Properties

Label 644.2.bc.a.493.10
Level $644$
Weight $2$
Character 644.493
Analytic conductor $5.142$
Analytic rank $0$
Dimension $320$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [644,2,Mod(5,644)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(644, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([0, 55, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("644.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 644 = 2^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 644.bc (of order \(66\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.14236589017\)
Analytic rank: \(0\)
Dimension: \(320\)
Relative dimension: \(16\) over \(\Q(\zeta_{66})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 493.10
Character \(\chi\) \(=\) 644.493
Dual form 644.2.bc.a.145.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.274085 + 0.531650i) q^{3} +(3.06381 - 0.292558i) q^{5} +(1.85568 + 1.88586i) q^{7} +(1.53264 - 2.15229i) q^{9} +(2.28661 - 0.791402i) q^{11} +(-0.939799 - 3.20066i) q^{13} +(0.995282 + 1.54869i) q^{15} +(-2.74331 - 1.09826i) q^{17} +(-4.33377 + 1.73498i) q^{19} +(-0.494006 + 1.50346i) q^{21} +(-4.66078 + 1.13011i) q^{23} +(4.39168 - 0.846427i) q^{25} +(3.34050 + 0.480292i) q^{27} +(0.466657 + 3.24567i) q^{29} +(8.12585 - 0.387082i) q^{31} +(1.04747 + 0.998764i) q^{33} +(6.23716 + 5.23502i) q^{35} +(-1.05222 - 0.749284i) q^{37} +(1.44405 - 1.37690i) q^{39} +(-7.14425 - 3.26267i) q^{41} +(-0.939375 + 1.46170i) q^{43} +(4.06605 - 7.04260i) q^{45} +(-1.61823 + 0.934288i) q^{47} +(-0.112935 + 6.99909i) q^{49} +(-0.168012 - 1.75950i) q^{51} +(-1.44514 - 1.51562i) q^{53} +(6.77419 - 3.09367i) q^{55} +(-2.11022 - 1.82852i) q^{57} +(2.93607 + 0.712284i) q^{59} +(4.86207 + 2.50657i) q^{61} +(6.90301 - 1.10361i) q^{63} +(-3.81574 - 9.53127i) q^{65} +(0.395822 + 2.05372i) q^{67} +(-1.87827 - 2.16816i) q^{69} +(7.43408 + 8.57939i) q^{71} +(-7.25130 + 9.22078i) q^{73} +(1.65370 + 2.10285i) q^{75} +(5.73567 + 2.84363i) q^{77} +(-6.39301 + 6.70479i) q^{79} +(-1.93233 - 5.58309i) q^{81} +(-1.95415 - 4.27900i) q^{83} +(-8.72628 - 2.56227i) q^{85} +(-1.59766 + 1.13769i) q^{87} +(-0.209028 + 4.38803i) q^{89} +(4.29204 - 7.71172i) q^{91} +(2.43296 + 4.21402i) q^{93} +(-12.7703 + 6.58353i) q^{95} +(4.22277 - 9.24658i) q^{97} +(1.80122 - 6.13438i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 320 q - 20 q^{9} + 66 q^{21} + 21 q^{23} - 8 q^{25} - 12 q^{29} - 6 q^{31} - 38 q^{35} + 44 q^{37} - 20 q^{39} - 88 q^{43} - 42 q^{47} - 74 q^{49} + 44 q^{51} - 88 q^{57} + 55 q^{63} + 77 q^{65} - 32 q^{71}+ \cdots + 242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/644\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\) \(323\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.274085 + 0.531650i 0.158243 + 0.306949i 0.954607 0.297870i \(-0.0962761\pi\)
−0.796364 + 0.604818i \(0.793246\pi\)
\(4\) 0 0
\(5\) 3.06381 0.292558i 1.37018 0.130836i 0.616123 0.787650i \(-0.288702\pi\)
0.754053 + 0.656814i \(0.228096\pi\)
\(6\) 0 0
\(7\) 1.85568 + 1.88586i 0.701379 + 0.712788i
\(8\) 0 0
\(9\) 1.53264 2.15229i 0.510880 0.717431i
\(10\) 0 0
\(11\) 2.28661 0.791402i 0.689438 0.238617i 0.0401882 0.999192i \(-0.487204\pi\)
0.649250 + 0.760575i \(0.275083\pi\)
\(12\) 0 0
\(13\) −0.939799 3.20066i −0.260653 0.887704i −0.980987 0.194076i \(-0.937829\pi\)
0.720333 0.693628i \(-0.243989\pi\)
\(14\) 0 0
\(15\) 0.995282 + 1.54869i 0.256981 + 0.399870i
\(16\) 0 0
\(17\) −2.74331 1.09826i −0.665351 0.266366i 0.0143048 0.999898i \(-0.495446\pi\)
−0.679656 + 0.733531i \(0.737871\pi\)
\(18\) 0 0
\(19\) −4.33377 + 1.73498i −0.994235 + 0.398032i −0.811006 0.585038i \(-0.801079\pi\)
−0.183230 + 0.983070i \(0.558655\pi\)
\(20\) 0 0
\(21\) −0.494006 + 1.50346i −0.107801 + 0.328081i
\(22\) 0 0
\(23\) −4.66078 + 1.13011i −0.971839 + 0.235645i
\(24\) 0 0
\(25\) 4.39168 0.846427i 0.878336 0.169285i
\(26\) 0 0
\(27\) 3.34050 + 0.480292i 0.642880 + 0.0924323i
\(28\) 0 0
\(29\) 0.466657 + 3.24567i 0.0866560 + 0.602706i 0.986160 + 0.165794i \(0.0530187\pi\)
−0.899504 + 0.436912i \(0.856072\pi\)
\(30\) 0 0
\(31\) 8.12585 0.387082i 1.45945 0.0695220i 0.697231 0.716846i \(-0.254415\pi\)
0.762215 + 0.647324i \(0.224112\pi\)
\(32\) 0 0
\(33\) 1.04747 + 0.998764i 0.182342 + 0.173862i
\(34\) 0 0
\(35\) 6.23716 + 5.23502i 1.05427 + 0.884879i
\(36\) 0 0
\(37\) −1.05222 0.749284i −0.172984 0.123182i 0.490286 0.871562i \(-0.336892\pi\)
−0.663270 + 0.748380i \(0.730832\pi\)
\(38\) 0 0
\(39\) 1.44405 1.37690i 0.231233 0.220480i
\(40\) 0 0
\(41\) −7.14425 3.26267i −1.11574 0.509543i −0.229755 0.973249i \(-0.573792\pi\)
−0.885989 + 0.463705i \(0.846520\pi\)
\(42\) 0 0
\(43\) −0.939375 + 1.46170i −0.143253 + 0.222906i −0.905465 0.424422i \(-0.860477\pi\)
0.762211 + 0.647328i \(0.224114\pi\)
\(44\) 0 0
\(45\) 4.06605 7.04260i 0.606130 1.04985i
\(46\) 0 0
\(47\) −1.61823 + 0.934288i −0.236044 + 0.136280i −0.613357 0.789806i \(-0.710181\pi\)
0.377313 + 0.926086i \(0.376848\pi\)
\(48\) 0 0
\(49\) −0.112935 + 6.99909i −0.0161336 + 0.999870i
\(50\) 0 0
\(51\) −0.168012 1.75950i −0.0235263 0.246379i
\(52\) 0 0
\(53\) −1.44514 1.51562i −0.198505 0.208186i 0.616957 0.786997i \(-0.288365\pi\)
−0.815462 + 0.578811i \(0.803517\pi\)
\(54\) 0 0
\(55\) 6.77419 3.09367i 0.913432 0.417150i
\(56\) 0 0
\(57\) −2.11022 1.82852i −0.279506 0.242193i
\(58\) 0 0
\(59\) 2.93607 + 0.712284i 0.382244 + 0.0927315i 0.422277 0.906467i \(-0.361231\pi\)
−0.0400326 + 0.999198i \(0.512746\pi\)
\(60\) 0 0
\(61\) 4.86207 + 2.50657i 0.622524 + 0.320933i 0.740473 0.672086i \(-0.234602\pi\)
−0.117949 + 0.993020i \(0.537632\pi\)
\(62\) 0 0
