Properties

Label 648.4.i.k.217.1
Level $648$
Weight $4$
Character 648.217
Analytic conductor $38.233$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,4,Mod(217,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.217");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 648.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2332376837\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 217.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 648.217
Dual form 648.4.i.k.433.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.00000 + 12.1244i) q^{5} +(12.0000 - 20.7846i) q^{7} +(-14.0000 + 24.2487i) q^{11} +(37.0000 + 64.0859i) q^{13} -82.0000 q^{17} +92.0000 q^{19} +(4.00000 + 6.92820i) q^{23} +(-35.5000 + 61.4878i) q^{25} +(-69.0000 + 119.512i) q^{29} +(-40.0000 - 69.2820i) q^{31} +336.000 q^{35} +30.0000 q^{37} +(141.000 + 244.219i) q^{41} +(-2.00000 + 3.46410i) q^{43} +(120.000 - 207.846i) q^{47} +(-116.500 - 201.784i) q^{49} +130.000 q^{53} -392.000 q^{55} +(298.000 + 516.151i) q^{59} +(109.000 - 188.794i) q^{61} +(-518.000 + 897.202i) q^{65} +(218.000 + 377.587i) q^{67} -856.000 q^{71} -998.000 q^{73} +(336.000 + 581.969i) q^{77} +(16.0000 - 27.7128i) q^{79} +(-754.000 + 1305.97i) q^{83} +(-574.000 - 994.197i) q^{85} +246.000 q^{89} +1776.00 q^{91} +(644.000 + 1115.44i) q^{95} +(-433.000 + 749.978i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{5} + 24 q^{7} - 28 q^{11} + 74 q^{13} - 164 q^{17} + 184 q^{19} + 8 q^{23} - 71 q^{25} - 138 q^{29} - 80 q^{31} + 672 q^{35} + 60 q^{37} + 282 q^{41} - 4 q^{43} + 240 q^{47} - 233 q^{49} + 260 q^{53}+ \cdots - 866 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 7.00000 + 12.1244i 0.626099 + 1.08444i 0.988327 + 0.152346i \(0.0486828\pi\)
−0.362228 + 0.932089i \(0.617984\pi\)
\(6\) 0 0
\(7\) 12.0000 20.7846i 0.647939 1.12226i −0.335675 0.941978i \(-0.608964\pi\)
0.983614 0.180286i \(-0.0577022\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −14.0000 + 24.2487i −0.383742 + 0.664660i −0.991594 0.129390i \(-0.958698\pi\)
0.607852 + 0.794050i \(0.292031\pi\)
\(12\) 0 0
\(13\) 37.0000 + 64.0859i 0.789381 + 1.36725i 0.926347 + 0.376672i \(0.122932\pi\)
−0.136966 + 0.990576i \(0.543735\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −82.0000 −1.16988 −0.584939 0.811077i \(-0.698882\pi\)
−0.584939 + 0.811077i \(0.698882\pi\)
\(18\) 0 0
\(19\) 92.0000 1.11086 0.555428 0.831565i \(-0.312555\pi\)
0.555428 + 0.831565i \(0.312555\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 + 6.92820i 0.0362634 + 0.0628100i 0.883587 0.468266i \(-0.155121\pi\)
−0.847324 + 0.531076i \(0.821788\pi\)
\(24\) 0 0
\(25\) −35.5000 + 61.4878i −0.284000 + 0.491902i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −69.0000 + 119.512i −0.441827 + 0.765267i −0.997825 0.0659169i \(-0.979003\pi\)
0.555998 + 0.831183i \(0.312336\pi\)
\(30\) 0 0
\(31\) −40.0000 69.2820i −0.231749 0.401401i 0.726574 0.687088i \(-0.241111\pi\)
−0.958323 + 0.285688i \(0.907778\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 336.000 1.62270
\(36\) 0 0
\(37\) 30.0000 0.133296 0.0666482 0.997777i \(-0.478769\pi\)
0.0666482 + 0.997777i \(0.478769\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 141.000 + 244.219i 0.537085 + 0.930259i 0.999059 + 0.0433656i \(0.0138080\pi\)
−0.461974 + 0.886894i \(0.652859\pi\)
\(42\) 0 0
\(43\) −2.00000 + 3.46410i −0.00709296 + 0.0122854i −0.869550 0.493845i \(-0.835591\pi\)
