Properties

Label 64.4.b.a
Level $64$
Weight $4$
Character orbit 64.b
Analytic conductor $3.776$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [64,4,Mod(33,64)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(64, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("64.33");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 64.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.77612224037\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 5 \beta q^{3} - 73 q^{9} + 9 \beta q^{11} + 90 q^{17} + 53 \beta q^{19} + 125 q^{25} - 230 \beta q^{27} - 180 q^{33} + 522 q^{41} + 145 \beta q^{43} - 343 q^{49} + 450 \beta q^{51} - 1060 q^{57} - 423 \beta q^{59} + \cdots - 657 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 146 q^{9} + 180 q^{17} + 250 q^{25} - 360 q^{33} + 1044 q^{41} - 686 q^{49} - 2120 q^{57} - 860 q^{73} + 5258 q^{81} + 2052 q^{89} - 3820 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/64\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(63\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
33.1
1.00000i
1.00000i
0 10.0000i 0 0 0 0 0 −73.0000 0
33.2 0 10.0000i 0 0 0 0 0 −73.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
4.b odd 2 1 inner
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 64.4.b.a 2
3.b odd 2 1 576.4.d.a 2
4.b odd 2 1 inner 64.4.b.a 2
8.b even 2 1 inner 64.4.b.a 2
8.d odd 2 1 CM 64.4.b.a 2
12.b even 2 1 576.4.d.a 2
16.e even 4 1 256.4.a.a 1
16.e even 4 1 256.4.a.h 1
16.f odd 4 1 256.4.a.a 1
16.f odd 4 1 256.4.a.h 1
24.f even 2 1 576.4.d.a 2
24.h odd 2 1 576.4.d.a 2
48.i odd 4 1 2304.4.a.h 1
48.i odd 4 1 2304.4.a.i 1
48.k even 4 1 2304.4.a.h 1
48.k even 4 1 2304.4.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
64.4.b.a 2 1.a even 1 1 trivial
64.4.b.a 2 4.b odd 2 1 inner
64.4.b.a 2 8.b even 2 1 inner
64.4.b.a 2 8.d odd 2 1 CM
256.4.a.a 1 16.e even 4 1
256.4.a.a 1 16.f odd 4 1
256.4.a.h 1 16.e even 4 1
256.4.a.h 1 16.f odd 4 1
576.4.d.a 2 3.b odd 2 1
576.4.d.a 2 12.b even 2 1
576.4.d.a 2 24.f even 2 1
576.4.d.a 2 24.h odd 2 1
2304.4.a.h 1 48.i odd 4 1
2304.4.a.h 1 48.k even 4 1
2304.4.a.i 1 48.i odd 4 1
2304.4.a.i 1 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 100 \) acting on \(S_{4}^{\mathrm{new}}(64, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 100 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 324 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 90)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 11236 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T - 522)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 84100 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 715716 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4900 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 430)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1822500 \) Copy content Toggle raw display
$89$ \( (T - 1026)^{2} \) Copy content Toggle raw display
$97$ \( (T + 1910)^{2} \) Copy content Toggle raw display
show more
show less