\(63\) 6.90301 1.10361i 0.869697 0.139042i
\(64\) 0 0
\(65\) −3.81574 9.53127i −0.473285 1.18221i
\(66\) 0 0
\(67\) 0.395822 + 2.05372i 0.0483574 + 0.250902i 0.998061 0.0622494i \(-0.0198274\pi\)
−0.949703 + 0.313151i \(0.898615\pi\)
\(68\) 0 0
\(69\) −1.87827 2.16816i −0.226118 0.261015i
\(70\) 0 0
\(71\) 7.43408 + 8.57939i 0.882263 + 1.01819i 0.999685 + 0.0251040i \(0.00799168\pi\)
−0.117422 + 0.993082i \(0.537463\pi\)
\(72\) 0 0
\(73\) −7.25130 + 9.22078i −0.848700 + 1.07921i 0.147232 + 0.989102i \(0.452964\pi\)
−0.995932 + 0.0901083i \(0.971279\pi\)
\(74\) 0 0
\(75\) 1.65370 + 2.10285i 0.190952 + 0.242816i
\(76\) 0 0
\(77\) 5.73567 + 2.84363i 0.653641 + 0.324062i
\(78\) 0 0
\(79\) −6.39301 + 6.70479i −0.719269 + 0.754348i −0.977316 0.211784i \(-0.932073\pi\)
0.258047 + 0.966132i \(0.416921\pi\)
\(80\) 0 0
\(81\) −1.93233 5.58309i −0.214703 0.620344i
\(82\) 0 0
\(83\) −1.95415 4.27900i −0.214496 0.469681i 0.771547 0.636173i \(-0.219483\pi\)
−0.986043 + 0.166491i \(0.946756\pi\)
\(84\) 0 0
\(85\) −8.72628 2.56227i −0.946498 0.277917i
\(86\) 0 0
\(87\) −1.59766 + 1.13769i −0.171287 + 0.121973i
\(88\) 0 0
\(89\) −0.209028 + 4.38803i −0.0221569 + 0.465130i 0.960338 + 0.278839i \(0.0899497\pi\)
−0.982495 + 0.186291i \(0.940353\pi\)
\(90\) 0 0
\(91\) 4.29204 7.71172i 0.449928 0.808408i
\(92\) 0 0
\(93\) 2.43296 + 4.21402i 0.252287 + 0.436973i
\(94\) 0 0
\(95\) −12.7703 + 6.58353i −1.31020 + 0.675455i
\(96\) 0 0
\(97\) 4.22277 9.24658i 0.428758 0.938848i −0.564769 0.825249i \(-0.691035\pi\)
0.993527 0.113599i \(-0.0362380\pi\)
\(98\) 0 0
\(99\) 1.80122 6.13438i 0.181029 0.616529i
\(100\) 0 0
\(101\) 0.361743 3.78834i 0.0359948 0.376954i −0.959469 0.281814i \(-0.909064\pi\)
0.995464 0.0951405i \(-0.0303300\pi\)
\(102\) 0 0
\(103\) −16.8280 3.24333i −1.65811 0.319575i −0.727646 0.685953i \(-0.759386\pi\)
−0.930466 + 0.366378i \(0.880598\pi\)
\(104\) 0 0
\(105\) −1.07369 + 4.75083i −0.104781 + 0.463633i
\(106\) 0 0
\(107\) 0.331004 0.642058i 0.0319993 0.0620701i −0.872294 0.488982i \(-0.837368\pi\)
0.904293 + 0.426912i \(0.140399\pi\)
\(108\) 0 0
\(109\) −6.35899 + 15.8840i −0.609080 + 1.52141i 0.227621 + 0.973750i \(0.426905\pi\)
−0.836701 + 0.547660i \(0.815519\pi\)
\(110\) 0 0
\(111\) 0.109959 0.764782i 0.0104368 0.0725899i
\(112\) 0 0
\(113\) 12.6638 10.9733i 1.19131 1.03228i 0.192615 0.981275i \(-0.438303\pi\)
0.998698 0.0510040i \(-0.0162421\pi\)
\(114\) 0 0
\(115\) −13.9491 + 4.82600i −1.30076 + 0.450026i
\(116\) 0 0
\(117\) −8.32914 2.88274i −0.770029 0.266510i
\(118\) 0 0
\(119\) −3.01954 7.21151i −0.276801 0.661078i
\(120\) 0 0
\(121\) −4.04433 + 3.18050i −0.367667 + 0.289136i
\(122\) 0 0
\(123\) −0.223531 4.69249i −0.0201551 0.423108i
\(124\) 0 0
\(125\) −1.55774 + 0.457393i −0.139328 + 0.0409105i
\(126\) 0 0
\(127\) 7.63668 8.81320i 0.677646 0.782045i −0.307907 0.951417i \(-0.599628\pi\)
0.985552 + 0.169372i \(0.0541739\pi\)
\(128\) 0 0
\(129\) −1.03458 0.0987903i −0.0910896 0.00869800i
\(130\) 0 0
\(131\) −11.5358 + 2.79857i −1.00789 + 0.244512i −0.705529 0.708681i \(-0.749290\pi\)
−0.302363 + 0.953193i \(0.597775\pi\)
\(132\) 0 0
\(133\) −11.3140 4.95333i −0.981049 0.429508i
\(134\) 0 0
\(135\) 10.3752 + 0.494230i 0.892953 + 0.0425366i
\(136\) 0 0
\(137\) −6.70343 3.87023i −0.572713 0.330656i 0.185519 0.982641i \(-0.440603\pi\)
−0.758232 + 0.651985i \(0.773937\pi\)
\(138\) 0 0
\(139\) 0.456172i 0.0386920i 0.999813 + 0.0193460i \(0.00615841\pi\)
−0.999813 + 0.0193460i \(0.993842\pi\)
\(140\) 0 0
\(141\) −0.940248 0.604261i −0.0791832 0.0508879i
\(142\) 0 0
\(143\) −4.68196 6.57490i −0.391525 0.549821i
\(144\) 0 0
\(145\) 2.37929 + 9.80758i 0.197590 + 0.814475i
\(146\) 0 0
\(147\) −3.75202 + 1.85830i −0.309462 + 0.153270i
\(148\) 0 0
\(149\) 1.82808 9.48498i 0.149762 0.777040i −0.826915 0.562327i \(-0.809906\pi\)
0.976677 0.214713i \(-0.0688816\pi\)
\(150\) 0 0
\(151\) −0.789479 + 3.25428i −0.0642469 + 0.264829i −0.994872 0.101146i \(-0.967749\pi\)
0.930625 + 0.365975i \(0.119264\pi\)
\(152\) 0 0
\(153\) −6.56828 + 4.22118i −0.531014 + 0.341262i
\(154\) 0 0
\(155\) 24.7828 3.56323i 1.99060 0.286205i
\(156\) 0 0
\(157\) −15.9894 12.5742i −1.27609 1.00353i −0.999090 0.0426589i \(-0.986417\pi\)
−0.277001 0.960870i \(-0.589340\pi\)
\(158\) 0 0
\(159\) 0.409689 1.18372i 0.0324904 0.0938749i
\(160\) 0 0
\(161\) −10.7801 6.69245i −0.849593 0.527439i
\(162\) 0 0
\(163\) −4.44918 + 12.8551i −0.348487 + 1.00689i 0.625488 + 0.780233i \(0.284900\pi\)
−0.973975 + 0.226654i \(0.927221\pi\)
\(164\) 0 0
\(165\) 3.50145 + 2.75357i 0.272588 + 0.214365i
\(166\) 0 0
\(167\) −12.5962 + 1.81106i −0.974725 + 0.140144i −0.611231 0.791452i \(-0.709325\pi\)
−0.363494 + 0.931596i \(0.618416\pi\)
\(168\) 0 0
\(169\) 1.57528 1.01237i 0.121175 0.0778745i
\(170\) 0 0
\(171\) −2.90793 + 11.9867i −0.222375 + 0.916642i
\(172\) 0 0
\(173\) 0.781229 4.05340i 0.0593957 0.308174i −0.940066 0.340994i \(-0.889236\pi\)
0.999461 + 0.0328194i \(0.0104486\pi\)
\(174\) 0 0
\(175\) 9.74577 + 6.71140i 0.736711 + 0.507334i
\(176\) 0 0
\(177\) 0.426047 + 1.75619i 0.0320237 + 0.132003i
\(178\) 0 0
\(179\) 5.33573 + 7.49298i 0.398811 + 0.560052i 0.964337 0.264679i \(-0.0852660\pi\)
−0.565526 + 0.824731i \(0.691327\pi\)
\(180\) 0 0
\(181\) −11.8107 7.59029i −0.877884 0.564182i 0.0222708 0.999752i \(-0.492910\pi\)
−0.900155 + 0.435570i \(0.856547\pi\)
\(182\) 0 0
\(183\) 3.27193i 0.241868i
\(184\) 0 0
\(185\) −3.44301 1.98783i −0.253135 0.146148i
\(186\) 0 0
\(187\) −7.14204 0.340217i −0.522277 0.0248791i
\(188\) 0 0
\(189\) 5.29313 + 7.19099i 0.385019 + 0.523068i
\(190\) 0 0
\(191\) 18.6988 4.53628i 1.35300 0.328234i 0.507243 0.861803i \(-0.330665\pi\)
