Properties

Label 640.2.j.c.607.2
Level $640$
Weight $2$
Character 640.607
Analytic conductor $5.110$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,2,Mod(543,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.543");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + \cdots + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 607.2
Root \(1.41303 - 0.0578659i\) of defining polynomial
Character \(\chi\) \(=\) 640.607
Dual form 640.2.j.c.543.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.96251i q^{3} +(1.72581 - 1.42182i) q^{5} +(1.60205 + 1.60205i) q^{7} -0.851447 q^{9} +(0.754587 + 0.754587i) q^{11} +5.94580 q^{13} +(-2.79034 - 3.38692i) q^{15} +(1.95574 + 1.95574i) q^{17} +(-0.780680 - 0.780680i) q^{19} +(3.14404 - 3.14404i) q^{21} +(-4.93121 + 4.93121i) q^{23} +(0.956833 - 4.90759i) q^{25} -4.21656i q^{27} +(-1.44802 + 1.44802i) q^{29} -3.60859i q^{31} +(1.48089 - 1.48089i) q^{33} +(5.04266 + 0.486998i) q^{35} -10.2364 q^{37} -11.6687i q^{39} +6.93334i q^{41} -9.91344 q^{43} +(-1.46944 + 1.21061i) q^{45} +(0.104270 - 0.104270i) q^{47} -1.86688i q^{49} +(3.83816 - 3.83816i) q^{51} -4.03213i q^{53} +(2.37516 + 0.229383i) q^{55} +(-1.53209 + 1.53209i) q^{57} +(3.46736 - 3.46736i) q^{59} +(-0.680578 - 0.680578i) q^{61} +(-1.36406 - 1.36406i) q^{63} +(10.2613 - 8.45388i) q^{65} -9.04721 q^{67} +(9.67754 + 9.67754i) q^{69} +3.64007 q^{71} +(2.94030 + 2.94030i) q^{73} +(-9.63120 - 1.87779i) q^{75} +2.41777i q^{77} +10.7140 q^{79} -10.8294 q^{81} +4.23845i q^{83} +(6.15595 + 0.594515i) q^{85} +(2.84176 + 2.84176i) q^{87} -0.0426256 q^{89} +(9.52546 + 9.52546i) q^{91} -7.08189 q^{93} +(-2.45730 - 0.237315i) q^{95} +(-1.91173 - 1.91173i) q^{97} +(-0.642491 - 0.642491i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{5} - 2 q^{7} - 10 q^{9} - 2 q^{11} - 20 q^{15} - 6 q^{17} + 2 q^{19} + 16 q^{21} + 2 q^{23} + 6 q^{25} + 14 q^{29} - 8 q^{33} - 6 q^{35} - 8 q^{37} - 44 q^{43} + 4 q^{45} + 38 q^{47} + 8 q^{51}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.96251i 1.13306i −0.824043 0.566528i \(-0.808286\pi\)
0.824043 0.566528i \(-0.191714\pi\)
\(4\) 0 0
\(5\) 1.72581 1.42182i 0.771805 0.635859i
\(6\) 0 0
\(7\) 1.60205 + 1.60205i 0.605517 + 0.605517i 0.941771 0.336254i \(-0.109160\pi\)
−0.336254 + 0.941771i \(0.609160\pi\)
\(8\) 0 0
\(9\) −0.851447 −0.283816
\(10\) 0 0
\(11\) 0.754587 + 0.754587i 0.227517 + 0.227517i 0.811654 0.584138i \(-0.198567\pi\)
−0.584138 + 0.811654i \(0.698567\pi\)
\(12\) 0 0
\(13\) 5.94580 1.64907 0.824534 0.565812i \(-0.191437\pi\)
0.824534 + 0.565812i \(0.191437\pi\)
\(14\) 0 0
\(15\) −2.79034 3.38692i −0.720464 0.874498i
\(16\) 0 0
\(17\) 1.95574 + 1.95574i 0.474336 + 0.474336i 0.903315 0.428978i \(-0.141126\pi\)
−0.428978 + 0.903315i \(0.641126\pi\)
\(18\) 0 0
\(19\) −0.780680 0.780680i −0.179100 0.179100i 0.611863 0.790964i \(-0.290420\pi\)
−0.790964 + 0.611863i \(0.790420\pi\)
\(20\) 0 0
\(21\) 3.14404 3.14404i 0.686085 0.686085i
\(22\) 0 0
\(23\) −4.93121 + 4.93121i −1.02823 + 1.02823i −0.0286378 + 0.999590i \(0.509117\pi\)
−0.999590 + 0.0286378i \(0.990883\pi\)
\(24\) 0 0
\(25\) 0.956833 4.90759i 0.191367 0.981519i
\(26\) 0 0
\(27\) 4.21656i 0.811477i
\(28\) 0 0
\(29\) −1.44802 + 1.44802i −0.268891 + 0.268891i −0.828653 0.559762i \(-0.810892\pi\)
0.559762 + 0.828653i \(0.310892\pi\)
\(30\) 0 0
\(31\) 3.60859i 0.648121i −0.946036 0.324061i \(-0.894952\pi\)
0.946036 0.324061i \(-0.105048\pi\)
\(32\) 0 0
\(33\) 1.48089 1.48089i 0.257789 0.257789i
\(34\) 0 0
\(35\) 5.04266 + 0.486998i 0.852365 + 0.0823177i
\(36\) 0 0
\(37\) −10.2364 −1.68285 −0.841427 0.540371i \(-0.818284\pi\)
−0.841427 + 0.540371i \(0.818284\pi\)
\(38\) 0 0
\(39\) 11.6687i 1.86849i
\(40\) 0 0
\(41\) 6.93334i 1.08281i 0.840763 + 0.541403i \(0.182107\pi\)
−0.840763 + 0.541403i \(0.817893\pi\)
\(42\) 0 0
\(43\) −9.91344 −1.51179 −0.755893 0.654695i \(-0.772797\pi\)
−0.755893 + 0.654695i \(0.772797\pi\)
\(44\) 0 0
\(45\) −1.46944 + 1.21061i −0.219050 + 0.180467i
\(46\) 0 0
\(47\) 0.104270 0.104270i 0.0152093 0.0152093i −0.699461 0.714671i \(-0.746577\pi\)
0.714671 + 0.699461i \(0.246577\pi\)
\(48\) 0 0
\(49\) 1.86688i 0.266698i
\(50\) 0 0
\(51\) 3.83816 3.83816i 0.537450 0.537450i
\(52\) 0 0
\(53\) 4.03213i 0.553856i −0.960891 0.276928i \(-0.910684\pi\)
0.960891 0.276928i \(-0.0893164\pi\)
\(54\) 0 0
\(55\) 2.37516 + 0.229383i 0.320267 + 0.0309300i
\(56\) 0 0
\(57\) −1.53209 + 1.53209i −0.202931 + 0.202931i
\(58\) 0 0
\(59\) 3.46736 3.46736i 0.451412 0.451412i −0.444411 0.895823i \(-0.646587\pi\)
0.895823 + 0.444411i \(0.146587\pi\)
\(60\) 0 0
\(61\) −0.680578 0.680578i −0.0871391 0.0871391i 0.662194 0.749333i \(-0.269626\pi\)
−0.749333 + 0.662194i \(0.769626\pi\)
\(62\) 0 0
\(63\) −1.36406 1.36406i −0.171855 0.171855i
\(64\) 0 0
\(65\) 10.2613 8.45388i 1.27276 1.04857i
\(66\) 0 0
\(67\) −9.04721 −1.10529 −0.552646 0.833416i \(-0.686382\pi\)
−0.552646 + 0.833416i \(0.686382\pi\)
\(68\) 0 0
\(69\) 9.67754 + 9.67754i 1.16504 + 1.16504i
\(70\) 0 0
\(71\) 3.64007 0.431997 0.215998 0.976394i \(-0.430699\pi\)
0.215998 + 0.976394i \(0.430699\pi\)
\(72\) 0 0
\(73\) 2.94030 + 2.94030i 0.344136 + 0.344136i 0.857920 0.513784i \(-0.171757\pi\)
−0.513784 + 0.857920i \(0.671757\pi\)
\(74\) 0 0