0.862457 + 0.506130i \(0.168924\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 120.000 207.846i 0.372421 0.645053i −0.617516 0.786558i \(-0.711861\pi\)
0.989937 + 0.141506i \(0.0451943\pi\)
\(48\) 0 0
\(49\) −116.500 201.784i −0.339650 0.588291i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 130.000 0.336922 0.168461 0.985708i \(-0.446120\pi\)
0.168461 + 0.985708i \(0.446120\pi\)
\(54\) 0 0
\(55\) −392.000 −0.961041
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 298.000 + 516.151i 0.657564 + 1.13893i 0.981244 + 0.192768i \(0.0617465\pi\)
−0.323680 + 0.946167i \(0.604920\pi\)
\(60\) 0 0
\(61\) 109.000 188.794i 0.228787 0.396271i −0.728662 0.684874i \(-0.759857\pi\)
0.957449 + 0.288603i \(0.0931907\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −518.000 + 897.202i −0.988461 + 1.71207i
\(66\) 0 0
\(67\) 218.000 + 377.587i 0.397507 + 0.688502i 0.993418 0.114549i \(-0.0365423\pi\)
−0.595911 + 0.803050i \(0.703209\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −856.000 −1.43082 −0.715412 0.698703i \(-0.753761\pi\)
−0.715412 + 0.698703i \(0.753761\pi\)
\(72\) 0 0
\(73\) −998.000 −1.60010 −0.800048 0.599935i \(-0.795193\pi\)
−0.800048 + 0.599935i \(0.795193\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 336.000 + 581.969i 0.497283 + 0.861319i
\(78\) 0 0
\(79\) 16.0000 27.7128i 0.0227866 0.0394675i −0.854407 0.519604i \(-0.826080\pi\)
0.877194 + 0.480136i \(0.159413\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −754.000 + 1305.97i −0.997136 + 1.72709i −0.433066 + 0.901362i \(0.642568\pi\)
−0.564070 + 0.825727i \(0.690765\pi\)
\(84\) 0 0
\(85\) −574.000 994.197i −0.732459 1.26866i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 246.000 0.292988 0.146494 0.989212i \(-0.453201\pi\)
0.146494 + 0.989212i \(0.453201\pi\)
\(90\) 0 0
\(91\) 1776.00 2.04588
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 644.000 + 1115.44i 0.695505 + 1.20465i
\(96\) 0 0
\(97\) −433.000 + 749.978i −0.453242 + 0.785038i −0.998585 0.0531745i \(-0.983066\pi\)
0.545343 + 0.838213i \(0.316399\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 135.000 233.827i 0.133000 0.230363i −0.791832 0.610739i \(-0.790872\pi\)
0.924832 + 0.380377i \(0.124206\pi\)
\(102\) 0 0
\(103\) 748.000 + 1295.57i 0.715560 + 1.23939i 0.962743 + 0.270417i \(0.0871615\pi\)
−0.247184 + 0.968969i \(0.579505\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1692.00 1.52871 0.764354 0.644797i \(-0.223058\pi\)
0.764354 + 0.644797i \(0.223058\pi\)
\(108\) 0 0
\(109\) 406.000 0.356768 0.178384 0.983961i \(-0.442913\pi\)
0.178384 + 0.983961i \(0.442913\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 393.000 + 680.696i 0.327171 + 0.566677i 0.981949 0.189144i \(-0.0605713\pi\)
−0.654778 + 0.755821i \(0.727238\pi\)
\(114\) 0 0
\(115\) −56.0000 + 96.9948i −0.0454089 + 0.0786506i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −984.000 + 1704.34i −0.758010 + 1.31291i
\(120\) 0 0
\(121\) 273.500 + 473.716i 0.205485 + 0.355910i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 756.000 0.540950
\(126\) 0 0
\(127\) 1744.00 1.21854 0.609272 0.792962i \(-0.291462\pi\)
0.609272 + 0.792962i \(0.291462\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 326.000 + 564.649i 0.217426 + 0.376592i 0.954020 0.299742i \(-0.0969007\pi\)
−0.736595 + 0.676335i \(0.763567\pi\)
\(132\) 0 0