0.845756 + 0.533569i \(0.179150\pi\)
\(192\) 0 0
\(193\) 12.1672 + 1.16183i 0.875814 + 0.0836301i 0.523272 0.852166i \(-0.324711\pi\)
0.352542 + 0.935796i \(0.385317\pi\)
\(194\) 0 0
\(195\) 4.02146 4.64102i 0.287983 0.332350i
\(196\) 0 0
\(197\) 25.1059 7.37175i 1.78872 0.525215i 0.792328 0.610096i \(-0.208869\pi\)
0.996391 + 0.0848802i \(0.0270508\pi\)
\(198\) 0 0
\(199\) 0.156271 + 3.28053i 0.0110778 + 0.232551i 0.997615 + 0.0690169i \(0.0219862\pi\)
−0.986538 + 0.163534i \(0.947711\pi\)
\(200\) 0 0
\(201\) −0.983373 + 0.773333i −0.0693618 + 0.0545467i
\(202\) 0 0
\(203\) −5.25491 + 6.90296i −0.368823 + 0.484493i
\(204\) 0 0
\(205\) −22.8431 7.90608i −1.59543 0.552185i
\(206\) 0 0
\(207\) −4.71096 + 11.7634i −0.327435 + 0.817614i
\(208\) 0 0
\(209\) −8.53656 + 7.39697i −0.590486 + 0.511659i
\(210\) 0 0
\(211\) −1.65363 + 11.5013i −0.113841 + 0.791780i 0.850283 + 0.526326i \(0.176431\pi\)
−0.964124 + 0.265454i \(0.914478\pi\)
\(212\) 0 0
\(213\) −2.52367 + 6.30381i −0.172919 + 0.431930i
\(214\) 0 0
\(215\) −2.45043 + 4.75317i −0.167118 + 0.324164i
\(216\) 0 0
\(217\) 15.8089 + 14.6059i 1.07318 + 0.991514i
\(218\) 0 0
\(219\) −6.88970 1.32788i −0.465563 0.0897299i
\(220\) 0 0
\(221\) −0.936985 + 9.81255i −0.0630285 + 0.660064i
\(222\) 0 0
\(223\) 7.18332 24.4642i 0.481031 1.63824i −0.259153 0.965836i \(-0.583443\pi\)
0.740184 0.672404i \(-0.234738\pi\)
\(224\) 0 0
\(225\) 4.90911 10.7494i 0.327274 0.716630i
\(226\) 0 0
\(227\) 2.32595 1.19911i 0.154379 0.0795879i −0.379306 0.925271i \(-0.623837\pi\)
0.533685 + 0.845683i \(0.320807\pi\)
\(228\) 0 0
\(229\) 2.47987 + 4.29526i 0.163874 + 0.283839i 0.936255 0.351321i \(-0.114268\pi\)
−0.772381 + 0.635160i \(0.780934\pi\)
\(230\) 0 0
\(231\) 0.0602422 + 3.82877i 0.00396365 + 0.251915i
\(232\) 0 0
\(233\) 0.332754 6.98537i 0.0217995 0.457627i −0.961407 0.275130i \(-0.911279\pi\)
0.983206 0.182497i \(-0.0584179\pi\)
\(234\) 0 0
\(235\) −4.68462 + 3.33591i −0.305591 + 0.217610i
\(236\) 0 0
\(237\) −5.31683 1.56116i −0.345365 0.101408i
\(238\) 0 0
\(239\) −10.4783 22.9444i −0.677788 1.48415i −0.864970 0.501823i \(-0.832663\pi\)
0.187183 0.982325i \(-0.440064\pi\)
\(240\) 0 0
\(241\) −5.55032 16.0366i −0.357527 1.03301i −0.970124 0.242611i \(-0.921996\pi\)
0.612596 0.790396i \(-0.290125\pi\)
\(242\) 0 0
\(243\) 9.42538 9.88506i 0.604639 0.634127i
\(244\) 0 0
\(245\) 1.70163 + 21.4769i 0.108713 + 1.37211i
\(246\) 0 0
\(247\) 9.62596 + 12.2404i 0.612485 + 0.778839i
\(248\) 0 0
\(249\) 1.73933 2.21174i 0.110225 0.140163i
\(250\) 0 0
\(251\) 16.7451 + 19.3249i 1.05694 + 1.21978i 0.974782 + 0.223160i \(0.0716371\pi\)
0.0821622 + 0.996619i \(0.473817\pi\)
\(252\) 0 0
\(253\) −9.76299 + 6.27267i −0.613794 + 0.394360i
\(254\) 0 0
\(255\) −1.02951 5.34161i −0.0644705 0.334505i
\(256\) 0 0
\(257\) −4.92493 12.3019i −0.307209 0.767371i −0.998976 0.0452498i \(-0.985592\pi\)
0.691767 0.722121i \(-0.256833\pi\)
\(258\) 0 0
\(259\) −0.539538 3.37477i −0.0335253 0.209698i
\(260\) 0 0
\(261\) 7.70085 + 3.97006i 0.476671 + 0.245741i
\(262\) 0 0
\(263\) −7.63996 1.85343i −0.471100 0.114288i −0.00682126 0.999977i \(-0.502171\pi\)
−0.464279 + 0.885689i \(0.653686\pi\)
\(264\) 0 0
\(265\) −4.87104 4.22078i −0.299225 0.259280i
\(266\) 0 0
\(267\) −2.39019 + 1.09156i −0.146277 + 0.0668026i
\(268\) 0 0
\(269\) 0.231648 + 0.242945i 0.0141238 + 0.0148126i 0.730758 0.682637i \(-0.239167\pi\)
−0.716634 + 0.697449i \(0.754318\pi\)
\(270\) 0 0
\(271\) 0.892860 + 9.35045i 0.0542374 + 0.567999i 0.981220 + 0.192894i \(0.0617874\pi\)
−0.926982 + 0.375105i \(0.877607\pi\)
\(272\) 0 0
\(273\) 5.27632 + 0.168198i 0.319338 + 0.0101798i
\(274\) 0 0
\(275\) 9.37218 5.41103i 0.565164 0.326297i
\(276\) 0 0
\(277\) 2.49720 4.32528i 0.150042 0.259881i −0.781201 0.624280i \(-0.785392\pi\)
0.931243 + 0.364400i \(0.118726\pi\)
\(278\) 0 0
\(279\) 11.6209 18.0825i 0.695725 1.08257i
\(280\) 0 0
\(281\) 20.2647 + 9.25459i 1.20889 + 0.552083i 0.914883 0.403720i \(-0.132283\pi\)
0.294010 + 0.955802i \(0.405010\pi\)
\(282\) 0 0
\(283\) −23.4133 + 22.3246i −1.39178 + 1.32706i −0.506314 + 0.862349i \(0.668992\pi\)
−0.885464 + 0.464709i \(0.846159\pi\)
\(284\) 0 0
\(285\) −7.00027 4.98487i −0.414660 0.295278i
\(286\) 0 0
\(287\) −7.10447 19.5275i −0.419364 1.15267i
\(288\) 0 0
\(289\) −5.98389 5.70563i −0.351993 0.335625i
\(290\) 0 0
\(291\) 6.07335 0.289309i 0.356026 0.0169596i
\(292\) 0 0
\(293\) −4.24205 29.5041i −0.247823 1.72365i −0.610745 0.791827i \(-0.709130\pi\)
0.362922 0.931820i \(-0.381779\pi\)
\(294\) 0 0
\(295\) 9.20395 + 1.32333i 0.535875 + 0.0770471i
\(296\) 0 0
\(297\) 8.01852 1.54544i 0.465282 0.0896757i
\(298\) 0 0
\(299\) 7.99731 + 13.8555i 0.462496 + 0.801284i
\(300\) 0 0
\(301\) −4.49973 + 0.940904i −0.259360 + 0.0542328i
\(302\) 0 0
\(303\) 2.11322 0.846007i 0.121402 0.0486018i
\(304\) 0 0
\(305\) 15.6297 + 6.25721i 0.894957 + 0.358287i
\(306\) 0 0
\(307\) −9.10900 14.1739i −0.519878 0.808946i 0.477699 0.878524i \(-0.341471\pi\)
−0.997577 + 0.0695780i \(0.977835\pi\)
\(308\) 0 0
\(309\) −2.88798 9.83556i −0.164292 0.559526i
\(310\) 0 0
\(311\) 15.2315 5.27168i 0.863701 0.298930i 0.140932 0.990019i \(-0.454990\pi\)
0.722769 + 0.691090i \(0.242869\pi\)
\(312\) 0 0
\(313\) −16.4040 + 23.0361i −0.927207 + 1.30208i 0.0259690 + 0.999663i \(0.491733\pi\)
−0.953176 + 0.302417i \(0.902207\pi\)
\(314\) 0 0
\(315\) 20.8266 5.40078i 1.17345 0.304300i
\(316\) 0 0
\(317\) 30.0144 2.86603i 1.68578 0.160972i 0.792315 0.610112i \(-0.208876\pi\)
0.893462 + 0.449140i \(0.148269\pi\)
\(318\) 0 0
\(319\) 3.63569 + 7.05226i 0.203560 + 0.394850i
\(320\) 0 0
\(321\) 0.432073 0.0241160