\(75\) −9.63120 1.87779i −1.11212 0.216829i
\(76\) 0 0
\(77\) 2.41777i 0.275530i
\(78\) 0 0
\(79\) 10.7140 1.20542 0.602711 0.797960i \(-0.294087\pi\)
0.602711 + 0.797960i \(0.294087\pi\)
\(80\) 0 0
\(81\) −10.8294 −1.20326
\(82\) 0 0
\(83\) 4.23845i 0.465230i 0.972569 + 0.232615i \(0.0747282\pi\)
−0.972569 + 0.232615i \(0.925272\pi\)
\(84\) 0 0
\(85\) 6.15595 + 0.594515i 0.667707 + 0.0644842i
\(86\) 0 0
\(87\) 2.84176 + 2.84176i 0.304668 + 0.304668i
\(88\) 0 0
\(89\) −0.0426256 −0.00451831 −0.00225915 0.999997i \(-0.500719\pi\)
−0.00225915 + 0.999997i \(0.500719\pi\)
\(90\) 0 0
\(91\) 9.52546 + 9.52546i 0.998539 + 0.998539i
\(92\) 0 0
\(93\) −7.08189 −0.734358
\(94\) 0 0
\(95\) −2.45730 0.237315i −0.252113 0.0243480i
\(96\) 0 0
\(97\) −1.91173 1.91173i −0.194106 0.194106i 0.603362 0.797468i \(-0.293828\pi\)
−0.797468 + 0.603362i \(0.793828\pi\)
\(98\) 0 0
\(99\) −0.642491 0.642491i −0.0645728 0.0645728i
\(100\) 0 0
\(101\) −4.96537 + 4.96537i −0.494073 + 0.494073i −0.909587 0.415514i \(-0.863602\pi\)
0.415514 + 0.909587i \(0.363602\pi\)
\(102\) 0 0
\(103\) −0.442220 + 0.442220i −0.0435733 + 0.0435733i −0.728558 0.684984i \(-0.759809\pi\)
0.684984 + 0.728558i \(0.259809\pi\)
\(104\) 0 0
\(105\) 0.955739 9.89627i 0.0932706 0.965777i
\(106\) 0 0
\(107\) 17.5924i 1.70072i 0.526204 + 0.850359i \(0.323615\pi\)
−0.526204 + 0.850359i \(0.676385\pi\)
\(108\) 0 0
\(109\) 0.345161 0.345161i 0.0330605 0.0330605i −0.690383 0.723444i \(-0.742558\pi\)
0.723444 + 0.690383i \(0.242558\pi\)
\(110\) 0 0
\(111\) 20.0890i 1.90677i
\(112\) 0 0
\(113\) −5.43662 + 5.43662i −0.511435 + 0.511435i −0.914966 0.403531i \(-0.867783\pi\)
0.403531 + 0.914966i \(0.367783\pi\)
\(114\) 0 0
\(115\) −1.49901 + 15.5216i −0.139784 + 1.44740i
\(116\) 0 0
\(117\) −5.06253 −0.468031
\(118\) 0 0
\(119\) 6.26638i 0.574438i
\(120\) 0 0
\(121\) 9.86120i 0.896472i
\(122\) 0 0
\(123\) 13.6067 1.22688
\(124\) 0 0
\(125\) −5.32642 9.83002i −0.476410 0.879223i
\(126\) 0 0
\(127\) −6.27150 + 6.27150i −0.556505 + 0.556505i −0.928311 0.371805i \(-0.878739\pi\)
0.371805 + 0.928311i \(0.378739\pi\)
\(128\) 0 0
\(129\) 19.4552i 1.71294i
\(130\) 0 0
\(131\) 1.61521 1.61521i 0.141122 0.141122i −0.633017 0.774138i \(-0.718184\pi\)
0.774138 + 0.633017i \(0.218184\pi\)
\(132\) 0 0
\(133\) 2.50138i 0.216897i
\(134\) 0 0
\(135\) −5.99520 7.27697i −0.515985 0.626302i
\(136\) 0 0
\(137\) −6.83585 + 6.83585i −0.584026 + 0.584026i −0.936007 0.351981i \(-0.885508\pi\)
0.351981 + 0.936007i \(0.385508\pi\)
\(138\) 0 0
\(139\) 13.7427 13.7427i 1.16564 1.16564i 0.182423 0.983220i \(-0.441606\pi\)
0.983220 0.182423i \(-0.0583940\pi\)
\(140\) 0 0
\(141\) −0.204631 0.204631i −0.0172330 0.0172330i
\(142\) 0 0
\(143\) 4.48662 + 4.48662i 0.375190 + 0.375190i
\(144\) 0 0
\(145\) −0.440176 + 4.55784i −0.0365547 + 0.378508i
\(146\) 0 0
\(147\) −3.66378 −0.302184
\(148\) 0 0
\(149\) −1.73811 1.73811i −0.142391 0.142391i 0.632318 0.774709i \(-0.282104\pi\)
−0.774709 + 0.632318i \(0.782104\pi\)
\(150\) 0 0
\(151\) −5.83522 −0.474864 −0.237432 0.971404i \(-0.576306\pi\)
−0.237432 + 0.971404i \(0.576306\pi\)
\(152\) 0 0
\(153\) −1.66521 1.66521i −0.134624 0.134624i
\(154\) 0 0
\(155\) −5.13078 6.22773i −0.412114 0.500223i
\(156\) 0 0
\(157\) 3.14732i 0.251183i −0.992082 0.125592i \(-0.959917\pi\)
0.992082 0.125592i \(-0.0400829\pi\)
\(158\) 0 0
\(159\) −7.91310 −0.627550
\(160\) 0 0
\(161\) −15.8001 −1.24522
\(162\) 0 0
\(163\) 7.82117i 0.612601i −0.951935 0.306301i \(-0.900909\pi\)
0.951935 0.306301i \(-0.0990913\pi\)
\(164\) 0 0
\(165\) 0.450167 4.66128i 0.0350454 0.362880i
\(166\) 0 0
\(167\) 9.88460 + 9.88460i 0.764893 + 0.764893i 0.977203 0.212309i \(-0.0680985\pi\)
−0.212309 + 0.977203i \(0.568098\pi\)
\(168\) 0 0
\(169\) 22.3525 1.71942
\(170\) 0 0
\(171\) 0.664708 + 0.664708i 0.0508315 + 0.0508315i
\(172\) 0 0
\(173\) −3.49245 −0.265526 −0.132763 0.991148i \(-0.542385\pi\)
−0.132763 + 0.991148i \(0.542385\pi\)
\(174\) 0 0
\(175\) 9.39509 6.32931i 0.710202 0.478451i
\(176\) 0 0
\(177\) −6.80473 6.80473i −0.511475 0.511475i
\(178\) 0 0
\(179\) 13.0809 + 13.0809i 0.977713 + 0.977713i 0.999757 0.0220444i \(-0.00701753\pi\)
−0.0220444 + 0.999757i \(0.507018\pi\)
\(180\) 0 0
\(181\) −13.6393 + 13.6393i −1.01380 + 1.01380i −0.0138952 + 0.999903i \(0.504423\pi\)
−0.999903 + 0.0138952i \(0.995577\pi\)
\(182\) 0 0
\(183\) −1.33564 + 1.33564i −0.0987335 + 0.0987335i
\(184\) 0 0
\(185\) −17.6661 + 14.5544i −1.29884 + 1.07006i
\(186\) 0 0
\(187\) 2.95155i 0.215839i
\(188\) 0 0
\(189\) 6.75513 6.75513i 0.491363 0.491363i
\(190\) 0 0
\(191\) 2.92523i 0.211662i 0.994384 + 0.105831i \(0.0337503\pi\)
−0.994384 + 0.105831i \(0.966250\pi\)
\(192\) 0 0
\(193\) 0.0830702 0.0830702i 0.00597953 0.00597953i −0.704111 0.710090i \(-0.748654\pi\)
0.710090 + 0.704111i \(0.248654\pi\)
\(194\) 0 0
\(195\) −16.5908 20.1379i −1.18809 1.44211i
\(196\) 0 0
\(197\) −7.80487 −0.556074 −0.278037 0.960570i \(-0.589684\pi\)
−0.278037 + 0.960570i \(0.589684\pi\)
\(198\) 0 0
\(199\) 10.9740i 0.777924i −0.921254 0.388962i \(-0.872834\pi\)
0.921254 0.388962i \(-0.127166\pi\)
\(200\) 0 0
\(201\) 17.7552i 1.25236i
\(202\) 0 0
\(203\) −4.63960 −0.325636
\(204\) 0 0
\(205\) 9.85799 + 11.9656i 0.688512 + 0.835715i
\(206\) 0 0