\(133\) 1104.00 1912.18i 0.719766 1.24667i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 765.000 1325.02i 0.477068 0.826307i −0.522586 0.852586i \(-0.675033\pi\)
0.999655 + 0.0262798i \(0.00836609\pi\)
\(138\) 0 0
\(139\) −258.000 446.869i −0.157434 0.272683i 0.776509 0.630106i \(-0.216989\pi\)
−0.933943 + 0.357423i \(0.883655\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2072.00 −1.21167
\(144\) 0 0
\(145\) −1932.00 −1.10651
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 671.000 + 1162.21i 0.368929 + 0.639004i 0.989398 0.145227i \(-0.0463911\pi\)
−0.620469 + 0.784231i \(0.713058\pi\)
\(150\) 0 0
\(151\) 212.000 367.195i 0.114254 0.197893i −0.803227 0.595672i \(-0.796886\pi\)
0.917481 + 0.397779i \(0.130219\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 560.000 969.948i 0.290195 0.502633i
\(156\) 0 0
\(157\) −131.000 226.899i −0.0665920 0.115341i 0.830807 0.556560i \(-0.187879\pi\)
−0.897399 + 0.441220i \(0.854546\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 192.000 0.0939858
\(162\) 0 0
\(163\) −2292.00 −1.10137 −0.550685 0.834713i \(-0.685633\pi\)
−0.550685 + 0.834713i \(0.685633\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −948.000 1641.98i −0.439272 0.760842i 0.558361 0.829598i \(-0.311430\pi\)
−0.997633 + 0.0687562i \(0.978097\pi\)
\(168\) 0 0
\(169\) −1639.50 + 2839.70i −0.746245 + 1.29253i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1437.00 + 2488.96i −0.631521 + 1.09383i 0.355720 + 0.934592i \(0.384236\pi\)
−0.987241 + 0.159234i \(0.949098\pi\)
\(174\) 0 0
\(175\) 852.000 + 1475.71i 0.368029 + 0.637446i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1188.00 0.496063 0.248032 0.968752i \(-0.420216\pi\)
0.248032 + 0.968752i \(0.420216\pi\)
\(180\) 0 0
\(181\) −3474.00 −1.42663 −0.713316 0.700843i \(-0.752808\pi\)
−0.713316 + 0.700843i \(0.752808\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 210.000 + 363.731i 0.0834568 + 0.144551i
\(186\) 0 0
\(187\) 1148.00 1988.39i 0.448931 0.777571i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 96.0000 166.277i 0.0363681 0.0629915i −0.847268 0.531165i \(-0.821754\pi\)
0.883637 + 0.468173i \(0.155088\pi\)
\(192\) 0 0
\(193\) −2401.00 4158.65i −0.895481 1.55102i −0.833209 0.552959i \(-0.813499\pi\)
−0.0622720 0.998059i \(-0.519835\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1518.00 −0.549000 −0.274500 0.961587i \(-0.588512\pi\)
−0.274500 + 0.961587i \(0.588512\pi\)
\(198\) 0 0
\(199\) 5128.00 1.82670 0.913352 0.407170i \(-0.133484\pi\)
0.913352 + 0.407170i \(0.133484\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1656.00 + 2868.28i 0.572554 + 0.991692i
\(204\) 0 0
\(205\) −1974.00 + 3419.07i −0.672537 + 1.16487i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1288.00 + 2230.88i −0.426281 + 0.738341i
\(210\) 0 0
\(211\) −542.000 938.772i −0.176838 0.306292i 0.763958 0.645266i \(-0.223254\pi\)
−0.940796 + 0.338974i \(0.889920\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −56.0000 −0.0177636
\(216\) 0 0
\(217\) −1920.00 −0.600636
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3034.00 5255.04i −0.923479 1.59951i
\(222\) 0 0
\(223\) −344.000 + 595.825i −0.103300 + 0.178921i −0.913042 0.407865i \(-0.866274\pi\)
0.809742 + 0.586786i \(0.199607\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2406.00 4167.31i 0.703488 1.21848i −0.263746 0.964592i \(-0.584958\pi\)
0.967234 0.253885i \(-0.0817086\pi\)
