Properties

Label 640.2.q.a
Level 640640
Weight 22
Character orbit 640.q
Analytic conductor 5.1105.110
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,2,Mod(289,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 640=275 640 = 2^{7} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 640.q (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.110425729365.11042572936
Analytic rank: 11
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(i1)q3+(i2)q5iq9+(3i3)q11+(3i+3)q13+(3i+1)q15+4iq17+(i1)q198q23+(4i+3)q25+(4i4)q27+(3i3)q29++(3i3)q99+O(q100) q + ( - i - 1) q^{3} + ( - i - 2) q^{5} - i q^{9} + ( - 3 i - 3) q^{11} + (3 i + 3) q^{13} + (3 i + 1) q^{15} + 4 i q^{17} + (i - 1) q^{19} - 8 q^{23} + (4 i + 3) q^{25} + (4 i - 4) q^{27} + (3 i - 3) q^{29} + \cdots + (3 i - 3) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q34q56q11+6q13+2q152q1916q23+6q258q276q29+6q376q432q4514q49+8q5118q53+6q55+4q57+6q99+O(q100) 2 q - 2 q^{3} - 4 q^{5} - 6 q^{11} + 6 q^{13} + 2 q^{15} - 2 q^{19} - 16 q^{23} + 6 q^{25} - 8 q^{27} - 6 q^{29} + 6 q^{37} - 6 q^{43} - 2 q^{45} - 14 q^{49} + 8 q^{51} - 18 q^{53} + 6 q^{55} + 4 q^{57}+ \cdots - 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/640Z)×\left(\mathbb{Z}/640\mathbb{Z}\right)^\times.

nn 257257 261261 511511
χ(n)\chi(n) 1-1 ii 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
1.00000i
1.00000i
0 −1.00000 + 1.00000i 0 −2.00000 + 1.00000i 0 0 0 1.00000i 0
609.1 0 −1.00000 1.00000i 0 −2.00000 1.00000i 0 0 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
80.q even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 640.2.q.a 2
4.b odd 2 1 640.2.q.c 2
5.b even 2 1 640.2.q.d 2
8.b even 2 1 320.2.q.b 2
8.d odd 2 1 80.2.q.b yes 2
16.e even 4 1 320.2.q.a 2
16.e even 4 1 640.2.q.d 2
16.f odd 4 1 80.2.q.a 2
16.f odd 4 1 640.2.q.b 2
20.d odd 2 1 640.2.q.b 2
24.f even 2 1 720.2.bm.a 2
40.e odd 2 1 80.2.q.a 2
40.f even 2 1 320.2.q.a 2
40.i odd 4 1 1600.2.l.b 2
40.i odd 4 1 1600.2.l.c 2
40.k even 4 1 400.2.l.a 2
40.k even 4 1 400.2.l.b 2
48.k even 4 1 720.2.bm.b 2
80.i odd 4 1 1600.2.l.c 2
80.j even 4 1 400.2.l.b 2
80.k odd 4 1 80.2.q.b yes 2
80.k odd 4 1 640.2.q.c 2
80.q even 4 1 320.2.q.b 2
80.q even 4 1 inner 640.2.q.a 2
80.s even 4 1 400.2.l.a 2
80.t odd 4 1 1600.2.l.b 2
120.m even 2 1 720.2.bm.b 2
240.t even 4 1 720.2.bm.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
80.2.q.a 2 16.f odd 4 1
80.2.q.a 2 40.e odd 2 1
80.2.q.b yes 2 8.d odd 2 1
80.2.q.b yes 2 80.k odd 4 1
320.2.q.a 2 16.e even 4 1
320.2.q.a 2 40.f even 2 1
320.2.q.b 2 8.b even 2 1
320.2.q.b 2 80.q even 4 1
400.2.l.a 2 40.k even 4 1
400.2.l.a 2 80.s even 4 1
400.2.l.b 2 40.k even 4 1
400.2.l.b 2 80.j even 4 1
640.2.q.a 2 1.a even 1 1 trivial
640.2.q.a 2 80.q even 4 1 inner
640.2.q.b 2 16.f odd 4 1
640.2.q.b 2 20.d odd 2 1
640.2.q.c 2 4.b odd 2 1
640.2.q.c 2 80.k odd 4 1
640.2.q.d 2 5.b even 2 1
640.2.q.d 2 16.e even 4 1
720.2.bm.a 2 24.f even 2 1
720.2.bm.a 2 240.t even 4 1
720.2.bm.b 2 48.k even 4 1
720.2.bm.b 2 120.m even 2 1
1600.2.l.b 2 40.i odd 4 1
1600.2.l.b 2 80.t odd 4 1
1600.2.l.c 2 40.i odd 4 1
1600.2.l.c 2 80.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(640,[χ])S_{2}^{\mathrm{new}}(640, [\chi]):

T32+2T3+2 T_{3}^{2} + 2T_{3} + 2 Copy content Toggle raw display
T112+6T11+18 T_{11}^{2} + 6T_{11} + 18 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
55 T2+4T+5 T^{2} + 4T + 5 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
1313 T26T+18 T^{2} - 6T + 18 Copy content Toggle raw display
1717 T2+16 T^{2} + 16 Copy content Toggle raw display
1919 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
2323 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
2929 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T26T+18 T^{2} - 6T + 18 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
4747 T2+4 T^{2} + 4 Copy content Toggle raw display
5353 T2+18T+162 T^{2} + 18T + 162 Copy content Toggle raw display
5959 T218T+162 T^{2} - 18T + 162 Copy content Toggle raw display
6161 T210T+50 T^{2} - 10T + 50 Copy content Toggle raw display
6767 T26T+18 T^{2} - 6T + 18 Copy content Toggle raw display
7171 T2+36 T^{2} + 36 Copy content Toggle raw display
7373 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7979 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
8383 T2+18T+162 T^{2} + 18T + 162 Copy content Toggle raw display
8989 T2+144 T^{2} + 144 Copy content Toggle raw display
9797 T2+144 T^{2} + 144 Copy content Toggle raw display
show more
show less