\(322\) 0 0
\(323\) 13.7943 0.767537
\(324\) 0 0
\(325\) −6.83642 13.2608i −0.379217 0.735578i
\(326\) 0 0
\(327\) −10.1876 + 0.972800i −0.563377 + 0.0537960i
\(328\) 0 0
\(329\) −4.76485 1.31803i −0.262695 0.0726652i
\(330\) 0 0
\(331\) −2.81568 + 3.95408i −0.154764 + 0.217336i −0.884677 0.466204i \(-0.845621\pi\)
0.729913 + 0.683540i \(0.239561\pi\)
\(332\) 0 0
\(333\) −3.22536 + 1.11631i −0.176748 + 0.0611732i
\(334\) 0 0
\(335\) 1.81356 + 6.17640i 0.0990851 + 0.337453i
\(336\) 0 0
\(337\) 14.2585 + 22.1866i 0.776709 + 1.20858i 0.973623 + 0.228163i \(0.0732718\pi\)
−0.196914 + 0.980421i \(0.563092\pi\)
\(338\) 0 0
\(339\) 9.30491 + 3.72512i 0.505373 + 0.202321i
\(340\) 0 0
\(341\) 18.2743 7.31592i 0.989608 0.396179i
\(342\) 0 0
\(343\) −13.4089 + 12.7751i −0.724011 + 0.689788i
\(344\) 0 0
\(345\) −6.38898 6.09331i −0.343971 0.328053i
\(346\) 0 0
\(347\) 21.0986 4.06643i 1.13263 0.218297i 0.411712 0.911314i \(-0.364931\pi\)
0.720922 + 0.693016i \(0.243719\pi\)
\(348\) 0 0
\(349\) 8.17592 + 1.17552i 0.437647 + 0.0629241i 0.357617 0.933868i \(-0.383589\pi\)
0.0800300 + 0.996792i \(0.474498\pi\)
\(350\) 0 0
\(351\) −1.60215 11.1432i −0.0855165 0.594780i
\(352\) 0 0
\(353\) 5.62762 0.268077i 0.299528 0.0142683i 0.102720 0.994710i \(-0.467245\pi\)
0.196808 + 0.980442i \(0.436942\pi\)
\(354\) 0 0
\(355\) 25.2866 + 24.1107i 1.34207 + 1.27966i
\(356\) 0 0
\(357\) 3.00639 3.58190i 0.159115 0.189574i
\(358\) 0 0
\(359\) −26.7095 19.0197i −1.40967 1.00382i −0.995612 0.0935739i \(-0.970171\pi\)
−0.414060 0.910249i \(-0.635890\pi\)
\(360\) 0 0
\(361\) 2.02048 1.92652i 0.106341 0.101396i
\(362\) 0 0
\(363\) −2.79940 1.27844i −0.146931 0.0671009i
\(364\) 0 0
\(365\) −19.5190 + 30.3721i −1.02167 + 1.58975i
\(366\) 0 0
\(367\) 1.77933 3.08189i 0.0928802 0.160873i −0.815842 0.578275i \(-0.803726\pi\)
0.908722 + 0.417402i \(0.137059\pi\)
\(368\) 0 0
\(369\) −17.9718 + 10.3760i −0.935574 + 0.540154i
\(370\) 0 0
\(371\) 0.176534 5.53783i 0.00916520 0.287510i
\(372\) 0 0
\(373\) 3.07785 + 32.2327i 0.159365 + 1.66894i 0.622472 + 0.782642i \(0.286128\pi\)
−0.463108 + 0.886302i \(0.653266\pi\)
\(374\) 0 0
\(375\) −0.670125 0.702807i −0.0346051 0.0362928i
\(376\) 0 0
\(377\) 9.94973 4.54389i 0.512437 0.234022i
\(378\) 0 0
\(379\) 15.1898 + 13.1621i 0.780250 + 0.676090i 0.950989 0.309226i \(-0.100070\pi\)
−0.170739 + 0.985316i \(0.554615\pi\)
\(380\) 0 0
\(381\) 6.77864 + 1.64448i 0.347280 + 0.0842493i
\(382\) 0 0
\(383\) 0.276754 + 0.142676i 0.0141414 + 0.00729042i 0.465283 0.885162i \(-0.345953\pi\)
−0.451141 + 0.892453i \(0.648983\pi\)
\(384\) 0 0
\(385\) 18.4049 + 7.03433i 0.938002 + 0.358502i
\(386\) 0 0
\(387\) 1.70627 + 4.26206i 0.0867347 + 0.216653i
\(388\) 0 0
\(389\) −1.35447 7.02768i −0.0686746 0.356318i 0.931294 0.364269i \(-0.118681\pi\)
−0.999968 + 0.00795134i \(0.997469\pi\)
\(390\) 0 0
\(391\) 14.0271 + 2.01848i 0.709382 + 0.102079i
\(392\) 0 0
\(393\) −4.64966 5.36599i −0.234544 0.270678i
\(394\) 0 0
\(395\) −17.6254 + 22.4125i −0.886830 + 1.12770i
\(396\) 0 0
\(397\) 16.4048 + 20.8604i 0.823333 + 1.04695i 0.998055 + 0.0623356i \(0.0198549\pi\)
−0.174722 + 0.984618i \(0.555903\pi\)
\(398\) 0 0
\(399\) −0.467560 7.37273i −0.0234073 0.369098i
\(400\) 0 0
\(401\) −3.15424 + 3.30807i −0.157515 + 0.165197i −0.797763 0.602971i \(-0.793983\pi\)
0.640248 + 0.768169i \(0.278832\pi\)
\(402\) 0 0
\(403\) −8.87559 25.6443i −0.442125 1.27744i
\(404\) 0 0
\(405\) −7.55366 16.5402i −0.375344 0.821889i
\(406\) 0 0
\(407\) −2.99900 0.880587i −0.148655 0.0436491i
\(408\) 0 0
\(409\) 31.3379 22.3156i 1.54956 1.10344i 0.595690 0.803215i \(-0.296879\pi\)
0.953870 0.300221i \(-0.0970605\pi\)
\(410\) 0 0
\(411\) 0.220299 4.62465i 0.0108666 0.228117i
\(412\) 0 0
\(413\) 4.10513 + 6.85879i 0.202000 + 0.337499i
\(414\) 0 0
\(415\) −7.23901 12.5383i −0.355349 0.615483i
\(416\) 0 0
\(417\) −0.242524 + 0.125030i −0.0118765 + 0.00612274i
\(418\) 0 0
\(419\) 7.43223 16.2743i 0.363088 0.795053i −0.636626 0.771172i \(-0.719671\pi\)
0.999715 0.0238804i \(-0.00760208\pi\)
\(420\) 0 0
\(421\) 2.06431 7.03039i 0.100608 0.342640i −0.893770 0.448525i \(-0.851949\pi\)
0.994378 + 0.105885i \(0.0337675\pi\)
\(422\) 0 0
\(423\) −0.469311 + 4.91484i −0.0228187 + 0.238968i
\(424\) 0 0
\(425\) −12.9773 2.50118i −0.629493 0.121325i
\(426\) 0 0
\(427\) 4.29538 + 13.8206i 0.207868 + 0.668824i
\(428\) 0 0
\(429\) 2.21229 4.29125i 0.106810 0.207183i
\(430\) 0 0
\(431\) 10.5798 26.4271i 0.509613 1.27295i −0.421039 0.907043i \(-0.638334\pi\)
0.930651 0.365908i \(-0.119241\pi\)
\(432\) 0 0
\(433\) −3.20824 + 22.3138i −0.154178 + 1.07233i 0.754939 + 0.655795i \(0.227666\pi\)
−0.909118 + 0.416539i \(0.863243\pi\)
\(434\) 0 0
\(435\) −4.56208 + 3.95306i −0.218735 + 0.189535i
\(436\) 0 0
\(437\) 18.2380 12.9840i 0.872443 0.621109i
\(438\) 0 0
\(439\) 2.58354 + 0.894172i 0.123306 + 0.0426765i 0.388024 0.921649i \(-0.373158\pi\)
−0.264718 + 0.964326i \(0.585279\pi\)
\(440\) 0 0
\(441\) 14.8910 + 10.9702i 0.709095 + 0.522389i
\(442\) 0 0
\(443\) −14.0856 + 11.0770i −0.669227 + 0.526286i −0.893967 0.448133i \(-0.852089\pi\)
0.224740 + 0.974419i \(0.427847\pi\)
\(444\) 0 0
\(445\) 0.643333 + 13.5052i 0.0304969 + 0.640209i
\(446\) 0 0
\(447\) 5.54374 1.62779i 0.262210 0.0769918i
\(448\) 0 0
\(449\) 26.1228 30.1473i 1.23281 1.42274i 0.361238 0.932474i \(-0.382354\pi\)
0.871573 0.490266i \(-0.163100\pi\)
\(450\) 0 0
\(451\) −18.9182 1.80647i −0.890822 0.0850632i
\(452\) 0 0
\(453\) −1.94652 + 0.472221i −0.0914555 + 0.0221869i
\(454\) 0 0
\(455\) 10.8939 24.8829i 0.510712 1.16653i
\(456\) 0 0
\(457\) −4.71487 0.224597i −0.220552 0.0105062i −0.0629851 0.998014i \(-0.520062\pi\)
