Properties

Label 640.4.c.a.129.9
Level $640$
Weight $4$
Character 640.129
Analytic conductor $37.761$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,4,Mod(129,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 640.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7612224037\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} + 54 x^{15} + 2104 x^{14} - 10372 x^{13} + 25818 x^{12} + 35384 x^{11} + \cdots + 44745800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{54}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.9
Root \(0.272660 - 0.272660i\) of defining polynomial
Character \(\chi\) \(=\) 640.129
Dual form 640.4.c.a.129.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.545319i q^{3} +(-10.0777 + 4.84141i) q^{5} -11.8531i q^{7} +26.7026 q^{9} -41.0997 q^{11} +55.5377i q^{13} +(2.64012 + 5.49558i) q^{15} -31.1506i q^{17} +39.7575 q^{19} -6.46373 q^{21} +62.7363i q^{23} +(78.1215 - 97.5809i) q^{25} -29.2851i q^{27} +1.87745 q^{29} -99.5774 q^{31} +22.4124i q^{33} +(57.3858 + 119.453i) q^{35} -101.358i q^{37} +30.2858 q^{39} -154.785 q^{41} -348.961i q^{43} +(-269.102 + 129.278i) q^{45} -604.903i q^{47} +202.504 q^{49} -16.9870 q^{51} +488.561i q^{53} +(414.191 - 198.980i) q^{55} -21.6805i q^{57} +696.407 q^{59} +161.860 q^{61} -316.509i q^{63} +(-268.881 - 559.694i) q^{65} -987.849i q^{67} +34.2113 q^{69} +768.530 q^{71} -474.591i q^{73} +(-53.2128 - 42.6011i) q^{75} +487.159i q^{77} +8.84939 q^{79} +705.001 q^{81} -597.884i q^{83} +(150.813 + 313.928i) q^{85} -1.02381i q^{87} +651.808 q^{89} +658.295 q^{91} +54.3015i q^{93} +(-400.665 + 192.482i) q^{95} -822.543i q^{97} -1097.47 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{5} - 162 q^{9} - 28 q^{11} + 4 q^{15} - 68 q^{19} - 136 q^{21} - 22 q^{25} - 340 q^{29} + 336 q^{31} - 236 q^{35} + 1000 q^{39} + 236 q^{41} + 90 q^{45} - 882 q^{49} - 48 q^{51} - 1532 q^{55}+ \cdots + 3628 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.545319i 0.104947i −0.998622 0.0524734i \(-0.983290\pi\)
0.998622 0.0524734i \(-0.0167105\pi\)
\(4\) 0 0
\(5\) −10.0777 + 4.84141i −0.901380 + 0.433029i
\(6\) 0 0
\(7\) 11.8531i 0.640008i −0.947416 0.320004i \(-0.896316\pi\)
0.947416 0.320004i \(-0.103684\pi\)
\(8\) 0 0
\(9\) 26.7026 0.988986
\(10\) 0 0
\(11\) −41.0997 −1.12655 −0.563273 0.826271i \(-0.690458\pi\)
−0.563273 + 0.826271i \(0.690458\pi\)
\(12\) 0 0
\(13\) 55.5377i 1.18488i 0.805616 + 0.592438i \(0.201835\pi\)
−0.805616 + 0.592438i \(0.798165\pi\)
\(14\) 0 0
\(15\) 2.64012 + 5.49558i 0.0454450 + 0.0945969i
\(16\) 0 0
\(17\) 31.1506i 0.444420i −0.974999 0.222210i \(-0.928673\pi\)
0.974999 0.222210i \(-0.0713271\pi\)
\(18\) 0 0
\(19\) 39.7575 0.480052 0.240026 0.970766i \(-0.422844\pi\)
0.240026 + 0.970766i \(0.422844\pi\)
\(20\) 0 0
\(21\) −6.46373 −0.0671668
\(22\) 0 0
\(23\) 62.7363i 0.568757i 0.958712 + 0.284379i \(0.0917873\pi\)
−0.958712 + 0.284379i \(0.908213\pi\)
\(24\) 0 0
\(25\) 78.1215 97.5809i 0.624972 0.780647i
\(26\) 0 0
\(27\) 29.2851i 0.208738i
\(28\) 0 0
\(29\) 1.87745 0.0120219 0.00601094 0.999982i \(-0.498087\pi\)
0.00601094 + 0.999982i \(0.498087\pi\)
\(30\) 0 0
\(31\) −99.5774 −0.576924 −0.288462 0.957491i \(-0.593144\pi\)
−0.288462 + 0.957491i \(0.593144\pi\)
\(32\) 0 0
\(33\) 22.4124i 0.118227i
\(34\) 0 0
\(35\) 57.3858 + 119.453i 0.277142 + 0.576890i
\(36\) 0 0
\(37\) 101.358i 0.450357i −0.974318 0.225178i \(-0.927704\pi\)
0.974318 0.225178i \(-0.0722965\pi\)
\(38\) 0 0
\(39\) 30.2858 0.124349
\(40\) 0 0
\(41\) −154.785 −0.589594 −0.294797 0.955560i \(-0.595252\pi\)
−0.294797 + 0.955560i \(0.595252\pi\)
\(42\) 0 0
\(43\) 348.961i 1.23758i −0.785556 0.618791i \(-0.787623\pi\)
0.785556 0.618791i \(-0.212377\pi\)
\(44\) 0 0
\(45\) −269.102 + 129.278i −0.891452 + 0.428260i
\(46\) 0 0
\(47\) 604.903i 1.87732i −0.344842 0.938661i \(-0.612067\pi\)
0.344842 0.938661i \(-0.387933\pi\)
\(48\) 0 0
\(49\) 202.504 0.590390
\(50\) 0 0
\(51\) −16.9870 −0.0466404
\(52\) 0 0
\(53\) 488.561i 1.26621i 0.774067 + 0.633104i \(0.218219\pi\)
−0.774067 + 0.633104i \(0.781781\pi\)
\(54\) 0 0
\(55\) 414.191 198.980i 1.01545 0.487827i
\(56\) 0 0
\(57\) 21.6805i 0.0503799i
\(58\) 0 0
\(59\) 696.407 1.53669 0.768343 0.640038i \(-0.221081\pi\)
0.768343 + 0.640038i \(0.221081\pi\)
\(60\) 0 0
\(61\) 161.860 0.339739 0.169869 0.985467i \(-0.445665\pi\)
0.169869 + 0.985467i \(0.445665\pi\)
\(62\) 0 0
\(63\) 316.509i 0.632959i
\(64\) 0 0
\(65\) −268.881 559.694i −0.513086 1.06802i
\(66\) 0 0
\(67\) 987.849i 1.80127i −0.434578 0.900634i \(-0.643103\pi\)
0.434578 0.900634i \(-0.356897\pi\)
