gp: [N,k,chi] = [64,4,Mod(33,64)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(64, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("64.33");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 2 i \beta = 2i β = 2 i .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 64 Z ) × \left(\mathbb{Z}/64\mathbb{Z}\right)^\times ( Z / 6 4 Z ) × .
n n n
5 5 5
63 63 6 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 2 + 100 T_{3}^{2} + 100 T 3 2 + 1 0 0
T3^2 + 100
acting on S 4 n e w ( 64 , [ χ ] ) S_{4}^{\mathrm{new}}(64, [\chi]) S 4 n e w ( 6 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 100 T^{2} + 100 T 2 + 1 0 0
T^2 + 100
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 + 324 T^{2} + 324 T 2 + 3 2 4
T^2 + 324
13 13 1 3
T 2 T^{2} T 2
T^2
17 17 1 7
( T − 90 ) 2 (T - 90)^{2} ( T − 9 0 ) 2
(T - 90)^2
19 19 1 9
T 2 + 11236 T^{2} + 11236 T 2 + 1 1 2 3 6
T^2 + 11236
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
T 2 T^{2} T 2
T^2
31 31 3 1
T 2 T^{2} T 2
T^2
37 37 3 7
T 2 T^{2} T 2
T^2
41 41 4 1
( T − 522 ) 2 (T - 522)^{2} ( T − 5 2 2 ) 2
(T - 522)^2
43 43 4 3
T 2 + 84100 T^{2} + 84100 T 2 + 8 4 1 0 0
T^2 + 84100
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 T^{2} T 2
T^2
59 59 5 9
T 2 + 715716 T^{2} + 715716 T 2 + 7 1 5 7 1 6
T^2 + 715716
61 61 6 1
T 2 T^{2} T 2
T^2
67 67 6 7
T 2 + 4900 T^{2} + 4900 T 2 + 4 9 0 0
T^2 + 4900
71 71 7 1
T 2 T^{2} T 2
T^2
73 73 7 3
( T + 430 ) 2 (T + 430)^{2} ( T + 4 3 0 ) 2
(T + 430)^2
79 79 7 9
T 2 T^{2} T 2
T^2
83 83 8 3
T 2 + 1822500 T^{2} + 1822500 T 2 + 1 8 2 2 5 0 0
T^2 + 1822500
89 89 8 9
( T − 1026 ) 2 (T - 1026)^{2} ( T − 1 0 2 6 ) 2
(T - 1026)^2
97 97 9 7
( T + 1910 ) 2 (T + 1910)^{2} ( T + 1 9 1 0 ) 2
(T + 1910)^2
show more
show less