−0.157567 + 0.987508i \(0.550365\pi\)
\(458\) 0 0
\(459\) −8.63656 4.98632i −0.403120 0.232741i
\(460\) 0 0
\(461\) 23.2995i 1.08516i 0.840003 + 0.542582i \(0.182553\pi\)
−0.840003 + 0.542582i \(0.817447\pi\)
\(462\) 0 0
\(463\) −29.3823 18.8828i −1.36551 0.877560i −0.366900 0.930260i \(-0.619581\pi\)
−0.998610 + 0.0527002i \(0.983217\pi\)
\(464\) 0 0
\(465\) 8.68698 + 12.1992i 0.402849 + 0.565722i
\(466\) 0 0
\(467\) 4.70107 + 19.3781i 0.217539 + 0.896710i 0.970974 + 0.239186i \(0.0768807\pi\)
−0.753434 + 0.657523i \(0.771604\pi\)
\(468\) 0 0
\(469\) −3.13851 + 4.55750i −0.144923 + 0.210446i
\(470\) 0 0
\(471\) 2.30262 11.9471i 0.106099 0.550495i
\(472\) 0 0
\(473\) −0.991191 + 4.08574i −0.0455750 + 0.187863i
\(474\) 0 0
\(475\) −17.5640 + 11.2877i −0.805892 + 0.517915i
\(476\) 0 0
\(477\) −5.47694 + 0.787465i −0.250772 + 0.0360555i
\(478\) 0 0
\(479\) 4.04064 + 3.17760i 0.184622 + 0.145188i 0.706192 0.708020i \(-0.250411\pi\)
−0.521571 + 0.853208i \(0.674654\pi\)
\(480\) 0 0
\(481\) −1.40933 + 4.07198i −0.0642598 + 0.185667i
\(482\) 0 0
\(483\) 0.603375 7.56556i 0.0274545 0.344245i
\(484\) 0 0
\(485\) 10.2326 29.5651i 0.464638 1.34248i
\(486\) 0 0
\(487\) −20.9202 16.4518i −0.947984 0.745503i 0.0191379 0.999817i \(-0.493908\pi\)
−0.967122 + 0.254314i \(0.918150\pi\)
\(488\) 0 0
\(489\) −8.05386 + 1.15797i −0.364208 + 0.0523652i
\(490\) 0 0
\(491\) −28.1585 + 18.0964i −1.27078 + 0.816679i −0.989721 0.143013i \(-0.954321\pi\)
−0.281056 + 0.959691i \(0.590685\pi\)
\(492\) 0 0
\(493\) 2.28439 9.41639i 0.102884 0.424093i
\(494\) 0 0
\(495\) 3.72392 19.3215i 0.167378 0.868438i
\(496\) 0 0
\(497\) −2.38428 + 29.9402i −0.106950 + 1.34300i
\(498\) 0 0
\(499\) 4.58071 + 18.8820i 0.205061 + 0.845273i 0.977628 + 0.210340i \(0.0674571\pi\)
−0.772567 + 0.634933i \(0.781028\pi\)
\(500\) 0 0
\(501\) −4.41529 6.20041i −0.197261 0.277014i
\(502\) 0 0
\(503\) −22.0462 14.1682i −0.982991 0.631730i −0.0527226 0.998609i \(-0.516790\pi\)
−0.930269 + 0.366879i \(0.880426\pi\)
\(504\) 0 0
\(505\) 11.7126i 0.521203i
\(506\) 0 0
\(507\) 0.969985 + 0.560021i 0.0430786 + 0.0248714i
\(508\) 0 0
\(509\) −40.2439 1.91705i −1.78378 0.0849718i −0.870465 0.492231i \(-0.836182\pi\)
−0.913313 + 0.407259i \(0.866485\pi\)
\(510\) 0 0
\(511\) −30.8452 + 3.43584i −1.36451 + 0.151993i
\(512\) 0 0
\(513\) −15.3103 + 3.71423i −0.675966 + 0.163987i
\(514\) 0 0
\(515\) −52.5066 5.01377i −2.31372 0.220933i
\(516\) 0 0
\(517\) −2.96087 + 3.41702i −0.130219 + 0.150280i
\(518\) 0 0
\(519\) 2.36912 0.695635i 0.103993 0.0305350i
\(520\) 0 0
\(521\) 0.753797 + 15.8241i 0.0330244 + 0.693268i 0.953305 + 0.302009i \(0.0976573\pi\)
−0.920281 + 0.391259i \(0.872040\pi\)
\(522\) 0 0
\(523\) −7.13284 + 5.60933i −0.311897 + 0.245279i −0.761820 0.647789i \(-0.775694\pi\)
0.449923 + 0.893068i \(0.351452\pi\)
\(524\) 0 0
\(525\) −0.896948 + 7.02084i −0.0391460 + 0.306414i
\(526\) 0 0
\(527\) −22.7169 7.86238i −0.989562 0.342491i
\(528\) 0 0
\(529\) 20.4457 10.5344i 0.888943 0.458018i
\(530\) 0 0
\(531\) 6.03299 5.22762i 0.261810 0.226859i
\(532\) 0 0
\(533\) −3.72854 + 25.9326i −0.161501 + 1.12326i
\(534\) 0 0
\(535\) 0.826292 2.06398i 0.0357237 0.0892336i
\(536\) 0 0
\(537\) −2.52120 + 4.89045i −0.108798 + 0.211039i
\(538\) 0 0
\(539\) 5.28086 + 16.0935i 0.227463 + 0.693198i
\(540\) 0 0
\(541\) 43.7124 + 8.42488i 1.87934 + 0.362214i 0.994593 0.103852i \(-0.0331168\pi\)
0.884750 + 0.466066i \(0.154329\pi\)
\(542\) 0 0
\(543\) 0.798241 8.35956i 0.0342558 0.358743i
\(544\) 0 0
\(545\) −14.8357 + 50.5258i −0.635492 + 2.16429i
\(546\) 0 0
\(547\) −8.63674 + 18.9118i −0.369280 + 0.808611i 0.630202 + 0.776431i \(0.282972\pi\)
−0.999482 + 0.0321798i \(0.989755\pi\)
\(548\) 0 0
\(549\) 12.8467 6.62292i 0.548283 0.282659i
\(550\) 0 0
\(551\) −7.65356 13.2564i −0.326053 0.564740i
\(552\) 0 0
\(553\) −24.5076 + 0.385605i −1.04217 + 0.0163976i
\(554\) 0 0
\(555\) 0.113150 2.37531i 0.00480295 0.100826i
\(556\) 0 0
\(557\) 1.63614 1.16509i 0.0693257 0.0493666i −0.544869 0.838521i \(-0.683420\pi\)
0.614194 + 0.789155i \(0.289481\pi\)
\(558\) 0 0
\(559\) 5.56122 + 1.63292i 0.235214 + 0.0690652i
\(560\) 0 0
\(561\) −1.77665 3.89031i −0.0750101 0.164249i
\(562\) 0 0
\(563\) 1.69255 + 4.89030i 0.0713325 + 0.206102i 0.975031 0.222067i \(-0.0712803\pi\)
−0.903699 + 0.428168i \(0.859159\pi\)
\(564\) 0 0
\(565\) 35.5892 37.3249i 1.49725 1.57027i
\(566\) 0 0
\(567\) 6.94316 14.0045i 0.291585 0.588134i
\(568\) 0 0
\(569\) −5.67542 7.21688i −0.237926 0.302548i 0.652397 0.757878i \(-0.273764\pi\)
−0.890323 + 0.455330i \(0.849521\pi\)
\(570\) 0 0
\(571\) −13.4453 + 17.0971i −0.562668 + 0.715490i −0.981261 0.192684i \(-0.938281\pi\)
0.418593 + 0.908174i \(0.362523\pi\)
\(572\) 0 0
\(573\) 7.53678 + 8.69791i 0.314854 + 0.363360i
\(574\) 0 0
\(575\) −19.5121 + 8.90810i −0.813710 + 0.371493i
\(576\) 0 0
\(577\) 0.202550 + 1.05093i 0.00843227 + 0.0437508i 0.985901 0.167329i \(-0.0535142\pi\)
−0.977469 + 0.211080i \(0.932302\pi\)
\(578\) 0 0
\(579\) 2.71716 + 6.78714i 0.112921 + 0.282064i
\(580\) 0 0
\(581\) 4.44332 11.6257i 0.184340 0.482315i
\(582\) 0 0
\(583\) −4.50393 2.32194i −0.186534 0.0961648i
\(584\) 0 0
\(585\) −26.3622 6.39541i −1.08994 0.264418i
\(586\) 0 0
\(587\) 16.3967 + 14.2078i 0.676763 + 0.586418i 0.923933 0.382554i \(-0.124955\pi\)
−0.247171 + 0.968972i \(0.579501\pi\)
\(588\) 0 0
\(589\) −34.5440 + 15.7757i −1.42336 + 0.650027i
\(590\) 0 0
\(591\) 10.8003 + 11.3271i 0.444266 + 0.465933i
\(592\) 0 0
\(593\) −3.16382 33.1330i −0.129922 1.36061i −0.791700 0.610910i \(-0.790804\pi\)
0.661778 0.749700i \(-0.269802\pi\)
\(594\) 0 0