\(68\) 0 0
\(69\) 34.2113 0.0596892
\(70\) 0 0
\(71\) 768.530 1.28462 0.642308 0.766447i \(-0.277977\pi\)
0.642308 + 0.766447i \(0.277977\pi\)
\(72\) 0 0
\(73\) 474.591i 0.760914i −0.924799 0.380457i \(-0.875767\pi\)
0.924799 0.380457i \(-0.124233\pi\)
\(74\) 0 0
\(75\) −53.2128 42.6011i −0.0819264 0.0655888i
\(76\) 0 0
\(77\) 487.159i 0.720999i
\(78\) 0 0
\(79\) 8.84939 0.0126030 0.00630148 0.999980i \(-0.497994\pi\)
0.00630148 + 0.999980i \(0.497994\pi\)
\(80\) 0 0
\(81\) 705.001 0.967080
\(82\) 0 0
\(83\) 597.884i 0.790678i −0.918535 0.395339i \(-0.870627\pi\)
0.918535 0.395339i \(-0.129373\pi\)
\(84\) 0 0
\(85\) 150.813 + 313.928i 0.192447 + 0.400591i
\(86\) 0 0
\(87\) 1.02381i 0.00126166i
\(88\) 0 0
\(89\) 651.808 0.776309 0.388155 0.921594i \(-0.373113\pi\)
0.388155 + 0.921594i \(0.373113\pi\)
\(90\) 0 0
\(91\) 658.295 0.758330
\(92\) 0 0
\(93\) 54.3015i 0.0605463i
\(94\) 0 0
\(95\) −400.665 + 192.482i −0.432709 + 0.207876i
\(96\) 0 0
\(97\) 822.543i 0.860996i −0.902592 0.430498i \(-0.858338\pi\)
0.902592 0.430498i \(-0.141662\pi\)
\(98\) 0 0
\(99\) −1097.47 −1.11414
\(100\) 0 0
\(101\) −1559.82 −1.53671 −0.768357 0.640021i \(-0.778925\pi\)
−0.768357 + 0.640021i \(0.778925\pi\)
\(102\) 0 0
\(103\) 1251.12i 1.19686i −0.801174 0.598431i \(-0.795791\pi\)
0.801174 0.598431i \(-0.204209\pi\)
\(104\) 0 0
\(105\) 65.1398 31.2936i 0.0605428 0.0290852i
\(106\) 0 0
\(107\) 354.176i 0.319995i 0.987117 + 0.159997i \(0.0511486\pi\)
−0.987117 + 0.159997i \(0.948851\pi\)
\(108\) 0 0
\(109\) −513.960 −0.451637 −0.225818 0.974169i \(-0.572506\pi\)
−0.225818 + 0.974169i \(0.572506\pi\)
\(110\) 0 0
\(111\) −55.2726 −0.0472635
\(112\) 0 0
\(113\) 530.511i 0.441648i −0.975314 0.220824i \(-0.929125\pi\)
0.975314 0.220824i \(-0.0708747\pi\)
\(114\) 0 0
\(115\) −303.732 632.239i −0.246288 0.512666i
\(116\) 0 0
\(117\) 1483.00i 1.17183i
\(118\) 0 0
\(119\) −369.232 −0.284432
\(120\) 0 0
\(121\) 358.182 0.269107
\(122\) 0 0
\(123\) 84.4072i 0.0618760i
\(124\) 0 0
\(125\) −314.858 + 1361.61i −0.225294 + 0.974291i
\(126\) 0 0
\(127\) 253.892i 0.177396i −0.996059 0.0886981i \(-0.971729\pi\)
0.996059 0.0886981i \(-0.0282706\pi\)
\(128\) 0 0
\(129\) −190.295 −0.129880
\(130\) 0 0
\(131\) −271.914 −0.181353 −0.0906764 0.995880i \(-0.528903\pi\)
−0.0906764 + 0.995880i \(0.528903\pi\)
\(132\) 0 0
\(133\) 471.250i 0.307237i
\(134\) 0 0
\(135\) 141.781 + 295.127i 0.0903895 + 0.188152i
\(136\) 0 0
\(137\) 1596.26i 0.995457i −0.867333 0.497729i \(-0.834168\pi\)
0.867333 0.497729i \(-0.165832\pi\)
\(138\) 0 0
\(139\) 2497.29 1.52386 0.761932 0.647657i \(-0.224251\pi\)
0.761932 + 0.647657i \(0.224251\pi\)
\(140\) 0 0
\(141\) −329.865 −0.197019
\(142\) 0 0
\(143\) 2282.58i 1.33482i
\(144\) 0 0
\(145\) −18.9205 + 9.08953i −0.0108363 + 0.00520582i
\(146\) 0 0
\(147\) 110.429i 0.0619595i
\(148\) 0 0
\(149\) 163.816 0.0900694 0.0450347 0.998985i \(-0.485660\pi\)
0.0450347 + 0.998985i \(0.485660\pi\)
\(150\) 0 0
\(151\) 2478.52 1.33576 0.667879 0.744270i \(-0.267203\pi\)
0.667879 + 0.744270i \(0.267203\pi\)
\(152\) 0 0
\(153\) 831.804i 0.439525i
\(154\) 0 0
\(155\) 1003.52 482.095i 0.520028 0.249825i
\(156\) 0 0
\(157\) 1602.74i 0.814730i 0.913265 + 0.407365i \(0.133552\pi\)
−0.913265 + 0.407365i \(0.866448\pi\)
\(158\) 0 0
\(159\) 266.422 0.132884
\(160\) 0 0
\(161\) 743.620 0.364009
\(162\) 0 0
\(163\) 2762.68i 1.32754i −0.747935 0.663772i \(-0.768955\pi\)
0.747935 0.663772i \(-0.231045\pi\)
\(164\) 0 0
\(165\) −108.508 225.867i −0.0511959 0.106568i
\(166\) 0 0
\(167\) 1344.88i 0.623173i 0.950218 + 0.311587i \(0.100860\pi\)
−0.950218 + 0.311587i \(0.899140\pi\)
\(168\) 0 0
\(169\) −887.437 −0.403931
\(170\) 0 0
\(171\) 1061.63 0.474765
\(172\) 0 0
\(173\) 3017.80i 1.32624i −0.748514 0.663119i \(-0.769232\pi\)
0.748514 0.663119i \(-0.230768\pi\)
\(174\) 0 0
\(175\) −1156.64 925.983i −0.499621 0.399987i
\(176\) 0 0
\(177\) 379.764i 0.161270i
\(178\) 0 0
\(179\) −2377.40 −0.992711 −0.496356 0.868119i \(-0.665329\pi\)
−0.496356 + 0.868119i \(0.665329\pi\)
\(180\) 0 0
\(181\) 3367.21 1.38278 0.691390 0.722482i \(-0.256999\pi\)
0.691390 + 0.722482i \(0.256999\pi\)
\(182\) 0 0
\(183\) 88.2655i 0.0356545i
\(184\) 0 0
\(185\) 490.717 + 1021.46i 0.195018 + 0.405943i
\(186\) 0 0
\(187\) 1280.28i 0.500660i
\(188\) 0 0
\(189\) −347.119 −0.133594
\(190\) 0 0
\(191\) −4993.98 −1.89189 −0.945946 0.324324i \(-0.894863\pi\)
−0.945946 + 0.324324i \(0.894863\pi\)
\(192\) 0 0
\(193\) 5119.21i 1.90927i 0.297783 + 0.954634i \(0.403753\pi\)
−0.297783 + 0.954634i \(0.596247\pi\)