\(207\) 4.19866 4.19866i 0.291827 0.291827i
\(208\) 0 0
\(209\) 1.17818i 0.0814966i
\(210\) 0 0
\(211\) −8.92204 + 8.92204i −0.614218 + 0.614218i −0.944042 0.329824i \(-0.893011\pi\)
0.329824 + 0.944042i \(0.393011\pi\)
\(212\) 0 0
\(213\) 7.14367i 0.489477i
\(214\) 0 0
\(215\) −17.1087 + 14.0952i −1.16680 + 0.961283i
\(216\) 0 0
\(217\) 5.78113 5.78113i 0.392449 0.392449i
\(218\) 0 0
\(219\) 5.77037 5.77037i 0.389926 0.389926i
\(220\) 0 0
\(221\) 11.6284 + 11.6284i 0.782213 + 0.782213i
\(222\) 0 0
\(223\) −13.1678 13.1678i −0.881784 0.881784i 0.111931 0.993716i \(-0.464296\pi\)
−0.993716 + 0.111931i \(0.964296\pi\)
\(224\) 0 0
\(225\) −0.814693 + 4.17856i −0.0543129 + 0.278570i
\(226\) 0 0
\(227\) 19.3432 1.28385 0.641927 0.766766i \(-0.278135\pi\)
0.641927 + 0.766766i \(0.278135\pi\)
\(228\) 0 0
\(229\) 13.2143 + 13.2143i 0.873223 + 0.873223i 0.992822 0.119599i \(-0.0381610\pi\)
−0.119599 + 0.992822i \(0.538161\pi\)
\(230\) 0 0
\(231\) 4.74490 0.312191
\(232\) 0 0
\(233\) −20.6884 20.6884i −1.35534 1.35534i −0.879570 0.475769i \(-0.842170\pi\)
−0.475769 0.879570i \(-0.657830\pi\)
\(234\) 0 0
\(235\) 0.0316965 0.328204i 0.00206765 0.0214096i
\(236\) 0 0
\(237\) 21.0264i 1.36581i
\(238\) 0 0
\(239\) 14.1053 0.912395 0.456198 0.889878i \(-0.349211\pi\)
0.456198 + 0.889878i \(0.349211\pi\)
\(240\) 0 0
\(241\) 12.8011 0.824592 0.412296 0.911050i \(-0.364727\pi\)
0.412296 + 0.911050i \(0.364727\pi\)
\(242\) 0 0
\(243\) 8.60310i 0.551889i
\(244\) 0 0
\(245\) −2.65438 3.22189i −0.169582 0.205839i
\(246\) 0 0
\(247\) −4.64177 4.64177i −0.295349 0.295349i
\(248\) 0 0
\(249\) 8.31800 0.527132
\(250\) 0 0
\(251\) −6.84118 6.84118i −0.431812 0.431812i 0.457433 0.889244i \(-0.348769\pi\)
−0.889244 + 0.457433i \(0.848769\pi\)
\(252\) 0 0
\(253\) −7.44205 −0.467878
\(254\) 0 0
\(255\) 1.16674 12.0811i 0.0730642 0.756549i
\(256\) 0 0
\(257\) −6.66524 6.66524i −0.415766 0.415766i 0.467975 0.883742i \(-0.344984\pi\)
−0.883742 + 0.467975i \(0.844984\pi\)
\(258\) 0 0
\(259\) −16.3992 16.3992i −1.01900 1.01900i
\(260\) 0 0
\(261\) 1.23291 1.23291i 0.0763154 0.0763154i
\(262\) 0 0
\(263\) 7.32015 7.32015i 0.451380 0.451380i −0.444432 0.895812i \(-0.646595\pi\)
0.895812 + 0.444432i \(0.146595\pi\)
\(264\) 0 0
\(265\) −5.73298 6.95869i −0.352174 0.427469i
\(266\) 0 0
\(267\) 0.0836533i 0.00511950i
\(268\) 0 0
\(269\) −15.9801 + 15.9801i −0.974321 + 0.974321i −0.999678 0.0253576i \(-0.991928\pi\)
0.0253576 + 0.999678i \(0.491928\pi\)
\(270\) 0 0
\(271\) 3.59684i 0.218492i −0.994015 0.109246i \(-0.965156\pi\)
0.994015 0.109246i \(-0.0348437\pi\)
\(272\) 0 0
\(273\) 18.6938 18.6938i 1.13140 1.13140i
\(274\) 0 0
\(275\) 4.42522 2.98119i 0.266851 0.179773i
\(276\) 0 0
\(277\) 20.9416 1.25826 0.629131 0.777300i \(-0.283411\pi\)
0.629131 + 0.777300i \(0.283411\pi\)
\(278\) 0 0
\(279\) 3.07252i 0.183947i
\(280\) 0 0
\(281\) 3.26699i 0.194892i 0.995241 + 0.0974462i \(0.0310674\pi\)
−0.995241 + 0.0974462i \(0.968933\pi\)
\(282\) 0 0
\(283\) 0.000151619 0 9.01279e−6 0 4.50640e−6 1.00000i \(-0.499999\pi\)
4.50640e−6 1.00000i \(0.499999\pi\)
\(284\) 0 0
\(285\) −0.465733 + 4.82247i −0.0275877 + 0.285658i
\(286\) 0 0
\(287\) −11.1075 + 11.1075i −0.655657 + 0.655657i
\(288\) 0 0
\(289\) 9.35017i 0.550010i
\(290\) 0 0
\(291\) −3.75178 + 3.75178i −0.219933 + 0.219933i
\(292\) 0 0
\(293\) 11.0593i 0.646091i −0.946384 0.323045i \(-0.895293\pi\)
0.946384 0.323045i \(-0.104707\pi\)
\(294\) 0 0
\(295\) 1.05402 10.9140i 0.0613677 0.635436i
\(296\) 0 0
\(297\) 3.18176 3.18176i 0.184624 0.184624i
\(298\) 0 0
\(299\) −29.3200 + 29.3200i −1.69562 + 1.69562i
\(300\) 0 0
\(301\) −15.8818 15.8818i −0.915413 0.915413i
\(302\) 0 0
\(303\) 9.74459 + 9.74459i 0.559812 + 0.559812i
\(304\) 0 0
\(305\) −2.14221 0.206885i −0.122663 0.0118462i
\(306\) 0 0
\(307\) 15.1317 0.863613 0.431806 0.901966i \(-0.357876\pi\)
0.431806 + 0.901966i \(0.357876\pi\)
\(308\) 0 0
\(309\) 0.867862 + 0.867862i 0.0493709 + 0.0493709i
\(310\) 0 0
\(311\) 27.1556 1.53985 0.769925 0.638134i \(-0.220293\pi\)
0.769925 + 0.638134i \(0.220293\pi\)
\(312\) 0 0
\(313\) 13.6695 + 13.6695i 0.772646 + 0.772646i 0.978568 0.205922i \(-0.0660194\pi\)
−0.205922 + 0.978568i \(0.566019\pi\)
\(314\) 0 0
\(315\) −4.29356 0.414653i −0.241915 0.0233631i
\(316\) 0 0
\(317\) 25.8314i 1.45084i 0.688307 + 0.725419i \(0.258354\pi\)
−0.688307 + 0.725419i \(0.741646\pi\)
\(318\) 0 0
\(319\) −2.18532 −0.122354
\(320\) 0 0
\(321\) 34.5252 1.92701
\(322\) 0 0
\(323\) 3.05361i 0.169908i
\(324\) 0 0
\(325\) 5.68914 29.1796i 0.315576 1.61859i
\(326\) 0 0
\(327\) −0.677383 0.677383i −0.0374594 0.0374594i
\(328\) 0 0
\(329\) 0.334091 0.0184190
\(330\) 0 0
\(331\) −13.6207 13.6207i −0.748659 0.748659i 0.225568 0.974227i \(-0.427576\pi\)
−0.974227 + 0.225568i \(0.927576\pi\)
\(332\) 0 0
\(333\) 8.71576 0.477621
\(334\) 0 0
\(335\) −15.6138 + 12.8635i −0.853071 + 0.702810i
\(336\) 0 0
\(337\) 16.0911 + 16.0911i 0.876536 + 0.876536i 0.993174 0.116638i \(-0.0372119\pi\)
−0.116638 + 0.993174i \(0.537212\pi\)
\(338\) 0 0
\(339\) 10.6694 + 10.6694i 0.579484 + 0.579484i
\(340\) 0 0
\(341\) 2.72299 2.72299i 0.147458 0.147458i
\(342\) 0 0
\(343\) 14.2052 14.2052i 0.767007 0.767007i
\(344\) 0 0
\(345\) 30.4614 + 2.94183i 1.63998 + 0.158383i