\(595\) −11.3611 21.2113i −0.465758 0.869578i
\(596\) 0 0
\(597\) −1.70126 + 0.982225i −0.0696281 + 0.0401998i
\(598\) 0 0
\(599\) 21.9266 37.9780i 0.895896 1.55174i 0.0632041 0.998001i \(-0.479868\pi\)
0.832692 0.553737i \(-0.186799\pi\)
\(600\) 0 0
\(601\) 20.5685 32.0052i 0.839007 1.30552i −0.111167 0.993802i \(-0.535459\pi\)
0.950174 0.311719i \(-0.100905\pi\)
\(602\) 0 0
\(603\) 5.02686 + 2.29569i 0.204710 + 0.0934878i
\(604\) 0 0
\(605\) −11.4606 + 10.9276i −0.465939 + 0.444272i
\(606\) 0 0
\(607\) −4.03022 2.86991i −0.163582 0.116486i 0.495335 0.868702i \(-0.335045\pi\)
−0.658916 + 0.752216i \(0.728985\pi\)
\(608\) 0 0
\(609\) −5.11025 0.901781i −0.207078 0.0365420i
\(610\) 0 0
\(611\) 4.51116 + 4.30138i 0.182502 + 0.174015i
\(612\) 0 0
\(613\) 16.2482 0.773995i 0.656257 0.0312614i 0.283187 0.959065i \(-0.408608\pi\)
0.373070 + 0.927803i \(0.378305\pi\)
\(614\) 0 0
\(615\) −2.05768 14.3115i −0.0829737 0.577095i
\(616\) 0 0
\(617\) 41.8943 + 6.02349i 1.68660 + 0.242496i 0.917814 0.397011i \(-0.129952\pi\)
0.768785 + 0.639507i \(0.220861\pi\)
\(618\) 0 0
\(619\) −27.7137 + 5.34137i −1.11391 + 0.214688i −0.712816 0.701351i \(-0.752581\pi\)
−0.401090 + 0.916039i \(0.631369\pi\)
\(620\) 0 0
\(621\) −16.1121 + 1.53661i −0.646558 + 0.0616622i
\(622\) 0 0
\(623\) −8.66310 + 7.74857i −0.347080 + 0.310440i
\(624\) 0 0
\(625\) −25.3994 + 10.1684i −1.01598 + 0.406736i
\(626\) 0 0
\(627\) −6.27235 2.51107i −0.250493 0.100282i
\(628\) 0 0
\(629\) 2.06367 + 3.21113i 0.0822838 + 0.128036i
\(630\) 0 0
\(631\) −13.4477 45.7988i −0.535346 1.82322i −0.566994 0.823722i \(-0.691894\pi\)
0.0316486 0.999499i \(-0.489924\pi\)
\(632\) 0 0
\(633\) −6.56789 + 2.27317i −0.261050 + 0.0903504i
\(634\) 0 0
\(635\) 20.8189 29.2361i 0.826174 1.16020i
\(636\) 0 0
\(637\) 22.5079 6.21627i 0.891794 0.246298i
\(638\) 0 0
\(639\) 29.8591 2.85120i 1.18121 0.112792i
\(640\) 0 0
\(641\) 17.7170 + 34.3661i 0.699779 + 1.35738i 0.923830 + 0.382804i \(0.125041\pi\)
−0.224051 + 0.974577i \(0.571928\pi\)
\(642\) 0 0
\(643\) −24.2818 −0.957580 −0.478790 0.877930i \(-0.658924\pi\)
−0.478790 + 0.877930i \(0.658924\pi\)
\(644\) 0 0
\(645\) −3.19865 −0.125947
\(646\) 0 0
\(647\) −22.6781 43.9894i −0.891569 1.72940i −0.651505 0.758645i \(-0.725862\pi\)
−0.240064 0.970757i \(-0.577168\pi\)
\(648\) 0 0
\(649\) 7.27735 0.694903i 0.285661 0.0272773i
\(650\) 0 0
\(651\) −3.43226 + 12.4081i −0.134521 + 0.486311i
\(652\) 0 0
\(653\) −21.0445 + 29.5529i −0.823535 + 1.15649i 0.161961 + 0.986797i \(0.448218\pi\)
−0.985496 + 0.169696i \(0.945721\pi\)
\(654\) 0 0
\(655\) −34.5249 + 11.9492i −1.34900 + 0.466893i
\(656\) 0 0
\(657\) 8.73218 + 29.7391i 0.340675 + 1.16023i
\(658\) 0 0
\(659\) 19.7772 + 30.7740i 0.770411 + 1.19878i 0.975491 + 0.220038i \(0.0706181\pi\)
−0.205080 + 0.978745i \(0.565746\pi\)
\(660\) 0 0
\(661\) 41.5954 + 16.6523i 1.61787 + 0.647699i 0.991295 0.131660i \(-0.0420307\pi\)
0.626578 + 0.779359i \(0.284455\pi\)
\(662\) 0 0
\(663\) −5.47366 + 2.19132i −0.212579 + 0.0851040i
\(664\) 0 0
\(665\) −36.1131 11.8660i −1.40040 0.460145i
\(666\) 0 0
\(667\) −5.84296 14.6000i −0.226240 0.565313i
\(668\) 0 0
\(669\) 14.9752 2.88624i 0.578975 0.111588i
\(670\) 0 0
\(671\) 13.1013 + 1.88369i 0.505771 + 0.0727190i
\(672\) 0 0
\(673\) −0.838128 5.82931i −0.0323074 0.224703i 0.967271 0.253747i \(-0.0816630\pi\)
−0.999578 + 0.0290435i \(0.990754\pi\)
\(674\) 0 0
\(675\) 15.0770 0.718204i 0.580312 0.0276437i
\(676\) 0 0
\(677\) −7.42546 7.08016i −0.285384 0.272113i 0.533842 0.845584i \(-0.320748\pi\)
−0.819225 + 0.573472i \(0.805596\pi\)
\(678\) 0 0
\(679\) 25.2739 9.19510i 0.969921 0.352876i
\(680\) 0 0
\(681\) 1.27502 + 0.907936i 0.0488588 + 0.0347922i
\(682\) 0 0
\(683\) −2.20150 + 2.09912i −0.0842379 + 0.0803207i −0.731028 0.682347i \(-0.760959\pi\)
0.646790 + 0.762668i \(0.276111\pi\)
\(684\) 0 0
\(685\) −21.6703 9.89649i −0.827979 0.378125i
\(686\) 0 0
\(687\) −1.60388 + 2.49569i −0.0611919 + 0.0952164i
\(688\) 0 0
\(689\) −3.49284 + 6.04978i −0.133067 + 0.230478i
\(690\) 0 0
\(691\) 25.4374 14.6863i 0.967683 0.558692i 0.0691537 0.997606i \(-0.477970\pi\)
0.898529 + 0.438914i \(0.144637\pi\)
\(692\) 0 0
\(693\) 14.9111 7.98658i 0.566424 0.303385i
\(694\) 0 0
\(695\) 0.133457 + 1.39762i 0.00506231 + 0.0530149i
\(696\) 0 0
\(697\) 16.0156 + 16.7967i 0.606636 + 0.636222i
\(698\) 0 0
\(699\) 3.80498 1.73768i 0.143918 0.0657249i
\(700\) 0 0
\(701\) −31.0013 26.8628i −1.17090 1.01459i −0.999568 0.0293806i \(-0.990647\pi\)
−0.171335 0.985213i \(-0.554808\pi\)
\(702\) 0 0
\(703\) 5.86008 + 1.42164i 0.221017 + 0.0536182i
\(704\) 0 0
\(705\) −3.05752 1.57626i −0.115153 0.0593654i
\(706\) 0 0
\(707\) 7.81557 6.34774i 0.293935 0.238731i
\(708\) 0 0
\(709\) 9.24046 + 23.0815i 0.347033 + 0.866846i 0.994498 + 0.104751i \(0.0334046\pi\)
−0.647466 + 0.762094i \(0.724171\pi\)
\(710\) 0 0
\(711\) 4.63249 + 24.0357i 0.173732 + 0.901408i
\(712\) 0 0
\(713\) −37.4353 + 10.9872i −1.40196 + 0.411475i
\(714\) 0 0
\(715\) −16.2682 18.7745i −0.608395 0.702125i
\(716\) 0 0
\(717\) 9.32643 11.8595i 0.348302 0.442902i
\(718\) 0 0
\(719\) 7.28837 + 9.26791i 0.271810 + 0.345635i 0.902726 0.430217i \(-0.141563\pi\)
−0.630915 + 0.775852i \(0.717320\pi\)
\(720\) 0 0
\(721\) −25.1108 37.7538i −0.935177 1.40603i
\(722\) 0 0
\(723\) 7.00460 7.34621i 0.260504 0.273209i
\(724\) 0 0
\(725\) 4.79663 + 13.8589i 0.178142 + 0.514708i
\(726\) 0 0
\(727\) 13.5623 + 29.6972i 0.502996 + 1.10141i 0.975484 + 0.220071i \(0.0706289\pi\)
−0.472488 + 0.881337i \(0.656644\pi\)
\(728\) 0 0
\(729\) −9.16739 2.69179i −0.339533 0.0996959i
\(730\) 0 0
\(731\) 4.18231 2.97821i 0.154688 0.110153i