\(194\) 0 0
\(195\) −305.212 + 146.626i −0.112086 + 0.0538467i
\(196\) 0 0
\(197\) 1521.99i 0.550442i −0.961381 0.275221i \(-0.911249\pi\)
0.961381 0.275221i \(-0.0887510\pi\)
\(198\) 0 0
\(199\) 4990.52 1.77773 0.888866 0.458167i \(-0.151494\pi\)
0.888866 + 0.458167i \(0.151494\pi\)
\(200\) 0 0
\(201\) −538.693 −0.189037
\(202\) 0 0
\(203\) 22.2537i 0.00769410i
\(204\) 0 0
\(205\) 1559.88 749.378i 0.531448 0.255311i
\(206\) 0 0
\(207\) 1675.22i 0.562493i
\(208\) 0 0
\(209\) −1634.02 −0.540801
\(210\) 0 0
\(211\) −2328.32 −0.759661 −0.379830 0.925056i \(-0.624018\pi\)
−0.379830 + 0.925056i \(0.624018\pi\)
\(212\) 0 0
\(213\) 419.094i 0.134816i
\(214\) 0 0
\(215\) 1689.46 + 3516.73i 0.535909 + 1.11553i
\(216\) 0 0
\(217\) 1180.30i 0.369236i
\(218\) 0 0
\(219\) −258.804 −0.0798555
\(220\) 0 0
\(221\) 1730.04 0.526583
\(222\) 0 0
\(223\) 1868.69i 0.561150i −0.959832 0.280575i \(-0.909475\pi\)
0.959832 0.280575i \(-0.0905252\pi\)
\(224\) 0 0
\(225\) 2086.05 2605.67i 0.618088 0.772049i
\(226\) 0 0
\(227\) 4388.31i 1.28309i 0.767084 + 0.641547i \(0.221707\pi\)
−0.767084 + 0.641547i \(0.778293\pi\)
\(228\) 0 0
\(229\) −1841.81 −0.531487 −0.265744 0.964044i \(-0.585617\pi\)
−0.265744 + 0.964044i \(0.585617\pi\)
\(230\) 0 0
\(231\) 265.657 0.0756665
\(232\) 0 0
\(233\) 5763.09i 1.62040i 0.586156 + 0.810198i \(0.300641\pi\)
−0.586156 + 0.810198i \(0.699359\pi\)
\(234\) 0 0
\(235\) 2928.58 + 6096.05i 0.812935 + 1.69218i
\(236\) 0 0
\(237\) 4.82574i 0.00132264i
\(238\) 0 0
\(239\) −5346.35 −1.44697 −0.723486 0.690339i \(-0.757462\pi\)
−0.723486 + 0.690339i \(0.757462\pi\)
\(240\) 0 0
\(241\) −4869.08 −1.30143 −0.650716 0.759321i \(-0.725531\pi\)
−0.650716 + 0.759321i \(0.725531\pi\)
\(242\) 0 0
\(243\) 1175.15i 0.310230i
\(244\) 0 0
\(245\) −2040.78 + 980.404i −0.532165 + 0.255656i
\(246\) 0 0
\(247\) 2208.04i 0.568802i
\(248\) 0 0
\(249\) −326.038 −0.0829791
\(250\) 0 0
\(251\) −1651.90 −0.415405 −0.207703 0.978192i \(-0.566599\pi\)
−0.207703 + 0.978192i \(0.566599\pi\)
\(252\) 0 0
\(253\) 2578.44i 0.640732i
\(254\) 0 0
\(255\) 171.191 82.2413i 0.0420408 0.0201967i
\(256\) 0 0
\(257\) 556.334i 0.135032i 0.997718 + 0.0675159i \(0.0215073\pi\)
−0.997718 + 0.0675159i \(0.978493\pi\)
\(258\) 0 0
\(259\) −1201.41 −0.288232
\(260\) 0 0
\(261\) 50.1330 0.0118895
\(262\) 0 0
\(263\) 4709.05i 1.10408i 0.833818 + 0.552039i \(0.186150\pi\)
−0.833818 + 0.552039i \(0.813850\pi\)
\(264\) 0 0
\(265\) −2365.32 4923.59i −0.548305 1.14133i
\(266\) 0 0
\(267\) 355.444i 0.0814711i
\(268\) 0 0
\(269\) 1863.29 0.422330 0.211165 0.977450i \(-0.432274\pi\)
0.211165 + 0.977450i \(0.432274\pi\)
\(270\) 0 0
\(271\) −2272.69 −0.509433 −0.254717 0.967016i \(-0.581982\pi\)
−0.254717 + 0.967016i \(0.581982\pi\)
\(272\) 0 0
\(273\) 358.981i 0.0795843i
\(274\) 0 0
\(275\) −3210.77 + 4010.54i −0.704060 + 0.879436i
\(276\) 0 0
\(277\) 1528.11i 0.331462i −0.986171 0.165731i \(-0.947002\pi\)
0.986171 0.165731i \(-0.0529983\pi\)
\(278\) 0 0
\(279\) −2658.98 −0.570570
\(280\) 0 0
\(281\) 3981.09 0.845167 0.422584 0.906324i \(-0.361123\pi\)
0.422584 + 0.906324i \(0.361123\pi\)
\(282\) 0 0
\(283\) 2191.09i 0.460237i −0.973163 0.230118i \(-0.926089\pi\)
0.973163 0.230118i \(-0.0739113\pi\)
\(284\) 0 0
\(285\) 104.964 + 218.490i 0.0218160 + 0.0454114i
\(286\) 0 0
\(287\) 1834.68i 0.377345i
\(288\) 0 0
\(289\) 3942.64 0.802491
\(290\) 0 0
\(291\) −448.549 −0.0903587
\(292\) 0 0
\(293\) 5987.75i 1.19388i −0.802284 0.596942i \(-0.796382\pi\)
0.802284 0.596942i \(-0.203618\pi\)
\(294\) 0 0
\(295\) −7018.21 + 3371.60i −1.38514 + 0.665430i
\(296\) 0 0
\(297\) 1203.61i 0.235153i
\(298\) 0 0
\(299\) −3484.23 −0.673907
\(300\) 0 0
\(301\) −4136.27 −0.792063
\(302\) 0 0
\(303\) 850.601i 0.161273i
\(304\) 0 0
\(305\) −1631.18 + 783.632i −0.306234 + 0.147117i
\(306\) 0 0
\(307\) 1592.84i 0.296117i 0.988979 + 0.148059i \(0.0473025\pi\)
−0.988979 + 0.148059i \(0.952698\pi\)
\(308\) 0 0
\(309\) −682.262 −0.125607
\(310\) 0 0
\(311\) 3115.01 0.567961 0.283981 0.958830i \(-0.408345\pi\)
0.283981 + 0.958830i \(0.408345\pi\)
\(312\) 0 0
\(313\) 7516.74i 1.35742i 0.734408 + 0.678708i \(0.237460\pi\)
−0.734408 + 0.678708i \(0.762540\pi\)
\(314\) 0 0
\(315\) 1532.35 + 3189.70i 0.274090 + 0.570537i
\(316\) 0 0
\(317\) 6955.62i 1.23239i −0.787595 0.616194i \(-0.788674\pi\)
0.787595 0.616194i \(-0.211326\pi\)
\(318\) 0 0
\(319\) −77.1627 −0.0135432
\(320\) 0 0
\(321\) 193.139 0.0335824
\(322\) 0 0
\(323\) 1238.47i 0.213345i
\(324\) 0 0
\(325\) 5419.42 + 4338.69i 0.924970 + 0.740514i
\(326\) 0 0
\(327\) 280.272i 0.0473978i
