{43} - 343 q^{49} + 450 \beta q^{51} - 1060 q^{57} - 423 \beta q^{59} + \cdots - 657 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q146q9+180q17+250q25360q33+1044q41686q492120q57860q73+5258q81+2052q893820q97+O(q100) 2 q - 146 q^{9} + 180 q^{17} + 250 q^{25} - 360 q^{33} + 1044 q^{41} - 686 q^{49} - 2120 q^{57} - 860 q^{73} + 5258 q^{81} + 2052 q^{89} - 3820 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/64Z)×\left(\mathbb{Z}/64\mathbb{Z}\right)^\times.

nn 55 6363
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
33.1
1.00000i
1.00000i
0 10.0000i 0 0 0 0 0 −73.0000 0
33.2 0 10.0000i 0 0 0 0 0 −73.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
4.b odd 2 1 inner
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 64.4.b.a 2
3.b odd 2 1 576.4.d.a 2
4.b odd 2 1 inner 64.4.b.a 2
8.b even 2 1 inner 64.4.b.a 2
8.d odd 2 1 CM 64.4.b.a 2
12.b even 2 1 576.4.d.a 2
16.e even 4 1 256.4.a.a 1
16.e even 4 1 256.4.a.h 1
16.f odd 4 1 256.4.a.a 1
16.f odd 4 1 256.4.a.h 1
24.f even 2 1 576.4.d.a 2
24.h odd 2 1 576.4.d.a 2
48.i odd 4 1 2304.4.a.h 1
48.i odd 4 1 2304.4.a.i 1
48.k even 4 1 2304.4.a.h 1
48.k even 4 1 2304.4.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
64.4.b.a 2 1.a even 1 1 trivial
64.4.b.a 2 4.b odd 2 1 inner
64.4.b.a 2 8.b even 2 1 inner
64.4.b.a 2 8.d odd 2 1 CM
256.4.a.a 1 16.e even 4 1
256.4.a.a 1 16.f odd 4 1
256.4.a.h 1 16.e even 4 1
256.4.a.h 1 16.f odd 4 1
576.4.d.a 2 3.b odd 2 1
576.4.d.a 2 12.b even 2 1
576.4.d.a 2 24.f even 2 1
576.4.d.a 2 24.h odd 2 1
2304.4.a.h 1 48.i odd 4 1
2304.4.a.h 1 48.k even 4 1
2304.4.a.i 1 48.i odd 4 1
2304.4.a.i 1 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+100 T_{3}^{2} + 100 acting on S4new(64,[χ])S_{4}^{\mathrm{new}}(64, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+100 T^{2} + 100 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+324 T^{2} + 324 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 (T90)2 (T - 90)^{2} Copy content Toggle raw display
1919 T2+11236 T^{2} + 11236 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 (T522)2 (T - 522)^{2} Copy content Toggle raw display
4343 T2+84100 T^{2} + 84100 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+715716 T^{2} + 715716 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2+4900 T^{2} + 4900 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 (T+430)2 (T + 430)^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2+1822500 T^{2} + 1822500 Copy content Toggle raw display
8989 (T1026)2 (T - 1026)^{2} Copy content Toggle raw display
9797 (T+1910)2 (T + 1910)^{2} Copy content Toggle raw display
show more
show less