\(228\) 0 0
\(229\) −1247.00 2159.87i −0.359843 0.623267i 0.628091 0.778140i \(-0.283836\pi\)
−0.987934 + 0.154873i \(0.950503\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −698.000 −0.196255 −0.0981277 0.995174i \(-0.531285\pi\)
−0.0981277 + 0.995174i \(0.531285\pi\)
\(234\) 0 0
\(235\) 3360.00 0.932690
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3160.00 5473.28i −0.855244 1.48133i −0.876418 0.481551i \(-0.840074\pi\)
0.0211737 0.999776i \(-0.493260\pi\)
\(240\) 0 0
\(241\) 3255.00 5637.83i 0.870012 1.50691i 0.00802978 0.999968i \(-0.497444\pi\)
0.861983 0.506938i \(-0.169223\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1631.00 2824.97i 0.425309 0.736657i
\(246\) 0 0
\(247\) 3404.00 + 5895.90i 0.876888 + 1.51881i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −628.000 −0.157924 −0.0789622 0.996878i \(-0.525161\pi\)
−0.0789622 + 0.996878i \(0.525161\pi\)
\(252\) 0 0
\(253\) −224.000 −0.0556631
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2431.00 4210.62i −0.590045 1.02199i −0.994226 0.107309i \(-0.965777\pi\)
0.404181 0.914679i \(-0.367557\pi\)
\(258\) 0 0
\(259\) 360.000 623.538i 0.0863680 0.149594i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2908.00 5036.80i 0.681806 1.18092i −0.292623 0.956228i \(-0.594528\pi\)
0.974429 0.224695i \(-0.0721385\pi\)
\(264\) 0 0
\(265\) 910.000 + 1576.17i 0.210947 + 0.365370i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3526.00 −0.799197 −0.399599 0.916690i \(-0.630850\pi\)
−0.399599 + 0.916690i \(0.630850\pi\)
\(270\) 0 0
\(271\) −256.000 −0.0573834 −0.0286917 0.999588i \(-0.509134\pi\)
−0.0286917 + 0.999588i \(0.509134\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −994.000 1721.66i −0.217965 0.377527i
\(276\) 0 0
\(277\) −71.0000 + 122.976i −0.0154006 + 0.0266747i −0.873623 0.486603i \(-0.838236\pi\)
0.858222 + 0.513278i \(0.171569\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4421.00 7657.40i 0.938558 1.62563i 0.170394 0.985376i \(-0.445496\pi\)
0.768163 0.640254i \(-0.221171\pi\)
\(282\) 0 0
\(283\) 3590.00 + 6218.06i 0.754075 + 1.30610i 0.945833 + 0.324655i \(0.105248\pi\)
−0.191757 + 0.981442i \(0.561419\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6768.00 1.39199
\(288\) 0 0
\(289\) 1811.00 0.368614
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3687.00 + 6386.07i 0.735143 + 1.27330i 0.954661 + 0.297696i \(0.0962182\pi\)
−0.219518 + 0.975608i \(0.570448\pi\)
\(294\) 0 0
\(295\) −4172.00 + 7226.12i −0.823401 + 1.42617i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −296.000 + 512.687i −0.0572512 + 0.0991621i
\(300\) 0 0
\(301\) 48.0000 + 83.1384i 0.00919161 + 0.0159203i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3052.00 0.572974
\(306\) 0 0
\(307\) 1500.00 0.278858 0.139429 0.990232i \(-0.455473\pi\)
0.139429 + 0.990232i \(0.455473\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3804.00 6588.72i −0.693585 1.20133i −0.970655 0.240475i \(-0.922697\pi\)
0.277070 0.960850i \(-0.410637\pi\)
\(312\) 0 0
\(313\) 2379.00 4120.55i 0.429614 0.744112i −0.567225 0.823563i \(-0.691983\pi\)
0.996839 + 0.0794502i \(0.0253165\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2187.00 3788.00i 0.387489 0.671151i −0.604622 0.796513i \(-0.706676\pi\)
0.992111 + 0.125361i \(0.0400090\pi\)
\(318\) 0 0
\(319\) −1932.00 3346.32i −0.339095 0.587329i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7544.00 −1.29956