\(328\) 0 0
\(329\) −7169.98 −1.20150
\(330\) 0 0
\(331\) −1132.02 −0.187980 −0.0939898 0.995573i \(-0.529962\pi\)
−0.0939898 + 0.995573i \(0.529962\pi\)
\(332\) 0 0
\(333\) 2706.53i 0.445397i
\(334\) 0 0
\(335\) 4782.58 + 9955.28i 0.780001 + 1.62363i
\(336\) 0 0
\(337\) 3993.78i 0.645564i 0.946473 + 0.322782i \(0.104618\pi\)
−0.946473 + 0.322782i \(0.895382\pi\)
\(338\) 0 0
\(339\) −289.298 −0.0463496
\(340\) 0 0
\(341\) 4092.60 0.649932
\(342\) 0 0
\(343\) 6465.92i 1.01786i
\(344\) 0 0
\(345\) −344.772 + 165.631i −0.0538027 + 0.0258472i
\(346\) 0 0
\(347\) 9909.90i 1.53312i 0.642175 + 0.766558i \(0.278032\pi\)
−0.642175 + 0.766558i \(0.721968\pi\)
\(348\) 0 0
\(349\) 3602.90 0.552604 0.276302 0.961071i \(-0.410891\pi\)
0.276302 + 0.961071i \(0.410891\pi\)
\(350\) 0 0
\(351\) 1626.43 0.247328
\(352\) 0 0
\(353\) 11700.1i 1.76412i 0.471136 + 0.882061i \(0.343844\pi\)
−0.471136 + 0.882061i \(0.656156\pi\)
\(354\) 0 0
\(355\) −7745.04 + 3720.77i −1.15793 + 0.556276i
\(356\) 0 0
\(357\) 201.349i 0.0298503i
\(358\) 0 0
\(359\) 1461.06 0.214796 0.107398 0.994216i \(-0.465748\pi\)
0.107398 + 0.994216i \(0.465748\pi\)
\(360\) 0 0
\(361\) −5278.35 −0.769550
\(362\) 0 0
\(363\) 195.324i 0.0282419i
\(364\) 0 0
\(365\) 2297.69 + 4782.81i 0.329498 + 0.685873i
\(366\) 0 0
\(367\) 2290.70i 0.325814i 0.986641 + 0.162907i \(0.0520870\pi\)
−0.986641 + 0.162907i \(0.947913\pi\)
\(368\) 0 0
\(369\) −4133.16 −0.583100
\(370\) 0 0
\(371\) 5790.97 0.810383
\(372\) 0 0
\(373\) 12561.0i 1.74366i −0.489809 0.871830i \(-0.662933\pi\)
0.489809 0.871830i \(-0.337067\pi\)
\(374\) 0 0
\(375\) 742.514 + 171.698i 0.102249 + 0.0236439i
\(376\) 0 0
\(377\) 104.270i 0.0142444i
\(378\) 0 0
\(379\) 5349.81 0.725069 0.362535 0.931970i \(-0.381911\pi\)
0.362535 + 0.931970i \(0.381911\pi\)
\(380\) 0 0
\(381\) −138.452 −0.0186172
\(382\) 0 0
\(383\) 6001.35i 0.800665i −0.916370 0.400332i \(-0.868895\pi\)
0.916370 0.400332i \(-0.131105\pi\)
\(384\) 0 0
\(385\) −2358.54 4909.46i −0.312213 0.649894i
\(386\) 0 0
\(387\) 9318.17i 1.22395i
\(388\) 0 0
\(389\) 11671.8 1.52130 0.760649 0.649163i \(-0.224881\pi\)
0.760649 + 0.649163i \(0.224881\pi\)
\(390\) 0 0
\(391\) 1954.28 0.252767
\(392\) 0 0
\(393\) 148.280i 0.0190324i
\(394\) 0 0
\(395\) −89.1818 + 42.8436i −0.0113601 + 0.00545745i
\(396\) 0 0
\(397\) 7746.29i 0.979282i 0.871924 + 0.489641i \(0.162872\pi\)
−0.871924 + 0.489641i \(0.837128\pi\)
\(398\) 0 0
\(399\) −256.982 −0.0322435
\(400\) 0 0
\(401\) 1756.61 0.218755 0.109377 0.994000i \(-0.465114\pi\)
0.109377 + 0.994000i \(0.465114\pi\)
\(402\) 0 0
\(403\) 5530.30i 0.683583i
\(404\) 0 0
\(405\) −7104.81 + 3413.20i −0.871706 + 0.418774i
\(406\) 0 0
\(407\) 4165.79i 0.507348i
\(408\) 0 0
\(409\) 12636.3 1.52769 0.763846 0.645398i \(-0.223308\pi\)
0.763846 + 0.645398i \(0.223308\pi\)
\(410\) 0 0
\(411\) −870.471 −0.104470
\(412\) 0 0
\(413\) 8254.60i 0.983492i
\(414\) 0 0
\(415\) 2894.60 + 6025.32i 0.342387 + 0.712702i
\(416\) 0 0
\(417\) 1361.82i 0.159925i
\(418\) 0 0
\(419\) 4006.19 0.467101 0.233550 0.972345i \(-0.424966\pi\)
0.233550 + 0.972345i \(0.424966\pi\)
\(420\) 0 0
\(421\) −10349.4 −1.19810 −0.599048 0.800713i \(-0.704454\pi\)
−0.599048 + 0.800713i \(0.704454\pi\)
\(422\) 0 0
\(423\) 16152.5i 1.85665i
\(424\) 0 0
\(425\) −3039.71 2433.53i −0.346935 0.277750i
\(426\) 0 0
\(427\) 1918.55i 0.217436i
\(428\) 0 0
\(429\) −1244.74 −0.140085
\(430\) 0 0
\(431\) −3700.85 −0.413605 −0.206802 0.978383i \(-0.566306\pi\)
−0.206802 + 0.978383i \(0.566306\pi\)
\(432\) 0 0
\(433\) 9058.98i 1.00542i −0.864455 0.502710i \(-0.832336\pi\)
0.864455 0.502710i \(-0.167664\pi\)
\(434\) 0 0
\(435\) 4.95670 + 10.3177i 0.000546334 + 0.00113723i
\(436\) 0 0
\(437\) 2494.23i 0.273033i
\(438\) 0 0
\(439\) −10811.6 −1.17542 −0.587711 0.809071i \(-0.699971\pi\)
−0.587711 + 0.809071i \(0.699971\pi\)
\(440\) 0 0
\(441\) 5407.38 0.583887
\(442\) 0 0
\(443\) 11501.8i 1.23356i −0.787134 0.616782i \(-0.788436\pi\)
0.787134 0.616782i \(-0.211564\pi\)
\(444\) 0 0
\(445\) −6568.75 + 3155.67i −0.699750 + 0.336164i
\(446\) 0 0
\(447\) 89.3321i 0.00945249i
\(448\) 0 0
\(449\) −266.343 −0.0279944 −0.0139972 0.999902i \(-0.504456\pi\)
−0.0139972 + 0.999902i \(0.504456\pi\)
\(450\) 0 0
\(451\) 6361.61 0.664205
\(452\) 0 0
\(453\) 1351.59i 0.140183i
\(454\) 0 0
\(455\) −6634.12 + 3187.08i −0.683544 + 0.328379i
\(456\) 0 0
\(457\) 17225.0i 1.76313i −0.472059 0.881567i \(-0.656489\pi\)
0.472059 0.881567i \(-0.343511\pi\)
\(458\) 0 0
\(459\) −912.249 −0.0927672
\(460\) 0 0
