Properties

Label 640.4.a.s
Level $640$
Weight $4$
Character orbit 640.a
Self dual yes
Analytic conductor $37.761$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,4,Mod(1,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 640.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7612224037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1040528.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 25x^{2} + 14x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} - 5 q^{5} + (\beta_{3} + 5) q^{7} + (\beta_{3} + \beta_{2} - \beta_1 + 27) q^{9} + ( - \beta_{3} + 2 \beta_{2} + \cdots + 18) q^{11} + ( - \beta_{3} + \beta_{2} + \beta_1 - 8) q^{13}+ \cdots + ( - \beta_{3} + 14 \beta_{2} + \cdots + 870) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 20 q^{5} + 20 q^{7} + 108 q^{9} + 72 q^{11} - 32 q^{13} - 20 q^{15} + 96 q^{17} - 128 q^{19} - 48 q^{21} + 44 q^{23} + 100 q^{25} + 136 q^{27} - 200 q^{29} + 24 q^{31} - 88 q^{33} - 100 q^{35}+ \cdots + 3480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 25x^{2} + 14x + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{3} - 44\nu - 36 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{3} + 12\nu^{2} + 26\nu - 117 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 3\beta _1 + 54 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{2} + 22\beta _1 + 58 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.56882
2.11336
−1.75057
−3.93160
0 −9.13763 0 −5.00000 0 23.1776 0 56.4963 0
1.2 0 −2.22671 0 −5.00000 0 −4.11169 0 −22.0417 0
1.3 0 5.50114 0 −5.00000 0 −33.3372 0 3.26254 0
1.4 0 9.86321 0 −5.00000 0 34.2713 0 70.2829 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 640.4.a.s yes 4
4.b odd 2 1 640.4.a.q 4
8.b even 2 1 640.4.a.r yes 4
8.d odd 2 1 640.4.a.t yes 4
16.e even 4 2 1280.4.d.bb 8
16.f odd 4 2 1280.4.d.bc 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.4.a.q 4 4.b odd 2 1
640.4.a.r yes 4 8.b even 2 1
640.4.a.s yes 4 1.a even 1 1 trivial
640.4.a.t yes 4 8.d odd 2 1
1280.4.d.bb 8 16.e even 4 2
1280.4.d.bc 8 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(640))\):

\( T_{3}^{4} - 4T_{3}^{3} - 100T_{3}^{2} + 304T_{3} + 1104 \) Copy content Toggle raw display
\( T_{7}^{4} - 20T_{7}^{3} - 1220T_{7}^{2} + 21872T_{7} + 108880 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 1104 \) Copy content Toggle raw display
$5$ \( (T + 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 20 T^{3} + \cdots + 108880 \) Copy content Toggle raw display
$11$ \( T^{4} - 72 T^{3} + \cdots + 1613712 \) Copy content Toggle raw display
$13$ \( T^{4} + 32 T^{3} + \cdots + 258192 \) Copy content Toggle raw display
$17$ \( T^{4} - 96 T^{3} + \cdots - 3269232 \) Copy content Toggle raw display
$19$ \( T^{4} + 128 T^{3} + \cdots + 1164816 \) Copy content Toggle raw display
$23$ \( T^{4} - 44 T^{3} + \cdots - 13516080 \) Copy content Toggle raw display
$29$ \( T^{4} + 200 T^{3} + \cdots - 22368240 \) Copy content Toggle raw display
$31$ \( T^{4} - 24 T^{3} + \cdots + 6237440 \) Copy content Toggle raw display
$37$ \( T^{4} - 24 T^{3} + \cdots + 991516560 \) Copy content Toggle raw display
$41$ \( T^{4} + 32 T^{3} + \cdots + 607861648 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 2241857200 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 20842229424 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 20356308240 \) Copy content Toggle raw display
$59$ \( T^{4} + 176 T^{3} + \cdots + 628890768 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 34160636912 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 116617993040 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 2987836672 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 14073390480 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 490073812992 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 256975168080 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 415967432304 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 433240091664 \) Copy content Toggle raw display
show more
show less