\(324\) 0 0
\(325\) −5254.00 −0.896737
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2880.00 4988.31i −0.482613 0.835910i
\(330\) 0 0
\(331\) 3902.00 6758.46i 0.647956 1.12229i −0.335655 0.941985i \(-0.608958\pi\)
0.983610 0.180307i \(-0.0577091\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3052.00 + 5286.22i −0.497757 + 0.862140i
\(336\) 0 0
\(337\) −2553.00 4421.93i −0.412673 0.714770i 0.582508 0.812825i \(-0.302071\pi\)
−0.995181 + 0.0980544i \(0.968738\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2240.00 0.355727
\(342\) 0 0
\(343\) 2640.00 0.415588
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2358.00 4084.18i −0.364796 0.631845i 0.623948 0.781466i \(-0.285528\pi\)
−0.988743 + 0.149622i \(0.952194\pi\)
\(348\) 0 0
\(349\) −3651.00 + 6323.72i −0.559982 + 0.969916i 0.437516 + 0.899211i \(0.355858\pi\)
−0.997497 + 0.0707057i \(0.977475\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2191.00 + 3794.92i −0.330355 + 0.572191i −0.982581 0.185833i \(-0.940502\pi\)
0.652227 + 0.758024i \(0.273835\pi\)
\(354\) 0 0
\(355\) −5992.00 10378.4i −0.895838 1.55164i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7224.00 −1.06203 −0.531014 0.847363i \(-0.678189\pi\)
−0.531014 + 0.847363i \(0.678189\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6986.00 12100.1i −1.00182 1.73520i
\(366\) 0 0
\(367\) −704.000 + 1219.36i −0.100132 + 0.173434i −0.911739 0.410770i \(-0.865260\pi\)
0.811607 + 0.584204i \(0.198593\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1560.00 2702.00i 0.218305 0.378115i
\(372\) 0 0
\(373\) 857.000 + 1484.37i 0.118965 + 0.206053i 0.919358 0.393423i \(-0.128709\pi\)
−0.800393 + 0.599476i \(0.795376\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10212.0 −1.39508
\(378\) 0 0
\(379\) 884.000 0.119810 0.0599051 0.998204i \(-0.480920\pi\)
0.0599051 + 0.998204i \(0.480920\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5184.00 + 8978.95i 0.691619 + 1.19792i 0.971307 + 0.237828i \(0.0764355\pi\)
−0.279688 + 0.960091i \(0.590231\pi\)
\(384\) 0 0
\(385\) −4704.00 + 8147.57i −0.622696 + 1.07854i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 199.000 344.678i 0.0259375 0.0449251i −0.852765 0.522294i \(-0.825076\pi\)
0.878703 + 0.477369i \(0.158410\pi\)
\(390\) 0 0
\(391\) −328.000 568.113i −0.0424237 0.0734800i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 448.000 0.0570666
\(396\) 0 0
\(397\) −5098.00 −0.644487 −0.322243 0.946657i \(-0.604437\pi\)
−0.322243 + 0.946657i \(0.604437\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5001.00 + 8661.99i 0.622788 + 1.07870i 0.988964 + 0.148155i \(0.0473335\pi\)
−0.366176 + 0.930546i \(0.619333\pi\)
\(402\) 0 0
\(403\) 2960.00 5126.87i 0.365876 0.633716i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −420.000 + 727.461i −0.0511514 + 0.0885969i
\(408\) 0 0
\(409\) 4635.00 + 8028.06i 0.560357 + 0.970567i 0.997465 + 0.0711578i \(0.0226694\pi\)
−0.437108 + 0.899409i \(0.643997\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14304.0 1.70425
\(414\) 0 0
\(415\) −21112.0 −2.49722
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3258.00 5643.02i −0.379866 0.657947i 0.611177 0.791494i \(-0.290696\pi\)
−0.991042 + 0.133548i \(0.957363\pi\)
\(420\) 0 0
\(421\) 1313.00 2274.18i 0.151999 0.263271i −0.779963 0.625826i \(-0.784762\pi\)