\(461\) 5506.51 0.556321 0.278160 0.960535i \(-0.410275\pi\)
0.278160 + 0.960535i \(0.410275\pi\)
\(462\) 0 0
\(463\) 10758.9i 1.07993i −0.841687 0.539965i \(-0.818437\pi\)
0.841687 0.539965i \(-0.181563\pi\)
\(464\) 0 0
\(465\) −262.896 547.236i −0.0262183 0.0545752i
\(466\) 0 0
\(467\) 13714.8i 1.35899i 0.733681 + 0.679494i \(0.237801\pi\)
−0.733681 + 0.679494i \(0.762199\pi\)
\(468\) 0 0
\(469\) −11709.1 −1.15283
\(470\) 0 0
\(471\) 874.005 0.0855033
\(472\) 0 0
\(473\) 14342.2i 1.39419i
\(474\) 0 0
\(475\) 3105.91 3879.57i 0.300019 0.374751i
\(476\) 0 0
\(477\) 13045.9i 1.25226i
\(478\) 0 0
\(479\) 10741.8 1.02465 0.512323 0.858793i \(-0.328785\pi\)
0.512323 + 0.858793i \(0.328785\pi\)
\(480\) 0 0
\(481\) 5629.21 0.533617
\(482\) 0 0
\(483\) 405.511i 0.0382016i
\(484\) 0 0
\(485\) 3982.27 + 8289.37i 0.372836 + 0.776085i
\(486\) 0 0
\(487\) 8440.40i 0.785361i 0.919675 + 0.392681i \(0.128452\pi\)
−0.919675 + 0.392681i \(0.871548\pi\)
\(488\) 0 0
\(489\) −1506.54 −0.139321
\(490\) 0 0
\(491\) −20132.1 −1.85041 −0.925204 0.379471i \(-0.876106\pi\)
−0.925204 + 0.379471i \(0.876106\pi\)
\(492\) 0 0
\(493\) 58.4839i 0.00534276i
\(494\) 0 0
\(495\) 11060.0 5313.30i 1.00426 0.482455i
\(496\) 0 0
\(497\) 9109.47i 0.822165i
\(498\) 0 0
\(499\) 4481.50 0.402043 0.201021 0.979587i \(-0.435574\pi\)
0.201021 + 0.979587i \(0.435574\pi\)
\(500\) 0 0
\(501\) 733.389 0.0654000
\(502\) 0 0
\(503\) 6946.42i 0.615757i −0.951426 0.307878i \(-0.900381\pi\)
0.951426 0.307878i \(-0.0996189\pi\)
\(504\) 0 0
\(505\) 15719.5 7551.74i 1.38516 0.665442i
\(506\) 0 0
\(507\) 483.937i 0.0423913i
\(508\) 0 0
\(509\) −8349.21 −0.727058 −0.363529 0.931583i \(-0.618428\pi\)
−0.363529 + 0.931583i \(0.618428\pi\)
\(510\) 0 0
\(511\) −5625.39 −0.486991
\(512\) 0 0
\(513\) 1164.30i 0.100205i
\(514\) 0 0
\(515\) 6057.20 + 12608.5i 0.518276 + 1.07883i
\(516\) 0 0
\(517\) 24861.3i 2.11489i
\(518\) 0 0
\(519\) −1645.66 −0.139184
\(520\) 0 0
\(521\) −23197.5 −1.95067 −0.975337 0.220722i \(-0.929159\pi\)
−0.975337 + 0.220722i \(0.929159\pi\)
\(522\) 0 0
\(523\) 18221.1i 1.52343i −0.647914 0.761713i \(-0.724359\pi\)
0.647914 0.761713i \(-0.275641\pi\)
\(524\) 0 0
\(525\) −504.956 + 630.737i −0.0419773 + 0.0524336i
\(526\) 0 0
\(527\) 3101.90i 0.256396i
\(528\) 0 0
\(529\) 8231.16 0.676515
\(530\) 0 0
\(531\) 18595.9 1.51976
\(532\) 0 0
\(533\) 8596.40i 0.698596i
\(534\) 0 0
\(535\) −1714.71 3569.29i −0.138567 0.288437i
\(536\) 0 0
\(537\) 1296.44i 0.104182i
\(538\) 0 0
\(539\) −8322.83 −0.665101
\(540\) 0 0
\(541\) 1421.71 0.112984 0.0564919 0.998403i \(-0.482008\pi\)
0.0564919 + 0.998403i \(0.482008\pi\)
\(542\) 0 0
\(543\) 1836.21i 0.145118i
\(544\) 0 0
\(545\) 5179.55 2488.29i 0.407096 0.195572i
\(546\) 0 0
\(547\) 1467.65i 0.114720i 0.998354 + 0.0573601i \(0.0182683\pi\)
−0.998354 + 0.0573601i \(0.981732\pi\)
\(548\) 0 0
\(549\) 4322.09 0.335997
\(550\) 0 0
\(551\) 74.6428 0.00577113
\(552\) 0 0
\(553\) 104.893i 0.00806600i
\(554\) 0 0
\(555\) 557.023 267.598i 0.0426024 0.0204665i
\(556\) 0 0
\(557\) 4430.55i 0.337035i −0.985699 0.168518i \(-0.946102\pi\)
0.985699 0.168518i \(-0.0538980\pi\)
\(558\) 0 0
\(559\) 19380.5 1.46638
\(560\) 0 0
\(561\) 698.162 0.0525426
\(562\) 0 0
\(563\) 16432.8i 1.23012i −0.788478 0.615062i \(-0.789131\pi\)
0.788478 0.615062i \(-0.210869\pi\)
\(564\) 0 0
\(565\) 2568.42 + 5346.35i 0.191247 + 0.398093i
\(566\) 0 0
\(567\) 8356.46i 0.618939i
\(568\) 0 0
\(569\) 13114.1 0.966205 0.483103 0.875564i \(-0.339510\pi\)
0.483103 + 0.875564i \(0.339510\pi\)
\(570\) 0 0
\(571\) −23508.3 −1.72293 −0.861463 0.507821i \(-0.830451\pi\)
−0.861463 + 0.507821i \(0.830451\pi\)
\(572\) 0 0
\(573\) 2723.31i 0.198548i
\(574\) 0 0
\(575\) 6121.86 + 4901.05i 0.443999 + 0.355457i
\(576\) 0 0
\(577\) 16108.6i 1.16223i −0.813820 0.581117i \(-0.802616\pi\)
0.813820 0.581117i \(-0.197384\pi\)
\(578\) 0 0
\(579\) 2791.60 0.200371
\(580\) 0 0
\(581\) −7086.79 −0.506041
\(582\) 0 0
\(583\) 20079.7i 1.42644i
\(584\) 0 0
\(585\) −7179.83 14945.3i −0.507435 1.05626i
\(586\) 0 0
\(587\) 13302.5i 0.935356i −0.883899 0.467678i \(-0.845091\pi\)
0.883899 0.467678i \(-0.154909\pi\)
\(588\) 0 0
\(589\) −3958.95 −0.276953
\(590\) 0 0
\(591\) −829.969 −0.0577671
\(592\) 0 0
\(593\) 23711.4i 1.64201i 0.570923 + 0.821003i \(0.306585\pi\)
−0.570923 + 0.821003i \(0.693415\pi\)
\(594\) 0 0
\(595\) 3721.02 1787.61i 0.256382 0.123167i
\(596\) 0 0
\(597\) 2721.43i 0.186567i
\(598\) 0 0
\(599\) −16146.5 −1.10138 −0.550691 0.834709i \(-0.685636\pi\)
−0.550691 + 0.834709i \(0.685636\pi\)
\(600\) 0 0