\(346\) 0 0
\(347\) 5.57562i 0.299315i 0.988738 + 0.149658i \(0.0478171\pi\)
−0.988738 + 0.149658i \(0.952183\pi\)
\(348\) 0 0
\(349\) 15.0811 15.0811i 0.807273 0.807273i −0.176947 0.984220i \(-0.556622\pi\)
0.984220 + 0.176947i \(0.0566222\pi\)
\(350\) 0 0
\(351\) 25.0708i 1.33818i
\(352\) 0 0
\(353\) 2.57880 2.57880i 0.137256 0.137256i −0.635141 0.772397i \(-0.719058\pi\)
0.772397 + 0.635141i \(0.219058\pi\)
\(354\) 0 0
\(355\) 6.28206 5.17554i 0.333417 0.274689i
\(356\) 0 0
\(357\) 12.2978 0.650870
\(358\) 0 0
\(359\) 5.77227i 0.304649i 0.988331 + 0.152324i \(0.0486758\pi\)
−0.988331 + 0.152324i \(0.951324\pi\)
\(360\) 0 0
\(361\) 17.7811i 0.935846i
\(362\) 0 0
\(363\) −19.3527 −1.01575
\(364\) 0 0
\(365\) 9.25499 + 0.893807i 0.484428 + 0.0467840i
\(366\) 0 0
\(367\) 8.30496 8.30496i 0.433516 0.433516i −0.456307 0.889822i \(-0.650828\pi\)
0.889822 + 0.456307i \(0.150828\pi\)
\(368\) 0 0
\(369\) 5.90337i 0.307317i
\(370\) 0 0
\(371\) 6.45967 6.45967i 0.335369 0.335369i
\(372\) 0 0
\(373\) 16.0484i 0.830953i 0.909604 + 0.415477i \(0.136385\pi\)
−0.909604 + 0.415477i \(0.863615\pi\)
\(374\) 0 0
\(375\) −19.2915 + 10.4532i −0.996209 + 0.539799i
\(376\) 0 0
\(377\) −8.60964 + 8.60964i −0.443419 + 0.443419i
\(378\) 0 0
\(379\) 8.91367 8.91367i 0.457865 0.457865i −0.440089 0.897954i \(-0.645053\pi\)
0.897954 + 0.440089i \(0.145053\pi\)
\(380\) 0 0
\(381\) 12.3079 + 12.3079i 0.630552 + 0.630552i
\(382\) 0 0
\(383\) −24.8928 24.8928i −1.27196 1.27196i −0.945057 0.326904i \(-0.893995\pi\)
−0.326904 0.945057i \(-0.606005\pi\)
\(384\) 0 0
\(385\) 3.43764 + 4.17261i 0.175199 + 0.212656i
\(386\) 0 0
\(387\) 8.44078 0.429069
\(388\) 0 0
\(389\) −16.5819 16.5819i −0.840738 0.840738i 0.148217 0.988955i \(-0.452647\pi\)
−0.988955 + 0.148217i \(0.952647\pi\)
\(390\) 0 0
\(391\) −19.2883 −0.975452
\(392\) 0 0
\(393\) −3.16987 3.16987i −0.159899 0.159899i
\(394\) 0 0
\(395\) 18.4904 15.2335i 0.930351 0.766478i
\(396\) 0 0
\(397\) 8.62531i 0.432892i 0.976295 + 0.216446i \(0.0694465\pi\)
−0.976295 + 0.216446i \(0.930553\pi\)
\(398\) 0 0
\(399\) −4.90897 −0.245756
\(400\) 0 0
\(401\) 19.7107 0.984307 0.492153 0.870508i \(-0.336210\pi\)
0.492153 + 0.870508i \(0.336210\pi\)
\(402\) 0 0
\(403\) 21.4559i 1.06880i
\(404\) 0 0
\(405\) −18.6894 + 15.3975i −0.928686 + 0.765107i
\(406\) 0 0
\(407\) −7.72426 7.72426i −0.382877 0.382877i
\(408\) 0 0
\(409\) −26.7930 −1.32483 −0.662414 0.749138i \(-0.730468\pi\)
−0.662414 + 0.749138i \(0.730468\pi\)
\(410\) 0 0
\(411\) 13.4154 + 13.4154i 0.661734 + 0.661734i
\(412\) 0 0
\(413\) 11.1098 0.546675
\(414\) 0 0
\(415\) 6.02633 + 7.31475i 0.295821 + 0.359067i
\(416\) 0 0
\(417\) −26.9702 26.9702i −1.32074 1.32074i
\(418\) 0 0
\(419\) −11.0752 11.0752i −0.541061 0.541061i 0.382779 0.923840i \(-0.374967\pi\)
−0.923840 + 0.382779i \(0.874967\pi\)
\(420\) 0 0
\(421\) 0.243092 0.243092i 0.0118476 0.0118476i −0.701158 0.713006i \(-0.747333\pi\)
0.713006 + 0.701158i \(0.247333\pi\)
\(422\) 0 0
\(423\) −0.0887804 + 0.0887804i −0.00431665 + 0.00431665i
\(424\) 0 0
\(425\) 11.4693 7.72666i 0.556342 0.374798i
\(426\) 0 0
\(427\) 2.18064i 0.105528i
\(428\) 0 0
\(429\) 8.80505 8.80505i 0.425112 0.425112i
\(430\) 0 0
\(431\) 20.7024i 0.997200i −0.866832 0.498600i \(-0.833848\pi\)
0.866832 0.498600i \(-0.166152\pi\)
\(432\) 0 0
\(433\) −5.68221 + 5.68221i −0.273069 + 0.273069i −0.830335 0.557265i \(-0.811851\pi\)
0.557265 + 0.830335i \(0.311851\pi\)
\(434\) 0 0
\(435\) 8.94480 + 0.863851i 0.428871 + 0.0414185i
\(436\) 0 0
\(437\) 7.69939 0.368312
\(438\) 0 0
\(439\) 18.7902i 0.896808i 0.893831 + 0.448404i \(0.148007\pi\)
−0.893831 + 0.448404i \(0.851993\pi\)
\(440\) 0 0
\(441\) 1.58955i 0.0756930i
\(442\) 0 0
\(443\) 12.1641 0.577934 0.288967 0.957339i \(-0.406688\pi\)
0.288967 + 0.957339i \(0.406688\pi\)
\(444\) 0 0
\(445\) −0.0735637 + 0.0606062i −0.00348725 + 0.00287301i
\(446\) 0 0
\(447\) −3.41105 + 3.41105i −0.161337 + 0.161337i
\(448\) 0 0
\(449\) 27.2708i 1.28699i 0.765452 + 0.643493i \(0.222516\pi\)
−0.765452 + 0.643493i \(0.777484\pi\)
\(450\) 0 0
\(451\) −5.23181 + 5.23181i −0.246356 + 0.246356i
\(452\) 0 0
\(453\) 11.4517i 0.538047i
\(454\) 0 0
\(455\) 29.9826 + 2.89559i 1.40561 + 0.135748i
\(456\) 0 0
\(457\) −19.7514 + 19.7514i −0.923933 + 0.923933i −0.997305 0.0733714i \(-0.976624\pi\)
0.0733714 + 0.997305i \(0.476624\pi\)
\(458\) 0 0
\(459\) 8.24649 8.24649i 0.384913 0.384913i
\(460\) 0 0
\(461\) −12.9262 12.9262i −0.602035 0.602035i 0.338818 0.940852i \(-0.389973\pi\)
−0.940852 + 0.338818i \(0.889973\pi\)
\(462\) 0 0
\(463\) 14.5647 + 14.5647i 0.676879 + 0.676879i 0.959293 0.282414i \(-0.0911351\pi\)
−0.282414 + 0.959293i \(0.591135\pi\)
\(464\) 0 0
\(465\) −12.2220 + 10.0692i −0.566781 + 0.466948i
\(466\) 0 0
\(467\) −42.3556 −1.95998 −0.979991 0.199040i \(-0.936218\pi\)
−0.979991 + 0.199040i \(0.936218\pi\)
\(468\) 0 0
\(469\) −14.4941 14.4941i −0.669274 0.669274i
\(470\) 0 0
\(471\) −6.17665 −0.284605
\(472\) 0 0
\(473\) −7.48056 7.48056i −0.343956 0.343956i
\(474\) 0 0
\(475\) −4.57824 + 3.08428i −0.210064 + 0.141517i
\(476\) 0 0
\(477\) 3.43315i 0.157193i
\(478\) 0 0
\(479\) 27.0905 1.23780 0.618899 0.785470i \(-0.287579\pi\)
0.618899 + 0.785470i \(0.287579\pi\)
\(480\) 0 0