\(732\) 0 0
\(733\) 1.14611 24.0599i 0.0423327 0.888673i −0.873429 0.486951i \(-0.838109\pi\)
0.915762 0.401721i \(-0.131588\pi\)
\(734\) 0 0
\(735\) −10.9518 + 6.79116i −0.403964 + 0.250496i
\(736\) 0 0
\(737\) 2.53041 + 4.38280i 0.0932088 + 0.161442i
\(738\) 0 0
\(739\) −30.4259 + 15.6857i −1.11924 + 0.577006i −0.915620 0.402044i \(-0.868300\pi\)
−0.203616 + 0.979051i \(0.565269\pi\)
\(740\) 0 0
\(741\) −3.86929 + 8.47256i −0.142142 + 0.311247i
\(742\) 0 0
\(743\) −9.00142 + 30.6560i −0.330230 + 1.12466i 0.612324 + 0.790607i \(0.290235\pi\)
−0.942554 + 0.334053i \(0.891583\pi\)
\(744\) 0 0
\(745\) 2.82598 29.5950i 0.103536 1.08428i
\(746\) 0 0
\(747\) −12.2047 2.35226i −0.446546 0.0860647i
\(748\) 0 0
\(749\) 1.82507 0.567224i 0.0666865 0.0207259i
\(750\) 0 0
\(751\) 13.2861 25.7714i 0.484816 0.940411i −0.511870 0.859063i \(-0.671047\pi\)
0.996686 0.0813483i \(-0.0259226\pi\)
\(752\) 0 0
\(753\) −5.68452 + 14.1992i −0.207155 + 0.517449i
\(754\) 0 0
\(755\) −1.46675 + 10.2014i −0.0533803 + 0.371268i
\(756\) 0 0
\(757\) 8.22192 7.12433i 0.298831 0.258938i −0.492520 0.870301i \(-0.663924\pi\)
0.791350 + 0.611363i \(0.209379\pi\)
\(758\) 0 0
\(759\) −6.01076 3.47125i −0.218177 0.125999i
\(760\) 0 0
\(761\) −5.86898 2.03127i −0.212750 0.0736336i 0.218614 0.975811i \(-0.429846\pi\)
−0.431364 + 0.902178i \(0.641968\pi\)
\(762\) 0 0
\(763\) −41.7552 + 17.4834i −1.51164 + 0.632940i
\(764\) 0 0
\(765\) −18.8890 + 14.8545i −0.682933 + 0.537065i
\(766\) 0 0
\(767\) −0.479540 10.0668i −0.0173152 0.363491i
\(768\) 0 0
\(769\) 8.19263 2.40557i 0.295434 0.0867472i −0.130657 0.991428i \(-0.541709\pi\)
0.426091 + 0.904680i \(0.359890\pi\)
\(770\) 0 0
\(771\) 5.19046 5.99011i 0.186930 0.215728i
\(772\) 0 0
\(773\) −35.6030 3.39967i −1.28055 0.122278i −0.567490 0.823380i \(-0.692085\pi\)
−0.713060 + 0.701103i \(0.752691\pi\)
\(774\) 0 0
\(775\) 35.3585 8.57788i 1.27011 0.308126i
\(776\) 0 0
\(777\) 1.64632 1.21182i 0.0590614 0.0434738i
\(778\) 0 0
\(779\) 36.6222 + 1.74453i 1.31213 + 0.0625043i
\(780\) 0 0
\(781\) 23.7886 + 13.7343i 0.851222 + 0.491453i
\(782\) 0 0
\(783\) 11.0663i 0.395477i
\(784\) 0 0
\(785\) −52.6670 33.8470i −1.87977 1.20805i
\(786\) 0 0
\(787\) −14.4308 20.2653i −0.514404 0.722379i 0.472919 0.881106i \(-0.343200\pi\)
−0.987323 + 0.158727i \(0.949261\pi\)
\(788\) 0 0
\(789\) −1.10862 4.56979i −0.0394679 0.162689i
\(790\) 0 0
\(791\) 44.1940 + 3.51938i 1.57136 + 0.125135i
\(792\) 0 0
\(793\) 3.45332 17.9175i 0.122631 0.636269i
\(794\) 0 0
\(795\) 0.908901 3.74654i 0.0322354 0.132876i
\(796\) 0 0
\(797\) −30.7444 + 19.7582i −1.08902 + 0.699873i −0.956625 0.291324i \(-0.905904\pi\)
−0.132399 + 0.991197i \(0.542268\pi\)
\(798\) 0 0
\(799\) 5.46541 0.785807i 0.193352 0.0277998i
\(800\) 0 0
\(801\) 9.12396 + 7.17517i 0.322379 + 0.253522i
\(802\) 0 0
\(803\) −9.28352 + 26.8230i −0.327608 + 0.946562i
\(804\) 0 0
\(805\) −34.9862 17.3506i −1.23310 0.611527i
\(806\) 0 0
\(807\) −0.0656708 + 0.189743i −0.00231172 + 0.00667928i
\(808\) 0 0
\(809\) 21.6935 + 17.0600i 0.762704 + 0.599797i 0.921890 0.387452i \(-0.126645\pi\)
−0.159186 + 0.987249i \(0.550887\pi\)
\(810\) 0 0
\(811\) 53.1691 7.64456i 1.86702 0.268437i 0.886193 0.463316i \(-0.153341\pi\)
0.980827 + 0.194879i \(0.0624315\pi\)
\(812\) 0 0
\(813\) −4.72645 + 3.03751i −0.165764 + 0.106530i
\(814\) 0 0
\(815\) −9.87058 + 40.6871i −0.345751 + 1.42521i
\(816\) 0 0
\(817\) 1.53502 7.96445i 0.0537036 0.278641i
\(818\) 0 0
\(819\) −10.0197 21.0570i −0.350118 0.735792i
\(820\) 0 0
\(821\) 11.6135 + 47.8715i 0.405314 + 1.67073i 0.699230 + 0.714896i \(0.253526\pi\)
−0.293916 + 0.955831i \(0.594959\pi\)
\(822\) 0 0
\(823\) −4.94768 6.94805i −0.172465 0.242194i 0.719292 0.694708i \(-0.244466\pi\)
−0.891757 + 0.452514i \(0.850527\pi\)
\(824\) 0 0
\(825\) 5.44555 + 3.49964i 0.189590 + 0.121842i
\(826\) 0 0
\(827\) 7.28655i 0.253378i −0.991942 0.126689i \(-0.959565\pi\)
0.991942 0.126689i \(-0.0404350\pi\)
\(828\) 0 0
\(829\) 2.42664 + 1.40102i 0.0842805 + 0.0486594i 0.541548 0.840670i \(-0.317838\pi\)
−0.457267 + 0.889329i \(0.651172\pi\)
\(830\) 0 0
\(831\) 2.98398 + 0.142144i 0.103513 + 0.00493094i
\(832\) 0 0
\(833\) 7.99661 19.0766i 0.277066 0.660967i
\(834\) 0 0
\(835\) −38.0626 + 9.23388i −1.31721 + 0.319552i
\(836\) 0 0
\(837\) 27.3304 + 2.60973i 0.944675 + 0.0902056i
\(838\) 0 0
\(839\) −20.7256 + 23.9186i −0.715526 + 0.825760i −0.990761 0.135616i \(-0.956699\pi\)
0.275236 + 0.961377i \(0.411244\pi\)
\(840\) 0 0
\(841\) 17.5087 5.14102i 0.603748 0.177276i
\(842\) 0 0
\(843\) 0.634047 + 13.3103i 0.0218378 + 0.458431i
\(844\) 0 0
\(845\) 4.53016 3.56256i 0.155842 0.122556i
\(846\) 0 0
\(847\) −13.5029 1.72507i −0.463967 0.0592741i
\(848\) 0 0
\(849\) −18.2861 6.32888i −0.627577 0.217207i
\(850\) 0 0
\(851\) 5.75095 + 2.30312i 0.197140 + 0.0789498i
\(852\) 0 0
\(853\) 21.1459 18.3230i 0.724021 0.627368i −0.212833 0.977089i \(-0.568269\pi\)
0.936854 + 0.349721i \(0.113724\pi\)
\(854\) 0 0
\(855\) −5.40254 + 37.5755i −0.184763 + 1.28506i
\(856\) 0 0
\(857\) 2.75772 6.88846i 0.0942020 0.235305i −0.873782 0.486318i \(-0.838340\pi\)
0.967984 + 0.251013i \(0.0807638\pi\)
\(858\) 0 0
\(859\) −3.94336 + 7.64906i −0.134546 + 0.260982i −0.946477 0.322770i \(-0.895386\pi\)
0.811932 + 0.583753i \(0.198416\pi\)
\(860\) 0 0
\(861\) 8.43458 9.12929i 0.287450 0.311125i
\(862\) 0 0
\(863\) 12.2437 + 2.35977i 0.416779 + 0.0803275i 0.393330 0.919398i \(-0.371323\pi\)
0.0234491 + 0.999725i \(0.492535\pi\)
\(864\) 0 0
\(865\) 1.20768 12.6474i 0.0410623 0.430024i
\(866\) 0 0
\(867\) 1.39331 4.74516i 0.0473191 0.161154i
\(868\) 0 0