\(601\) 19397.1 1.31652 0.658258 0.752793i \(-0.271294\pi\)
0.658258 + 0.752793i \(0.271294\pi\)
\(602\) 0 0
\(603\) 26378.2i 1.78143i
\(604\) 0 0
\(605\) −3609.66 + 1734.11i −0.242568 + 0.116531i
\(606\) 0 0
\(607\) 2169.94i 0.145099i −0.997365 0.0725494i \(-0.976886\pi\)
0.997365 0.0725494i \(-0.0231135\pi\)
\(608\) 0 0
\(609\) −12.1354 −0.000807471
\(610\) 0 0
\(611\) 33594.9 2.22439
\(612\) 0 0
\(613\) 9626.49i 0.634274i 0.948380 + 0.317137i \(0.102722\pi\)
−0.948380 + 0.317137i \(0.897278\pi\)
\(614\) 0 0
\(615\) −408.650 850.634i −0.0267941 0.0557738i
\(616\) 0 0
\(617\) 10198.8i 0.665462i −0.943022 0.332731i \(-0.892030\pi\)
0.943022 0.332731i \(-0.107970\pi\)
\(618\) 0 0
\(619\) 14305.6 0.928905 0.464452 0.885598i \(-0.346251\pi\)
0.464452 + 0.885598i \(0.346251\pi\)
\(620\) 0 0
\(621\) 1837.24 0.118721
\(622\) 0 0
\(623\) 7725.96i 0.496844i
\(624\) 0 0
\(625\) −3419.07 15246.3i −0.218821 0.975765i
\(626\) 0 0
\(627\) 891.061i 0.0567553i
\(628\) 0 0
\(629\) −3157.38 −0.200148
\(630\) 0 0
\(631\) 25116.4 1.58457 0.792287 0.610148i \(-0.208890\pi\)
0.792287 + 0.610148i \(0.208890\pi\)
\(632\) 0 0
\(633\) 1269.68i 0.0797240i
\(634\) 0 0
\(635\) 1229.20 + 2558.66i 0.0768177 + 0.159901i
\(636\) 0 0
\(637\) 11246.6i 0.699539i
\(638\) 0 0
\(639\) 20521.8 1.27047
\(640\) 0 0
\(641\) 7003.81 0.431566 0.215783 0.976441i \(-0.430770\pi\)
0.215783 + 0.976441i \(0.430770\pi\)
\(642\) 0 0
\(643\) 17474.1i 1.07171i −0.844310 0.535856i \(-0.819989\pi\)
0.844310 0.535856i \(-0.180011\pi\)
\(644\) 0 0
\(645\) 1917.74 921.297i 0.117071 0.0562419i
\(646\) 0 0
\(647\) 19277.1i 1.17134i −0.810548 0.585672i \(-0.800831\pi\)
0.810548 0.585672i \(-0.199169\pi\)
\(648\) 0 0
\(649\) −28622.1 −1.73115
\(650\) 0 0
\(651\) 643.642 0.0387501
\(652\) 0 0
\(653\) 8622.09i 0.516705i −0.966051 0.258353i \(-0.916820\pi\)
0.966051 0.258353i \(-0.0831797\pi\)
\(654\) 0 0
\(655\) 2740.27 1316.45i 0.163468 0.0785310i
\(656\) 0 0
\(657\) 12672.8i 0.752533i
\(658\) 0 0
\(659\) −12333.0 −0.729022 −0.364511 0.931199i \(-0.618764\pi\)
−0.364511 + 0.931199i \(0.618764\pi\)
\(660\) 0 0
\(661\) 50.0662 0.00294606 0.00147303 0.999999i \(-0.499531\pi\)
0.00147303 + 0.999999i \(0.499531\pi\)
\(662\) 0 0
\(663\) 943.422i 0.0552631i
\(664\) 0 0
\(665\) 2281.51 + 4749.13i 0.133043 + 0.276937i
\(666\) 0 0
\(667\) 117.784i 0.00683753i
\(668\) 0 0
\(669\) −1019.03 −0.0588909
\(670\) 0 0
\(671\) −6652.40 −0.382732
\(672\) 0 0
\(673\) 4922.49i 0.281944i 0.990014 + 0.140972i \(0.0450227\pi\)
−0.990014 + 0.140972i \(0.954977\pi\)
\(674\) 0 0
\(675\) −2857.67 2287.79i −0.162951 0.130455i
\(676\) 0 0
\(677\) 20087.4i 1.14036i −0.821521 0.570178i \(-0.806874\pi\)
0.821521 0.570178i \(-0.193126\pi\)
\(678\) 0 0
\(679\) −9749.70 −0.551044
\(680\) 0 0
\(681\) 2393.03 0.134657
\(682\) 0 0
\(683\) 15728.0i 0.881133i 0.897720 + 0.440567i \(0.145222\pi\)
−0.897720 + 0.440567i \(0.854778\pi\)
\(684\) 0 0
\(685\) 7728.15 + 16086.7i 0.431062 + 0.897285i
\(686\) 0 0
\(687\) 1004.38i 0.0557779i
\(688\) 0 0
\(689\) −27133.6 −1.50030
\(690\) 0 0
\(691\) 14146.4 0.778808 0.389404 0.921067i \(-0.372681\pi\)
0.389404 + 0.921067i \(0.372681\pi\)
\(692\) 0 0
\(693\) 13008.4i 0.713058i
\(694\) 0 0
\(695\) −25167.0 + 12090.4i −1.37358 + 0.659878i
\(696\) 0 0
\(697\) 4821.65i 0.262027i
\(698\) 0 0
\(699\) 3142.72 0.170055
\(700\) 0 0
\(701\) −982.768 −0.0529510 −0.0264755 0.999649i \(-0.508428\pi\)
−0.0264755 + 0.999649i \(0.508428\pi\)
\(702\) 0 0
\(703\) 4029.75i 0.216195i
\(704\) 0 0
\(705\) 3324.29 1597.01i 0.177589 0.0853149i
\(706\) 0 0
\(707\) 18488.8i 0.983509i
\(708\) 0 0
\(709\) −9464.68 −0.501345 −0.250673 0.968072i \(-0.580652\pi\)
−0.250673 + 0.968072i \(0.580652\pi\)
\(710\) 0 0
\(711\) 236.302 0.0124642
\(712\) 0 0
\(713\) 6247.12i 0.328130i
\(714\) 0 0
\(715\) 11050.9 + 23003.2i 0.578015 + 1.20318i
\(716\) 0 0
\(717\) 2915.47i 0.151855i
\(718\) 0 0
\(719\) 18281.5 0.948239 0.474120 0.880460i \(-0.342766\pi\)
0.474120 + 0.880460i \(0.342766\pi\)
\(720\) 0 0
\(721\) −14829.7 −0.766002
\(722\) 0 0
\(723\) 2655.21i 0.136581i
\(724\) 0 0
\(725\) 146.669 183.204i 0.00751333 0.00938485i
\(726\) 0 0
\(727\) 8275.38i 0.422169i −0.977468 0.211084i \(-0.932301\pi\)
0.977468 0.211084i \(-0.0676995\pi\)
\(728\) 0 0
\(729\) 18394.2 0.934522
\(730\) 0 0
\(731\) −10870.4 −0.550006
\(732\) 0 0
\(733\) 12103.8i 0.609912i −0.952366 0.304956i \(-0.901358\pi\)
0.952366 0.304956i \(-0.0986418\pi\)
\(734\) 0 0
\(735\) 534.633 + 1112.88i 0.0268303 + 0.0558490i
\(736\) 0 0
\(737\) 40600.3i 2.02921i
\(738\) 0 0
\(739\) −25912.5 −1.28986 −0.644929 0.764242i \(-0.723113\pi\)