\(481\) −60.8636 −2.77514
\(482\) 0 0
\(483\) 31.0078i 1.41090i
\(484\) 0 0
\(485\) −6.01741 0.581136i −0.273236 0.0263880i
\(486\) 0 0
\(487\) −21.9674 21.9674i −0.995436 0.995436i 0.00455390 0.999990i \(-0.498550\pi\)
−0.999990 + 0.00455390i \(0.998550\pi\)
\(488\) 0 0
\(489\) −15.3491 −0.694111
\(490\) 0 0
\(491\) −6.11955 6.11955i −0.276171 0.276171i 0.555407 0.831579i \(-0.312562\pi\)
−0.831579 + 0.555407i \(0.812562\pi\)
\(492\) 0 0
\(493\) −5.66390 −0.255089
\(494\) 0 0
\(495\) −2.02233 0.195308i −0.0908968 0.00877842i
\(496\) 0 0
\(497\) 5.83157 + 5.83157i 0.261581 + 0.261581i
\(498\) 0 0
\(499\) −15.4115 15.4115i −0.689914 0.689914i 0.272298 0.962213i \(-0.412216\pi\)
−0.962213 + 0.272298i \(0.912216\pi\)
\(500\) 0 0
\(501\) 19.3986 19.3986i 0.866667 0.866667i
\(502\) 0 0
\(503\) −26.4312 + 26.4312i −1.17851 + 1.17851i −0.198387 + 0.980124i \(0.563570\pi\)
−0.980124 + 0.198387i \(0.936430\pi\)
\(504\) 0 0
\(505\) −1.50940 + 15.6292i −0.0671673 + 0.695488i
\(506\) 0 0
\(507\) 43.8671i 1.94820i
\(508\) 0 0
\(509\) −0.233714 + 0.233714i −0.0103592 + 0.0103592i −0.712267 0.701908i \(-0.752332\pi\)
0.701908 + 0.712267i \(0.252332\pi\)
\(510\) 0 0
\(511\) 9.42101i 0.416761i
\(512\) 0 0
\(513\) −3.29178 + 3.29178i −0.145336 + 0.145336i
\(514\) 0 0
\(515\) −0.134428 + 1.39195i −0.00592362 + 0.0613365i
\(516\) 0 0
\(517\) 0.157362 0.00692075
\(518\) 0 0
\(519\) 6.85397i 0.300856i
\(520\) 0 0
\(521\) 4.50147i 0.197213i 0.995127 + 0.0986064i \(0.0314385\pi\)
−0.995127 + 0.0986064i \(0.968562\pi\)
\(522\) 0 0
\(523\) −12.6042 −0.551141 −0.275571 0.961281i \(-0.588867\pi\)
−0.275571 + 0.961281i \(0.588867\pi\)
\(524\) 0 0
\(525\) −12.4213 18.4380i −0.542111 0.804699i
\(526\) 0 0
\(527\) 7.05746 7.05746i 0.307428 0.307428i
\(528\) 0 0
\(529\) 25.6336i 1.11450i
\(530\) 0 0
\(531\) −2.95227 + 2.95227i −0.128118 + 0.128118i
\(532\) 0 0
\(533\) 41.2242i 1.78562i
\(534\) 0 0
\(535\) 25.0132 + 30.3610i 1.08142 + 1.31262i
\(536\) 0 0
\(537\) 25.6714 25.6714i 1.10780 1.10780i
\(538\) 0 0
\(539\) 1.40873 1.40873i 0.0606782 0.0606782i
\(540\) 0 0
\(541\) −14.5013 14.5013i −0.623459 0.623459i 0.322955 0.946414i \(-0.395324\pi\)
−0.946414 + 0.322955i \(0.895324\pi\)
\(542\) 0 0
\(543\) 26.7672 + 26.7672i 1.14869 + 1.14869i
\(544\) 0 0
\(545\) 0.104924 1.08644i 0.00449444 0.0465380i
\(546\) 0 0
\(547\) 30.2936 1.29526 0.647630 0.761955i \(-0.275760\pi\)
0.647630 + 0.761955i \(0.275760\pi\)
\(548\) 0 0
\(549\) 0.579476 + 0.579476i 0.0247314 + 0.0247314i
\(550\) 0 0
\(551\) 2.26088 0.0963169
\(552\) 0 0
\(553\) 17.1644 + 17.1644i 0.729904 + 0.729904i
\(554\) 0 0
\(555\) 28.5631 + 34.6699i 1.21244 + 1.47165i
\(556\) 0 0
\(557\) 9.72758i 0.412171i 0.978534 + 0.206085i \(0.0660725\pi\)
−0.978534 + 0.206085i \(0.933928\pi\)
\(558\) 0 0
\(559\) −58.9433 −2.49304
\(560\) 0 0
\(561\) 5.79245 0.244557
\(562\) 0 0
\(563\) 17.7853i 0.749562i 0.927113 + 0.374781i \(0.122282\pi\)
−0.927113 + 0.374781i \(0.877718\pi\)
\(564\) 0 0
\(565\) −1.65265 + 17.1125i −0.0695276 + 0.719928i
\(566\) 0 0
\(567\) −17.3492 17.3492i −0.728597 0.728597i
\(568\) 0 0
\(569\) −15.7897 −0.661938 −0.330969 0.943642i \(-0.607376\pi\)
−0.330969 + 0.943642i \(0.607376\pi\)
\(570\) 0 0
\(571\) 23.3108 + 23.3108i 0.975528 + 0.975528i 0.999708 0.0241793i \(-0.00769727\pi\)
−0.0241793 + 0.999708i \(0.507697\pi\)
\(572\) 0 0
\(573\) 5.74079 0.239825
\(574\) 0 0
\(575\) 19.4820 + 28.9187i 0.812456 + 1.20599i
\(576\) 0 0
\(577\) 25.7383 + 25.7383i 1.07150 + 1.07150i 0.997239 + 0.0742597i \(0.0236594\pi\)
0.0742597 + 0.997239i \(0.476341\pi\)
\(578\) 0 0
\(579\) −0.163026 0.163026i −0.00677514 0.00677514i
\(580\) 0 0
\(581\) −6.79020 + 6.79020i −0.281705 + 0.281705i
\(582\) 0 0
\(583\) 3.04260 3.04260i 0.126011 0.126011i
\(584\) 0 0
\(585\) −8.73697 + 7.19803i −0.361229 + 0.297602i
\(586\) 0 0
\(587\) 23.1327i 0.954790i 0.878689 + 0.477395i \(0.158419\pi\)
−0.878689 + 0.477395i \(0.841581\pi\)
\(588\) 0 0
\(589\) −2.81715 + 2.81715i −0.116079 + 0.116079i
\(590\) 0 0
\(591\) 15.3171i 0.630063i
\(592\) 0 0
\(593\) −25.5047 + 25.5047i −1.04735 + 1.04735i −0.0485322 + 0.998822i \(0.515454\pi\)
−0.998822 + 0.0485322i \(0.984546\pi\)
\(594\) 0 0
\(595\) 8.90969 + 10.8146i 0.365261 + 0.443354i
\(596\) 0 0
\(597\) −21.5365 −0.881432
\(598\) 0 0
\(599\) 11.0699i 0.452304i −0.974092 0.226152i \(-0.927385\pi\)
0.974092 0.226152i \(-0.0726146\pi\)
\(600\) 0 0
\(601\) 13.7579i 0.561197i −0.959825 0.280599i \(-0.909467\pi\)
0.959825 0.280599i \(-0.0905330\pi\)
\(602\) 0 0
\(603\) 7.70322 0.313700
\(604\) 0 0
\(605\) −14.0209 17.0185i −0.570030 0.691902i
\(606\) 0 0
\(607\) −18.4675 + 18.4675i −0.749573 + 0.749573i −0.974399 0.224826i \(-0.927819\pi\)
0.224826 + 0.974399i \(0.427819\pi\)
\(608\) 0 0
\(609\) 9.10526i 0.368964i
\(610\) 0 0
\(611\) 0.619968 0.619968i 0.0250812 0.0250812i
\(612\) 0 0
\(613\) 11.6810i 0.471790i −0.971779 0.235895i \(-0.924198\pi\)
0.971779 0.235895i \(-0.0758021\pi\)
\(614\) 0 0
\(615\) 23.4826 19.3464i 0.946912 0.780122i
\(616\) 0 0
\(617\) 29.1000 29.1000i 1.17152 1.17152i 0.189677 0.981847i \(-0.439256\pi\)
0.981847 0.189677i \(-0.0607441\pi\)
\(618\) 0 0
\(619\) −4.23279 + 4.23279i −0.170130 + 0.170130i −0.787036 0.616906i \(-0.788386\pi\)