\(869\) −9.31210 + 20.3907i −0.315891 + 0.691706i
\(870\) 0 0
\(871\) 6.20127 3.19698i 0.210122 0.108325i
\(872\) 0 0
\(873\) −13.4294 23.2603i −0.454515 0.787243i
\(874\) 0 0
\(875\) −3.75323 2.08890i −0.126882 0.0706178i
\(876\) 0 0
\(877\) −1.92741 + 40.4614i −0.0650841 + 1.36628i 0.696192 + 0.717855i \(0.254876\pi\)
−0.761276 + 0.648428i \(0.775427\pi\)
\(878\) 0 0
\(879\) 14.5232 10.3419i 0.489855 0.348824i
\(880\) 0 0
\(881\) 0.843431 + 0.247654i 0.0284159 + 0.00834367i 0.295910 0.955216i \(-0.404377\pi\)
−0.267494 + 0.963560i \(0.586195\pi\)
\(882\) 0 0
\(883\) −0.933268 2.04357i −0.0314070 0.0687717i 0.893278 0.449504i \(-0.148399\pi\)
−0.924685 + 0.380732i \(0.875672\pi\)
\(884\) 0 0
\(885\) 1.81911 + 5.25599i 0.0611489 + 0.176678i
\(886\) 0 0
\(887\) 14.8313 15.5546i 0.497987 0.522274i −0.425987 0.904729i \(-0.640073\pi\)
0.923974 + 0.382455i \(0.124921\pi\)
\(888\) 0 0
\(889\) 30.7917 1.95273i 1.03272 0.0654924i
\(890\) 0 0
\(891\) −8.83695 11.2371i −0.296049 0.376457i
\(892\) 0 0
\(893\) 5.39209 6.85660i 0.180439 0.229447i
\(894\) 0 0
\(895\) 18.5398 + 21.3960i 0.619716 + 0.715191i
\(896\) 0 0
\(897\) −5.17434 + 8.04935i −0.172766 + 0.268760i
\(898\) 0 0
\(899\) 5.04832 + 26.1932i 0.168371 + 0.873592i
\(900\) 0 0
\(901\) 2.29993 + 5.74495i 0.0766218 + 0.191392i
\(902\) 0 0
\(903\) −1.73354 2.13439i −0.0576886 0.0710282i
\(904\) 0 0
\(905\) −38.4064 19.7999i −1.27667 0.658170i
\(906\) 0 0
\(907\) 44.3957 + 10.7703i 1.47414 + 0.357621i 0.890720 0.454553i \(-0.150201\pi\)
0.583415 + 0.812174i \(0.301716\pi\)
\(908\) 0 0
\(909\) −7.59921 6.58475i −0.252050 0.218402i
\(910\) 0 0
\(911\) 42.2237 19.2829i 1.39893 0.638872i 0.433892 0.900965i \(-0.357140\pi\)
0.965043 + 0.262093i \(0.0844126\pi\)
\(912\) 0 0
\(913\) −7.85479 8.23787i −0.259956 0.272634i
\(914\) 0 0
\(915\) 0.957230 + 10.0246i 0.0316451 + 0.331402i
\(916\) 0 0
\(917\) −26.6845 16.5618i −0.881199 0.546917i
\(918\) 0 0
\(919\) 17.0444 9.84060i 0.562243 0.324611i −0.191802 0.981434i \(-0.561433\pi\)
0.754045 + 0.656822i \(0.228100\pi\)
\(920\) 0 0
\(921\) 5.03891 8.72765i 0.166038 0.287586i
\(922\) 0 0
\(923\) 20.4732 31.8569i 0.673883 1.04858i
\(924\) 0 0
\(925\) −5.25524 2.39999i −0.172791 0.0789110i
\(926\) 0 0
\(927\) −32.7719 + 31.2479i −1.07637 + 1.02632i
\(928\) 0 0
\(929\) −7.51432 5.35092i −0.246537 0.175558i 0.450108 0.892974i \(-0.351385\pi\)
−0.696645 + 0.717416i \(0.745325\pi\)
\(930\) 0 0
\(931\) −11.6538 30.5284i −0.381939 1.00053i
\(932\) 0 0
\(933\) 6.97742 + 6.65296i 0.228431 + 0.217808i
\(934\) 0 0
\(935\) −21.9813 + 1.04710i −0.718867 + 0.0342439i
\(936\) 0 0
\(937\) 2.70127 + 18.7877i 0.0882466 + 0.613768i 0.985170 + 0.171582i \(0.0548879\pi\)
−0.896923 + 0.442186i \(0.854203\pi\)
\(938\) 0 0
\(939\) −16.7433 2.40732i −0.546395 0.0785598i
\(940\) 0 0
\(941\) −4.83870 + 0.932584i −0.157737 + 0.0304014i −0.267508 0.963556i \(-0.586200\pi\)
0.109771 + 0.993957i \(0.464988\pi\)
\(942\) 0 0
\(943\) 36.9849 + 7.13277i 1.20440 + 0.232275i
\(944\) 0 0
\(945\) 18.3209 + 20.4833i 0.595979 + 0.666320i
\(946\) 0 0
\(947\) 44.2318 17.7077i 1.43734 0.575424i 0.483394 0.875403i \(-0.339404\pi\)
0.953946 + 0.299979i \(0.0969798\pi\)
\(948\) 0 0
\(949\) 36.3274 + 14.5433i 1.17924 + 0.472095i
\(950\) 0 0
\(951\) 9.75022 + 15.1716i 0.316172 + 0.491974i
\(952\) 0 0
\(953\) 2.49652 + 8.50236i 0.0808702 + 0.275418i 0.989994 0.141107i \(-0.0450660\pi\)
−0.909124 + 0.416525i \(0.863248\pi\)
\(954\) 0 0
\(955\) 55.9624 19.3688i 1.81090 0.626759i
\(956\) 0 0
\(957\) −2.75285 + 3.86583i −0.0889869 + 0.124965i
\(958\) 0 0
\(959\) −5.14069 19.8236i −0.166001 0.640138i
\(960\) 0 0
\(961\) 35.0200 3.34400i 1.12968 0.107871i
\(962\) 0 0
\(963\) −0.874586 1.69646i −0.0281832 0.0546677i
\(964\) 0 0
\(965\) 37.6179 1.21096
\(966\) 0 0
\(967\) −6.86472 −0.220755 −0.110377 0.993890i \(-0.535206\pi\)
−0.110377 + 0.993890i \(0.535206\pi\)
\(968\) 0 0
\(969\) 3.78082 + 7.33377i 0.121457 + 0.235594i
\(970\) 0 0
\(971\) 38.9122 3.71567i 1.24875 0.119241i 0.550343 0.834939i \(-0.314497\pi\)
0.698411 + 0.715697i \(0.253891\pi\)
\(972\) 0 0
\(973\) −0.860277 + 0.846508i −0.0275792 + 0.0271378i
\(974\) 0 0
\(975\) 5.17636 7.26918i 0.165776 0.232800i
\(976\) 0 0
\(977\) 11.6420 4.02935i 0.372462 0.128910i −0.134423 0.990924i \(-0.542918\pi\)
0.506885 + 0.862014i \(0.330797\pi\)
\(978\) 0 0
\(979\) 2.99473 + 10.1991i 0.0957121 + 0.325965i
\(980\) 0 0
\(981\) 24.4409 + 38.0308i 0.780339 + 1.21423i
\(982\) 0 0
\(983\) 41.4141 + 16.5797i 1.32090 + 0.528810i 0.921647 0.388029i \(-0.126844\pi\)
0.399257 + 0.916839i \(0.369268\pi\)
\(984\) 0 0
\(985\) 74.7629 29.9305i 2.38214 0.953666i
\(986\) 0 0
\(987\) −0.605244 2.89449i −0.0192651 0.0921326i
\(988\) 0 0
\(989\) 2.72633 7.87424i 0.0866924 0.250386i
\(990\) 0 0
\(991\) −48.2497 + 9.29937i −1.53270 + 0.295404i −0.884673 0.466211i \(-0.845619\pi\)
−0.648029 + 0.761616i \(0.724406\pi\)
\(992\) 0 0
\(993\) −2.87392 0.413208i −0.0912012 0.0131127i
\(994\) 0 0
\(995\) 1.43853 + 10.0052i 0.0456045 + 0.317186i
\(996\) 0 0
\(997\) 25.4859 1.21404i 0.807147 0.0384491i 0.360048 0.932934i \(-0.382760\pi\)
0.447099 + 0.894485i \(0.352457\pi\)
\(998\) 0 0
\(999\) −3.15508 3.00836i −0.0998222 0.0951803i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 644.2.bc.a.493.10 yes 320
7.5 odd 6 inner 644.2.bc.a.33.10 320
23.7 odd 22 inner 644.2.bc.a.605.10 yes 320
161.145 even 66 inner 644.2.bc.a.145.10 yes 320
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
644.2.bc.a.33.10 320 7.5 odd 6 inner
644.2.bc.a.145.10 yes 320 161.145 even 66 inner
644.2.bc.a.493.10 yes 320 1.1 even 1 trivial
644.2.bc.a.605.10 yes 320 23.7 odd 22 inner