−0.644929 + 0.764242i \(0.723113\pi\)
\(740\) 0 0
\(741\) 1204.09 0.0596939
\(742\) 0 0
\(743\) 18108.6i 0.894133i 0.894501 + 0.447067i \(0.147531\pi\)
−0.894501 + 0.447067i \(0.852469\pi\)
\(744\) 0 0
\(745\) −1650.90 + 793.102i −0.0811868 + 0.0390027i
\(746\) 0 0
\(747\) 15965.1i 0.781970i
\(748\) 0 0
\(749\) 4198.09 0.204799
\(750\) 0 0
\(751\) −16532.6 −0.803306 −0.401653 0.915792i \(-0.631564\pi\)
−0.401653 + 0.915792i \(0.631564\pi\)
\(752\) 0 0
\(753\) 900.811i 0.0435954i
\(754\) 0 0
\(755\) −24977.9 + 11999.6i −1.20402 + 0.578422i
\(756\) 0 0
\(757\) 7668.83i 0.368201i 0.982907 + 0.184101i \(0.0589372\pi\)
−0.982907 + 0.184101i \(0.941063\pi\)
\(758\) 0 0
\(759\) −1406.07 −0.0672427
\(760\) 0 0
\(761\) 23891.6 1.13807 0.569035 0.822313i \(-0.307317\pi\)
0.569035 + 0.822313i \(0.307317\pi\)
\(762\) 0 0
\(763\) 6092.02i 0.289051i
\(764\) 0 0
\(765\) 4027.11 + 8382.70i 0.190327 + 0.396179i
\(766\) 0 0
\(767\) 38676.9i 1.82078i
\(768\) 0 0
\(769\) 31394.7 1.47220 0.736099 0.676873i \(-0.236666\pi\)
0.736099 + 0.676873i \(0.236666\pi\)
\(770\) 0 0
\(771\) 303.380 0.0141712
\(772\) 0 0
\(773\) 34865.4i 1.62228i −0.584853 0.811140i \(-0.698848\pi\)
0.584853 0.811140i \(-0.301152\pi\)
\(774\) 0 0
\(775\) −7779.14 + 9716.86i −0.360561 + 0.450374i
\(776\) 0 0
\(777\) 655.153i 0.0302490i
\(778\) 0 0
\(779\) −6153.86 −0.283036
\(780\) 0 0
\(781\) −31586.3 −1.44718
\(782\) 0 0
\(783\) 54.9814i 0.00250942i
\(784\) 0 0
\(785\) −7759.52 16152.0i −0.352802 0.734381i
\(786\) 0 0
\(787\) 14825.6i 0.671505i −0.941950 0.335753i \(-0.891009\pi\)
0.941950 0.335753i \(-0.108991\pi\)
\(788\) 0 0
\(789\) 2567.94 0.115869
\(790\) 0 0
\(791\) −6288.21 −0.282658
\(792\) 0 0
\(793\) 8989.34i 0.402549i
\(794\) 0 0
\(795\) −2684.93 + 1289.86i −0.119779 + 0.0575428i
\(796\) 0 0
\(797\) 16971.4i 0.754277i −0.926157 0.377139i \(-0.876908\pi\)
0.926157 0.377139i \(-0.123092\pi\)
\(798\) 0 0
\(799\) −18843.1 −0.834319
\(800\) 0 0
\(801\) 17405.0 0.767759
\(802\) 0 0
\(803\) 19505.5i 0.857205i
\(804\) 0 0
\(805\) −7494.01 + 3600.17i −0.328111 + 0.157627i
\(806\) 0 0
\(807\) 1016.09i 0.0443222i
\(808\) 0 0
\(809\) −17505.4 −0.760764 −0.380382 0.924829i \(-0.624208\pi\)
−0.380382 + 0.924829i \(0.624208\pi\)
\(810\) 0 0
\(811\) −21749.0 −0.941690 −0.470845 0.882216i \(-0.656051\pi\)
−0.470845 + 0.882216i \(0.656051\pi\)
\(812\) 0 0
\(813\) 1239.34i 0.0534633i
\(814\) 0 0
\(815\) 13375.3 + 27841.5i 0.574865 + 1.19662i
\(816\) 0 0
\(817\) 13873.8i 0.594104i
\(818\) 0 0
\(819\) 17578.2 0.749978
\(820\) 0 0
\(821\) 27359.8 1.16305 0.581525 0.813529i \(-0.302456\pi\)
0.581525 + 0.813529i \(0.302456\pi\)
\(822\) 0 0
\(823\) 19012.1i 0.805249i −0.915365 0.402625i \(-0.868098\pi\)
0.915365 0.402625i \(-0.131902\pi\)
\(824\) 0 0
\(825\) 2187.03 + 1750.89i 0.0922939 + 0.0738888i
\(826\) 0 0
\(827\) 20243.8i 0.851204i 0.904911 + 0.425602i \(0.139938\pi\)
−0.904911 + 0.425602i \(0.860062\pi\)
\(828\) 0 0
\(829\) 36927.4 1.54710 0.773548 0.633738i \(-0.218480\pi\)
0.773548 + 0.633738i \(0.218480\pi\)
\(830\) 0 0
\(831\) −833.305 −0.0347859
\(832\) 0 0
\(833\) 6308.12i 0.262381i
\(834\) 0 0
\(835\) −6511.12 13553.3i −0.269852 0.561716i
\(836\) 0 0
\(837\) 2916.13i 0.120426i
\(838\) 0 0
\(839\) −37067.9 −1.52530 −0.762650 0.646812i \(-0.776102\pi\)
−0.762650 + 0.646812i \(0.776102\pi\)
\(840\) 0 0
\(841\) −24385.5 −0.999855
\(842\) 0 0
\(843\) 2170.97i 0.0886975i
\(844\) 0 0
\(845\) 8943.36 4296.45i 0.364096 0.174914i
\(846\) 0 0
\(847\) 4245.57i 0.172231i
\(848\) 0 0
\(849\) −1194.85 −0.0483003
\(850\) 0 0
\(851\) 6358.84 0.256144
\(852\) 0 0
\(853\) 3194.55i 0.128229i 0.997943 + 0.0641145i \(0.0204223\pi\)
−0.997943 + 0.0641145i \(0.979578\pi\)
\(854\) 0 0
\(855\) −10698.8 + 5139.78i −0.427943 + 0.205587i
\(856\) 0 0
\(857\) 32759.1i 1.30575i 0.757466 + 0.652875i \(0.226437\pi\)
−0.757466 + 0.652875i \(0.773563\pi\)
\(858\) 0 0
\(859\) 11475.2 0.455795 0.227898 0.973685i \(-0.426815\pi\)
0.227898 + 0.973685i \(0.426815\pi\)
\(860\) 0 0
\(861\) 1000.49 0.0396011
\(862\) 0 0
\(863\) 16763.0i 0.661204i 0.943770 + 0.330602i \(0.107252\pi\)
−0.943770 + 0.330602i \(0.892748\pi\)
\(864\) 0 0
\(865\) 14610.4 + 30412.6i 0.574299 + 1.19544i
\(866\) 0 0
\(867\) 2150.00i 0.0842188i
\(868\) 0 0
\(869\) −363.707 −0.0141978
\(870\) 0 0
\(871\) 54862.9 2.13428
\(872\) 0 0
\(873\) 21964.1i 0.851513i
\(874\) 0 0
\(875\) 16139.4 + 3732.05i 0.623554 + 0.144190i
\(876\) 0 0
\(877\) 14645.2i 0.563893i −0.959430 0.281947i \(-0.909020\pi\)
0.959430 0.281947i \(-0.0909801\pi\)