0.616906 + 0.787036i \(0.288386\pi\)
\(620\) 0 0
\(621\) 20.7927 + 20.7927i 0.834383 + 0.834383i
\(622\) 0 0
\(623\) −0.0682883 0.0682883i −0.00273591 0.00273591i
\(624\) 0 0
\(625\) −23.1689 9.39149i −0.926758 0.375660i
\(626\) 0 0
\(627\) −2.31220 −0.0923402
\(628\) 0 0
\(629\) −20.0197 20.0197i −0.798239 0.798239i
\(630\) 0 0
\(631\) 1.33886 0.0532991 0.0266496 0.999645i \(-0.491516\pi\)
0.0266496 + 0.999645i \(0.491516\pi\)
\(632\) 0 0
\(633\) 17.5096 + 17.5096i 0.695944 + 0.695944i
\(634\) 0 0
\(635\) −1.90644 + 19.7404i −0.0756548 + 0.783373i
\(636\) 0 0
\(637\) 11.1001i 0.439803i
\(638\) 0 0
\(639\) −3.09933 −0.122608
\(640\) 0 0
\(641\) 24.5069 0.967965 0.483982 0.875078i \(-0.339190\pi\)
0.483982 + 0.875078i \(0.339190\pi\)
\(642\) 0 0
\(643\) 10.8979i 0.429771i 0.976639 + 0.214885i \(0.0689378\pi\)
−0.976639 + 0.214885i \(0.931062\pi\)
\(644\) 0 0
\(645\) 27.6619 + 33.5760i 1.08919 + 1.32205i
\(646\) 0 0
\(647\) 11.6612 + 11.6612i 0.458448 + 0.458448i 0.898146 0.439698i \(-0.144915\pi\)
−0.439698 + 0.898146i \(0.644915\pi\)
\(648\) 0 0
\(649\) 5.23285 0.205407
\(650\) 0 0
\(651\) −11.3455 11.3455i −0.444666 0.444666i
\(652\) 0 0
\(653\) −5.28393 −0.206776 −0.103388 0.994641i \(-0.532968\pi\)
−0.103388 + 0.994641i \(0.532968\pi\)
\(654\) 0 0
\(655\) 0.491000 5.08409i 0.0191849 0.198652i
\(656\) 0 0
\(657\) −2.50351 2.50351i −0.0976713 0.0976713i
\(658\) 0 0
\(659\) 16.2902 + 16.2902i 0.634578 + 0.634578i 0.949213 0.314635i \(-0.101882\pi\)
−0.314635 + 0.949213i \(0.601882\pi\)
\(660\) 0 0
\(661\) 12.7924 12.7924i 0.497566 0.497566i −0.413114 0.910679i \(-0.635559\pi\)
0.910679 + 0.413114i \(0.135559\pi\)
\(662\) 0 0
\(663\) 22.8209 22.8209i 0.886291 0.886291i
\(664\) 0 0
\(665\) −3.55652 4.31690i −0.137916 0.167402i
\(666\) 0 0
\(667\) 14.2810i 0.552962i
\(668\) 0 0
\(669\) −25.8420 + 25.8420i −0.999111 + 0.999111i
\(670\) 0 0
\(671\) 1.02711i 0.0396512i
\(672\) 0 0
\(673\) 11.9553 11.9553i 0.460841 0.460841i −0.438090 0.898931i \(-0.644345\pi\)
0.898931 + 0.438090i \(0.144345\pi\)
\(674\) 0 0
\(675\) −20.6931 4.03454i −0.796480 0.155290i
\(676\) 0 0
\(677\) 3.18699 0.122486 0.0612430 0.998123i \(-0.480494\pi\)
0.0612430 + 0.998123i \(0.480494\pi\)
\(678\) 0 0
\(679\) 6.12535i 0.235069i
\(680\) 0 0
\(681\) 37.9613i 1.45468i
\(682\) 0 0
\(683\) 35.1661 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(684\) 0 0
\(685\) −2.07799 + 21.5167i −0.0793961 + 0.822112i
\(686\) 0 0
\(687\) 25.9331 25.9331i 0.989410 0.989410i
\(688\) 0 0
\(689\) 23.9743i 0.913346i
\(690\) 0 0
\(691\) 2.90121 2.90121i 0.110367 0.110367i −0.649767 0.760134i \(-0.725133\pi\)
0.760134 + 0.649767i \(0.225133\pi\)
\(692\) 0 0
\(693\) 2.05860i 0.0781999i
\(694\) 0 0
\(695\) 4.17758 43.2571i 0.158465 1.64083i
\(696\) 0 0
\(697\) −13.5598 + 13.5598i −0.513614 + 0.513614i
\(698\) 0 0
\(699\) −40.6011 + 40.6011i −1.53568 + 1.53568i
\(700\) 0 0
\(701\) −15.7397 15.7397i −0.594481 0.594481i 0.344358 0.938839i \(-0.388097\pi\)
−0.938839 + 0.344358i \(0.888097\pi\)
\(702\) 0 0
\(703\) 7.99136 + 7.99136i 0.301400 + 0.301400i
\(704\) 0 0
\(705\) −0.644103 0.0622047i −0.0242583 0.00234276i
\(706\) 0 0
\(707\) −15.9095 −0.598339
\(708\) 0 0
\(709\) 1.95755 + 1.95755i 0.0735172 + 0.0735172i 0.742909 0.669392i \(-0.233445\pi\)
−0.669392 + 0.742909i \(0.733445\pi\)
\(710\) 0 0
\(711\) −9.12243 −0.342118
\(712\) 0 0
\(713\) 17.7947 + 17.7947i 0.666416 + 0.666416i
\(714\) 0 0
\(715\) 14.1222 + 1.36387i 0.528142 + 0.0510057i
\(716\) 0 0
\(717\) 27.6818i 1.03379i
\(718\) 0 0
\(719\) 0.0658604 0.00245618 0.00122809 0.999999i \(-0.499609\pi\)
0.00122809 + 0.999999i \(0.499609\pi\)
\(720\) 0 0
\(721\) −1.41692 −0.0527687
\(722\) 0 0
\(723\) 25.1223i 0.934309i
\(724\) 0 0
\(725\) 5.72078 + 8.49181i 0.212465 + 0.315378i
\(726\) 0 0
\(727\) 16.2286 + 16.2286i 0.601885 + 0.601885i 0.940813 0.338927i \(-0.110064\pi\)
−0.338927 + 0.940813i \(0.610064\pi\)
\(728\) 0 0
\(729\) −15.6045 −0.577943
\(730\) 0 0
\(731\) −19.3881 19.3881i −0.717095 0.717095i
\(732\) 0 0
\(733\) 0.669106 0.0247140 0.0123570 0.999924i \(-0.496067\pi\)
0.0123570 + 0.999924i \(0.496067\pi\)
\(734\) 0 0
\(735\) −6.32298 + 5.20925i −0.233227 + 0.192146i
\(736\) 0 0
\(737\) −6.82691 6.82691i −0.251472 0.251472i
\(738\) 0 0
\(739\) 23.4183 + 23.4183i 0.861454 + 0.861454i 0.991507 0.130053i \(-0.0415147\pi\)
−0.130053 + 0.991507i \(0.541515\pi\)
\(740\) 0 0
\(741\) −9.10952 + 9.10952i −0.334647 + 0.334647i
\(742\) 0 0
\(743\) −30.0968 + 30.0968i −1.10414 + 1.10414i −0.110238 + 0.993905i \(0.535161\pi\)
−0.993905 + 0.110238i \(0.964839\pi\)
\(744\) 0 0
\(745\) −5.47092 0.528358i −0.200439 0.0193575i
\(746\) 0 0
\(747\) 3.60882i 0.132040i
\(748\) 0 0
\(749\) −28.1838 + 28.1838i −1.02981 + 1.02981i
\(750\) 0 0
\(751\) 53.2724i 1.94394i 0.235107 + 0.971970i \(0.424456\pi\)
−0.235107 + 0.971970i \(0.575544\pi\)
\(752\) 0 0
\(753\) −13.4259 + 13.4259i −0.489267 + 0.489267i
\(754\) 0 0
\(755\) −10.0705 + 8.29666i −0.366502 + 0.301946i
\(756\) 0 0
\(757\) 27.1717 0.987574 0.493787 0.869583i \(-0.335612\pi\)
0.493787 + 0.869583i \(0.335612\pi\)
\(758\) 0 0
\(759\) 14.6051i 0.530132i
\(760\) 0 0
\(761\) 12.9068i 0.467870i 0.972252 + 0.233935i \(0.0751604\pi\)
−0.972252 + 0.233935i \(0.924840\pi\)