0.931962 + 0.362555i \(0.118096\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2911.00 5042.00i 0.332245 0.575466i
\(426\) 0 0
\(427\) −2616.00 4531.04i −0.296480 0.513519i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4304.00 0.481012 0.240506 0.970648i \(-0.422687\pi\)
0.240506 + 0.970648i \(0.422687\pi\)
\(432\) 0 0
\(433\) 11794.0 1.30897 0.654484 0.756076i \(-0.272886\pi\)
0.654484 + 0.756076i \(0.272886\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 368.000 + 637.395i 0.0402834 + 0.0697728i
\(438\) 0 0
\(439\) 2772.00 4801.24i 0.301368 0.521984i −0.675078 0.737746i \(-0.735890\pi\)
0.976446 + 0.215762i \(0.0692236\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1894.00 + 3280.50i −0.203130 + 0.351832i −0.949535 0.313660i \(-0.898445\pi\)
0.746405 + 0.665492i \(0.231778\pi\)
\(444\) 0 0
\(445\) 1722.00 + 2982.59i 0.183440 + 0.317727i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13342.0 1.40233 0.701167 0.712997i \(-0.252663\pi\)
0.701167 + 0.712997i \(0.252663\pi\)
\(450\) 0 0
\(451\) −7896.00 −0.824408
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12432.0 + 21532.9i 1.28093 + 2.21863i
\(456\) 0 0
\(457\) 2195.00 3801.85i 0.224678 0.389153i −0.731545 0.681793i \(-0.761200\pi\)
0.956223 + 0.292640i \(0.0945337\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2899.00 5021.22i 0.292885 0.507291i −0.681606 0.731720i \(-0.738718\pi\)
0.974491 + 0.224428i \(0.0720514\pi\)
\(462\) 0 0
\(463\) 7328.00 + 12692.5i 0.735553 + 1.27402i 0.954480 + 0.298274i \(0.0964109\pi\)
−0.218927 + 0.975741i \(0.570256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8412.00 −0.833535 −0.416768 0.909013i \(-0.636837\pi\)
−0.416768 + 0.909013i \(0.636837\pi\)
\(468\) 0 0
\(469\) 10464.0 1.03024
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −56.0000 96.9948i −0.00544373 0.00942881i
\(474\) 0 0
\(475\) −3266.00 + 5656.88i −0.315483 + 0.546432i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7424.00 12858.7i 0.708165 1.22658i −0.257372 0.966313i \(-0.582856\pi\)
0.965537 0.260266i \(-0.0838102\pi\)
\(480\) 0 0
\(481\) 1110.00 + 1922.58i 0.105222 + 0.182249i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12124.0 −1.13510
\(486\) 0 0
\(487\) 18568.0 1.72771 0.863857 0.503738i \(-0.168042\pi\)
0.863857 + 0.503738i \(0.168042\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7182.00 12439.6i −0.660120 1.14336i −0.980584 0.196101i \(-0.937172\pi\)
0.320463 0.947261i \(-0.396161\pi\)
\(492\) 0 0
\(493\) 5658.00 9799.94i 0.516883 0.895268i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10272.0 + 17791.6i −0.927087 + 1.60576i
\(498\) 0 0
\(499\) −10830.0 18758.1i −0.971578 1.68282i −0.690794 0.723051i \(-0.742739\pi\)
−0.280783 0.959771i \(-0.590594\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17112.0 1.51687 0.758436 0.651748i \(-0.225964\pi\)
0.758436 + 0.651748i \(0.225964\pi\)
\(504\) 0 0
\(505\) 3780.00 0.333085
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5739.00 + 9940.24i 0.499758 + 0.865606i 1.00000 0.000279686i \(-8.90267e-5\pi\)
−0.500242 + 0.865886i \(0.666756\pi\)
\(510\) 0 0
\(511\) −11976.0 + 20743.0i −1.03677 + 1.79573i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10472.0 + 18138.0i −0.896022 + 1.55196i
\(516\) 0 0
\(517\) 3360.00 + 5819.69i 0.285827 + 0.495067i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13114.0 −1.10275 −0.551377 0.834256i \(-0.685897\pi\)