\(878\) 0 0
\(879\) −3265.24 −0.125294
\(880\) 0 0
\(881\) −34249.7 −1.30976 −0.654882 0.755731i \(-0.727282\pi\)
−0.654882 + 0.755731i \(0.727282\pi\)
\(882\) 0 0
\(883\) 19054.4i 0.726197i 0.931751 + 0.363099i \(0.118281\pi\)
−0.931751 + 0.363099i \(0.881719\pi\)
\(884\) 0 0
\(885\) 1838.60 + 3827.17i 0.0698347 + 0.145366i
\(886\) 0 0
\(887\) 32595.7i 1.23389i 0.787008 + 0.616943i \(0.211629\pi\)
−0.787008 + 0.616943i \(0.788371\pi\)
\(888\) 0 0
\(889\) −3009.42 −0.113535
\(890\) 0 0
\(891\) −28975.3 −1.08946
\(892\) 0 0
\(893\) 24049.4i 0.901212i
\(894\) 0 0
\(895\) 23958.8 11510.0i 0.894810 0.429873i
\(896\) 0 0
\(897\) 1900.02i 0.0707243i
\(898\) 0 0
\(899\) −186.952 −0.00693571
\(900\) 0 0
\(901\) 15219.0 0.562728
\(902\) 0 0
\(903\) 2255.59i 0.0831244i
\(904\) 0 0
\(905\) −33933.9 + 16302.1i −1.24641 + 0.598784i
\(906\) 0 0
\(907\) 18673.5i 0.683621i 0.939769 + 0.341811i \(0.111040\pi\)
−0.939769 + 0.341811i \(0.888960\pi\)
\(908\) 0 0
\(909\) −41651.4 −1.51979
\(910\) 0 0
\(911\) −45247.4 −1.64557 −0.822785 0.568353i \(-0.807581\pi\)
−0.822785 + 0.568353i \(0.807581\pi\)
\(912\) 0 0
\(913\) 24572.8i 0.890736i
\(914\) 0 0
\(915\) 427.330 + 889.516i 0.0154394 + 0.0321383i
\(916\) 0 0
\(917\) 3223.02i 0.116067i
\(918\) 0 0
\(919\) 37660.2 1.35179 0.675896 0.736997i \(-0.263757\pi\)
0.675896 + 0.736997i \(0.263757\pi\)
\(920\) 0 0
\(921\) 868.605 0.0310766
\(922\) 0 0
\(923\) 42682.4i 1.52211i
\(924\) 0 0
\(925\) −9890.63 7918.26i −0.351570 0.281460i
\(926\) 0 0
\(927\) 33408.3i 1.18368i
\(928\) 0 0
\(929\) −5793.93 −0.204621 −0.102310 0.994753i \(-0.532624\pi\)
−0.102310 + 0.994753i \(0.532624\pi\)
\(930\) 0 0
\(931\) 8051.03 0.283418
\(932\) 0 0
\(933\) 1698.67i 0.0596057i
\(934\) 0 0
\(935\) −6198.37 12902.3i −0.216800 0.451285i
\(936\) 0 0
\(937\) 16162.2i 0.563496i 0.959488 + 0.281748i \(0.0909142\pi\)
−0.959488 + 0.281748i \(0.909086\pi\)
\(938\) 0 0
\(939\) 4099.02 0.142456
\(940\) 0 0
\(941\) 50202.2 1.73915 0.869577 0.493797i \(-0.164391\pi\)
0.869577 + 0.493797i \(0.164391\pi\)
\(942\) 0 0
\(943\) 9710.63i 0.335336i
\(944\) 0 0
\(945\) 3498.18 1680.55i 0.120419 0.0578500i
\(946\) 0 0
\(947\) 13964.1i 0.479167i 0.970876 + 0.239583i \(0.0770108\pi\)
−0.970876 + 0.239583i \(0.922989\pi\)
\(948\) 0 0
\(949\) 26357.7 0.901589
\(950\) 0 0
\(951\) −3793.04 −0.129335
\(952\) 0 0
\(953\) 46121.1i 1.56769i 0.620956 + 0.783846i \(0.286745\pi\)
−0.620956 + 0.783846i \(0.713255\pi\)
\(954\) 0 0
\(955\) 50328.0 24177.9i 1.70531 0.819244i
\(956\) 0 0
\(957\) 42.0783i 0.00142132i
\(958\) 0 0
\(959\) −18920.7 −0.637101
\(960\) 0 0
\(961\) −19875.3 −0.667159
\(962\) 0 0
\(963\) 9457.42i 0.316471i
\(964\) 0 0
\(965\) −24784.2 51590.0i −0.826768 1.72098i
\(966\) 0 0
\(967\) 44011.4i 1.46361i 0.681514 + 0.731805i \(0.261322\pi\)
−0.681514 + 0.731805i \(0.738678\pi\)
\(968\) 0 0
\(969\) −675.362 −0.0223898
\(970\) 0 0
\(971\) −31284.0 −1.03393 −0.516967 0.856005i \(-0.672939\pi\)
−0.516967 + 0.856005i \(0.672939\pi\)
\(972\) 0 0
\(973\) 29600.6i 0.975286i
\(974\) 0 0
\(975\) 2365.97 2955.32i 0.0777146 0.0970727i
\(976\) 0 0
\(977\) 13753.6i 0.450377i 0.974315 + 0.225188i \(0.0722997\pi\)
−0.974315 + 0.225188i \(0.927700\pi\)
\(978\) 0 0
\(979\) −26789.1 −0.874548
\(980\) 0 0
\(981\) −13724.1 −0.446663
\(982\) 0 0
\(983\) 45210.8i 1.46694i 0.679722 + 0.733470i \(0.262100\pi\)
−0.679722 + 0.733470i \(0.737900\pi\)
\(984\) 0 0
\(985\) 7368.56 + 15338.2i 0.238357 + 0.496157i
\(986\) 0 0
\(987\) 3909.93i 0.126094i
\(988\) 0 0
\(989\) 21892.5 0.703884
\(990\) 0 0
\(991\) −58560.9 −1.87714 −0.938572 0.345084i \(-0.887850\pi\)
−0.938572 + 0.345084i \(0.887850\pi\)
\(992\) 0 0
\(993\) 617.311i 0.0197279i
\(994\) 0 0
\(995\) −50293.1 + 24161.2i −1.60241 + 0.769810i
\(996\) 0 0
\(997\) 42394.2i 1.34668i −0.739334 0.673339i \(-0.764859\pi\)
0.739334 0.673339i \(-0.235141\pi\)
\(998\) 0 0
\(999\) −2968.29 −0.0940064
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.4.c.a.129.9 18
4.3 odd 2 640.4.c.b.129.10 yes 18
5.4 even 2 inner 640.4.c.a.129.10 yes 18
8.3 odd 2 640.4.c.c.129.9 yes 18
8.5 even 2 640.4.c.d.129.10 yes 18
20.19 odd 2 640.4.c.b.129.9 yes 18
40.19 odd 2 640.4.c.c.129.10 yes 18
40.29 even 2 640.4.c.d.129.9 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.4.c.a.129.9 18 1.1 even 1 trivial
640.4.c.a.129.10 yes 18 5.4 even 2 inner
640.4.c.b.129.9 yes 18 20.19 odd 2
640.4.c.b.129.10 yes 18 4.3 odd 2
640.4.c.c.129.9 yes 18 8.3 odd 2
640.4.c.c.129.10 yes 18 40.19 odd 2
640.4.c.d.129.9 yes 18 40.29 even 2
640.4.c.d.129.10 yes 18 8.5 even 2