\(762\) 0 0
\(763\) 1.10593 0.0400374
\(764\) 0 0
\(765\) −5.24147 0.506198i −0.189506 0.0183016i
\(766\) 0 0
\(767\) 20.6162 20.6162i 0.744409 0.744409i
\(768\) 0 0
\(769\) 34.4858i 1.24359i −0.783180 0.621795i \(-0.786404\pi\)
0.783180 0.621795i \(-0.213596\pi\)
\(770\) 0 0
\(771\) −13.0806 + 13.0806i −0.471087 + 0.471087i
\(772\) 0 0
\(773\) 26.6789i 0.959574i 0.877385 + 0.479787i \(0.159286\pi\)
−0.877385 + 0.479787i \(0.840714\pi\)
\(774\) 0 0
\(775\) −17.7095 3.45281i −0.636143 0.124029i
\(776\) 0 0
\(777\) −32.1836 + 32.1836i −1.15458 + 1.15458i
\(778\) 0 0
\(779\) 5.41272 5.41272i 0.193931 0.193931i
\(780\) 0 0
\(781\) 2.74675 + 2.74675i 0.0982864 + 0.0982864i
\(782\) 0 0
\(783\) 6.10566 + 6.10566i 0.218199 + 0.218199i
\(784\) 0 0
\(785\) −4.47493 5.43167i −0.159717 0.193865i
\(786\) 0 0
\(787\) −33.2611 −1.18563 −0.592815 0.805338i \(-0.701984\pi\)
−0.592815 + 0.805338i \(0.701984\pi\)
\(788\) 0 0
\(789\) −14.3659 14.3659i −0.511439 0.511439i
\(790\) 0 0
\(791\) −17.4195 −0.619365
\(792\) 0 0
\(793\) −4.04658 4.04658i −0.143698 0.143698i
\(794\) 0 0
\(795\) −13.6565 + 11.2510i −0.484346 + 0.399033i
\(796\) 0 0
\(797\) 15.9072i 0.563461i −0.959494 0.281730i \(-0.909092\pi\)
0.959494 0.281730i \(-0.0909084\pi\)
\(798\) 0 0
\(799\) 0.407850 0.0144287
\(800\) 0 0
\(801\) 0.0362935 0.00128237
\(802\) 0 0
\(803\) 4.43743i 0.156593i
\(804\) 0 0
\(805\) −27.2679 + 22.4649i −0.961067 + 0.791784i
\(806\) 0 0
\(807\) 31.3610 + 31.3610i 1.10396 + 1.10396i
\(808\) 0 0
\(809\) 12.4922 0.439204 0.219602 0.975590i \(-0.429524\pi\)
0.219602 + 0.975590i \(0.429524\pi\)
\(810\) 0 0
\(811\) −35.4886 35.4886i −1.24617 1.24617i −0.957396 0.288777i \(-0.906751\pi\)
−0.288777 0.957396i \(-0.593249\pi\)
\(812\) 0 0
\(813\) −7.05884 −0.247564
\(814\) 0 0
\(815\) −11.1203 13.4978i −0.389528 0.472809i
\(816\) 0 0
\(817\) 7.73923 + 7.73923i 0.270761 + 0.270761i
\(818\) 0 0
\(819\) −8.11042 8.11042i −0.283401 0.283401i
\(820\) 0 0
\(821\) 15.9683 15.9683i 0.557299 0.557299i −0.371239 0.928537i \(-0.621067\pi\)
0.928537 + 0.371239i \(0.121067\pi\)
\(822\) 0 0
\(823\) 21.7278 21.7278i 0.757384 0.757384i −0.218462 0.975846i \(-0.570104\pi\)
0.975846 + 0.218462i \(0.0701039\pi\)
\(824\) 0 0
\(825\) −5.85062 8.68454i −0.203693 0.302357i
\(826\) 0 0
\(827\) 39.2381i 1.36444i −0.731146 0.682221i \(-0.761014\pi\)
0.731146 0.682221i \(-0.238986\pi\)
\(828\) 0 0
\(829\) 18.6072 18.6072i 0.646254 0.646254i −0.305831 0.952086i \(-0.598934\pi\)
0.952086 + 0.305831i \(0.0989344\pi\)
\(830\) 0 0
\(831\) 41.0982i 1.42568i
\(832\) 0 0
\(833\) 3.65114 3.65114i 0.126504 0.126504i
\(834\) 0 0
\(835\) 31.1131 + 3.00477i 1.07671 + 0.103984i
\(836\) 0 0
\(837\) −15.2158 −0.525935
\(838\) 0 0
\(839\) 12.5955i 0.434845i −0.976078 0.217422i \(-0.930235\pi\)
0.976078 0.217422i \(-0.0697649\pi\)
\(840\) 0 0
\(841\) 24.8065i 0.855396i
\(842\) 0 0
\(843\) 6.41151 0.220824
\(844\) 0 0
\(845\) 38.5762 31.7814i 1.32706 1.09331i
\(846\) 0 0
\(847\) 15.7981 15.7981i 0.542829 0.542829i
\(848\) 0 0
\(849\) 0 0.000297553i 0 1.02120e-5i
\(850\) 0 0
\(851\) 50.4778 50.4778i 1.73036 1.73036i
\(852\) 0 0
\(853\) 43.6914i 1.49597i −0.663718 0.747983i \(-0.731022\pi\)
0.663718 0.747983i \(-0.268978\pi\)
\(854\) 0 0
\(855\) 2.09226 + 0.202061i 0.0715537 + 0.00691035i
\(856\) 0 0
\(857\) 28.9373 28.9373i 0.988478 0.988478i −0.0114561 0.999934i \(-0.503647\pi\)
0.999934 + 0.0114561i \(0.00364668\pi\)
\(858\) 0 0
\(859\) −28.1247 + 28.1247i −0.959602 + 0.959602i −0.999215 0.0396134i \(-0.987387\pi\)
0.0396134 + 0.999215i \(0.487387\pi\)
\(860\) 0 0
\(861\) 21.7987 + 21.7987i 0.742896 + 0.742896i
\(862\) 0 0
\(863\) −22.2144 22.2144i −0.756186 0.756186i 0.219440 0.975626i \(-0.429577\pi\)
−0.975626 + 0.219440i \(0.929577\pi\)
\(864\) 0 0
\(865\) −6.02730 + 4.96565i −0.204934 + 0.168837i
\(866\) 0 0
\(867\) −18.3498 −0.623192
\(868\) 0 0
\(869\) 8.08466 + 8.08466i 0.274253 + 0.274253i
\(870\) 0 0
\(871\) −53.7929 −1.82270
\(872\) 0 0
\(873\) 1.62773 + 1.62773i 0.0550904 + 0.0550904i
\(874\) 0 0
\(875\) 7.21497 24.2813i 0.243911 0.820859i
\(876\) 0 0
\(877\) 5.13889i 0.173528i 0.996229 + 0.0867640i \(0.0276526\pi\)
−0.996229 + 0.0867640i \(0.972347\pi\)
\(878\) 0 0
\(879\) −21.7040 −0.732057
\(880\) 0 0
\(881\) −4.34528 −0.146396 −0.0731982 0.997317i \(-0.523321\pi\)
−0.0731982 + 0.997317i \(0.523321\pi\)
\(882\) 0 0
\(883\) 35.4317i 1.19237i −0.802846 0.596186i \(-0.796682\pi\)
0.802846 0.596186i \(-0.203318\pi\)
\(884\) 0 0
\(885\) −21.4188 2.06853i −0.719985 0.0695330i
\(886\) 0 0
\(887\) −37.4644 37.4644i −1.25793 1.25793i −0.952078 0.305855i \(-0.901058\pi\)
−0.305855 0.952078i \(-0.598942\pi\)
\(888\) 0 0
\(889\) −20.0945 −0.673947
\(890\) 0 0
\(891\) −8.17171 8.17171i −0.273763 0.273763i
\(892\) 0 0
\(893\) −0.162803 −0.00544799
\(894\) 0 0
\(895\) 41.1739 + 3.97640i 1.37629 + 0.132916i
\(896\) 0 0
\(897\) 57.5407 + 57.5407i 1.92123 + 1.92123i
\(898\) 0 0
\(899\) 5.22531 + 5.22531i 0.174274 + 0.174274i
\(900\) 0 0
\(901\) 7.88580 7.88580i 0.262714 0.262714i
\(902\) 0 0
\(903\) −31.1682 + 31.1682i −1.03721 + 1.03721i
\(904\) 0 0
\(905\) −4.14613 + 42.9314i −0.137822 + 1.42709i
\(906\) 0 0
\(907\) 0.181405i 0.00602345i 0.999995 + 0.00301173i \(0.000958664\pi\)
−0.999995 + 0.00301173i \(0.999041\pi\)
\(908\) 0 0
\(909\) 4.22775 4.22775i 0.140226 0.140226i
\(910\) 0 0
\(911\) 23.4249i 0.776101i −0.921638 0.388050i \(-0.873149\pi\)
0.921638 0.388050i \(-0.126851\pi\)
\(912\) 0 0
\(913\) −3.19828 + 3.19828i −0.105848 + 0.105848i
\(914\) 0 0
\(915\) −0.406015 + 4.20411i −0.0134224 + 0.138984i
\(916\) 0 0
\(917\) 5.17529 0.170903
\(918\) 0 0
\(919\) 3.05885i 0.100902i 0.998727 + 0.0504511i \(0.0160659\pi\)
−0.998727 + 0.0504511i \(0.983934\pi\)
\(920\) 0 0
\(921\) 29.6962i 0.978522i
\(922\) 0 0
\(923\) 21.6431 0.712392
\(924\) 0 0
\(925\) −9.79453 + 50.2361i −0.322042 + 1.65175i
\(926\) 0 0
\(927\) 0.376527 0.376527i 0.0123668 0.0123668i
\(928\) 0 0
\(929\) 59.9772i 1.96779i −0.178752 0.983894i \(-0.557206\pi\)
0.178752 0.983894i \(-0.442794\pi\)
\(930\) 0 0
\(931\) −1.45744 + 1.45744i −0.0477657 + 0.0477657i
\(932\) 0 0
\(933\) 53.2931i 1.74474i
\(934\) 0 0
\(935\) 4.19659 + 5.09381i 0.137243 + 0.166586i
\(936\) 0 0
\(937\) 23.7463 23.7463i 0.775759 0.775759i −0.203347 0.979107i \(-0.565182\pi\)
0.979107 + 0.203347i \(0.0651821\pi\)
\(938\) 0 0
\(939\) 26.8266 26.8266i 0.875451 0.875451i
\(940\) 0 0
\(941\) 35.2727 + 35.2727i 1.14986 + 1.14986i 0.986580 + 0.163278i \(0.0522068\pi\)
0.163278 + 0.986580i \(0.447793\pi\)
\(942\) 0 0
\(943\) −34.1897 34.1897i −1.11337 1.11337i
\(944\) 0 0
\(945\) 2.05346 21.2627i 0.0667989 0.691674i
\(946\) 0 0
\(947\) −19.9140 −0.647118 −0.323559 0.946208i \(-0.604879\pi\)
−0.323559 + 0.946208i \(0.604879\pi\)
\(948\) 0 0
\(949\) 17.4824 + 17.4824i 0.567504 + 0.567504i
\(950\) 0 0
\(951\) 50.6945 1.64388
\(952\) 0 0
\(953\) −23.1060 23.1060i −0.748477 0.748477i 0.225716 0.974193i \(-0.427528\pi\)
−0.974193 + 0.225716i \(0.927528\pi\)
\(954\) 0 0
\(955\) 4.15916 + 5.04838i 0.134587 + 0.163362i
\(956\) 0 0
\(957\) 4.28871i 0.138634i
\(958\) 0 0
\(959\) −21.9027 −0.707276
\(960\) 0 0
\(961\) 17.9781 0.579939
\(962\) 0 0
\(963\) 14.9790i 0.482690i
\(964\) 0 0
\(965\) 0.0252521 0.261475i 0.000812894 0.00841717i
\(966\) 0 0
\(967\) 41.7332 + 41.7332i 1.34205 + 1.34205i 0.894018 + 0.448030i \(0.147874\pi\)
0.448030 + 0.894018i \(0.352126\pi\)
\(968\) 0 0
\(969\) −5.99275 −0.192515
\(970\) 0 0
\(971\) 33.5030 + 33.5030i 1.07516 + 1.07516i 0.996936 + 0.0782268i \(0.0249258\pi\)
0.0782268 + 0.996936i \(0.475074\pi\)
\(972\) 0 0
\(973\) 44.0330 1.41163
\(974\) 0 0
\(975\) −57.2652 11.1650i −1.83395 0.357566i
\(976\) 0 0
\(977\) 9.16848 + 9.16848i 0.293326 + 0.293326i 0.838393 0.545067i \(-0.183496\pi\)
−0.545067 + 0.838393i \(0.683496\pi\)
\(978\) 0 0
\(979\) −0.0321648 0.0321648i −0.00102799 0.00102799i
\(980\) 0 0
\(981\) −0.293887 + 0.293887i −0.00938308 + 0.00938308i
\(982\) 0 0
\(983\) 39.1183 39.1183i 1.24768 1.24768i 0.290936 0.956742i \(-0.406033\pi\)
0.956742 0.290936i \(-0.0939668\pi\)
\(984\) 0 0
\(985\) −13.4697 + 11.0972i −0.429181 + 0.353585i
\(986\) 0 0
\(987\) 0.655657i 0.0208698i
\(988\) 0 0
\(989\) 48.8852 48.8852i 1.55446 1.55446i
\(990\) 0 0
\(991\) 12.9925i 0.412722i −0.978476 0.206361i \(-0.933838\pi\)
0.978476 0.206361i \(-0.0661621\pi\)
\(992\) 0 0
\(993\) −26.7307 + 26.7307i −0.848273 + 0.848273i
\(994\) 0 0
\(995\) −15.6031 18.9390i −0.494650 0.600406i
\(996\) 0 0
\(997\) 8.89509 0.281710 0.140855 0.990030i \(-0.455015\pi\)
0.140855 + 0.990030i \(0.455015\pi\)
\(998\) 0 0
\(999\) 43.1624i 1.36560i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.j.c.607.2 18
4.3 odd 2 640.2.j.d.607.8 18
5.3 odd 4 640.2.s.c.223.8 18
8.3 odd 2 80.2.j.b.67.9 yes 18
8.5 even 2 320.2.j.b.47.8 18
16.3 odd 4 320.2.s.b.207.2 18
16.5 even 4 640.2.s.d.287.2 18
16.11 odd 4 640.2.s.c.287.8 18
16.13 even 4 80.2.s.b.27.6 yes 18
20.3 even 4 640.2.s.d.223.2 18
24.11 even 2 720.2.bd.g.307.1 18
40.3 even 4 80.2.s.b.3.6 yes 18
40.13 odd 4 320.2.s.b.303.2 18
40.19 odd 2 400.2.j.d.307.1 18
40.27 even 4 400.2.s.d.243.4 18
40.29 even 2 1600.2.j.d.1007.2 18
40.37 odd 4 1600.2.s.d.943.8 18
48.29 odd 4 720.2.z.g.667.4 18
80.3 even 4 320.2.j.b.143.2 18
80.13 odd 4 80.2.j.b.43.9 18
80.19 odd 4 1600.2.s.d.207.8 18
80.29 even 4 400.2.s.d.107.4 18
80.43 even 4 inner 640.2.j.c.543.8 18
80.53 odd 4 640.2.j.d.543.2 18
80.67 even 4 1600.2.j.d.143.8 18
80.77 odd 4 400.2.j.d.43.1 18
120.83 odd 4 720.2.z.g.163.4 18
240.173 even 4 720.2.bd.g.523.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.j.b.43.9 18 80.13 odd 4
80.2.j.b.67.9 yes 18 8.3 odd 2
80.2.s.b.3.6 yes 18 40.3 even 4
80.2.s.b.27.6 yes 18 16.13 even 4
320.2.j.b.47.8 18 8.5 even 2
320.2.j.b.143.2 18 80.3 even 4
320.2.s.b.207.2 18 16.3 odd 4
320.2.s.b.303.2 18 40.13 odd 4
400.2.j.d.43.1 18 80.77 odd 4
400.2.j.d.307.1 18 40.19 odd 2
400.2.s.d.107.4 18 80.29 even 4
400.2.s.d.243.4 18 40.27 even 4
640.2.j.c.543.8 18 80.43 even 4 inner
640.2.j.c.607.2 18 1.1 even 1 trivial
640.2.j.d.543.2 18 80.53 odd 4
640.2.j.d.607.8 18 4.3 odd 2
640.2.s.c.223.8 18 5.3 odd 4
640.2.s.c.287.8 18 16.11 odd 4
640.2.s.d.223.2 18 20.3 even 4
640.2.s.d.287.2 18 16.5 even 4
720.2.z.g.163.4 18 120.83 odd 4
720.2.z.g.667.4 18 48.29 odd 4
720.2.bd.g.307.1 18 24.11 even 2
720.2.bd.g.523.1 18 240.173 even 4
1600.2.j.d.143.8 18 80.67 even 4
1600.2.j.d.1007.2 18 40.29 even 2
1600.2.s.d.207.8 18 80.19 odd 4
1600.2.s.d.943.8 18 40.37 odd 4