−0.551377 + 0.834256i \(0.685897\pi\)
\(522\) 0 0
\(523\) −4508.00 −0.376905 −0.188452 0.982082i \(-0.560347\pi\)
−0.188452 + 0.982082i \(0.560347\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3280.00 + 5681.13i 0.271118 + 0.469590i
\(528\) 0 0
\(529\) 6051.50 10481.5i 0.497370 0.861470i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10434.0 + 18072.2i −0.847930 + 1.46866i
\(534\) 0 0
\(535\) 11844.0 + 20514.4i 0.957123 + 1.65779i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6524.00 0.521352
\(540\) 0 0
\(541\) 22950.0 1.82384 0.911920 0.410368i \(-0.134600\pi\)
0.911920 + 0.410368i \(0.134600\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2842.00 + 4922.49i 0.223372 + 0.386892i
\(546\) 0 0
\(547\) 3290.00 5698.45i 0.257167 0.445426i −0.708315 0.705897i \(-0.750544\pi\)
0.965482 + 0.260471i \(0.0838777\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6348.00 + 10995.1i −0.490806 + 0.850100i
\(552\) 0 0
\(553\) −384.000 665.108i −0.0295286 0.0511451i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7046.00 −0.535994 −0.267997 0.963420i \(-0.586362\pi\)
−0.267997 + 0.963420i \(0.586362\pi\)
\(558\) 0 0
\(559\) −296.000 −0.0223962
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4126.00 + 7146.44i 0.308864 + 0.534967i 0.978114 0.208070i \(-0.0667180\pi\)
−0.669251 + 0.743037i \(0.733385\pi\)
\(564\) 0 0
\(565\) −5502.00 + 9529.74i −0.409683 + 0.709592i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3419.00 + 5921.88i −0.251901 + 0.436306i −0.964049 0.265723i \(-0.914389\pi\)
0.712148 + 0.702030i \(0.247723\pi\)
\(570\) 0 0
\(571\) −11658.0 20192.2i −0.854417 1.47989i −0.877185 0.480153i \(-0.840581\pi\)
0.0227678 0.999741i \(-0.492752\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −568.000 −0.0411952
\(576\) 0 0
\(577\) −10558.0 −0.761760 −0.380880 0.924625i \(-0.624379\pi\)
−0.380880 + 0.924625i \(0.624379\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 18096.0 + 31343.2i 1.29217 + 2.23810i
\(582\) 0 0
\(583\) −1820.00 + 3152.33i −0.129291 + 0.223939i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 514.000 890.274i 0.0361415 0.0625989i −0.847389 0.530973i \(-0.821827\pi\)
0.883530 + 0.468374i \(0.155160\pi\)
\(588\) 0 0
\(589\) −3680.00 6373.95i −0.257439 0.445898i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1202.00 −0.0832382 −0.0416191 0.999134i \(-0.513252\pi\)
−0.0416191 + 0.999134i \(0.513252\pi\)
\(594\) 0 0
\(595\) −27552.0 −1.89836
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1788.00 3096.91i −0.121963 0.211246i 0.798579 0.601890i \(-0.205586\pi\)
−0.920542 + 0.390644i \(0.872252\pi\)
\(600\) 0 0
\(601\) −4325.00 + 7491.12i −0.293545 + 0.508435i −0.974645 0.223755i \(-0.928168\pi\)
0.681101 + 0.732190i \(0.261502\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3829.00 + 6632.02i −0.257307 + 0.445670i
\(606\) 0 0
\(607\) −6328.00 10960.4i −0.423139 0.732899i 0.573105 0.819482i \(-0.305739\pi\)
−0.996245 + 0.0865829i \(0.972405\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17760.0 1.17593
\(612\) 0 0
\(613\) −3298.00 −0.217300 −0.108650 0.994080i \(-0.534653\pi\)
−0.108650 + 0.994080i \(0.534653\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2685.00 + 4650.56i 0.175193 + 0.303443i 0.940228 0.340546i \(-0.110612\pi\)
−0.765035 + 0.643989i \(0.777278\pi\)
\(618\) 0 0
\(619\) 8110.00 14046.9i 0.526605 0.912106i −0.472915 0.881108i \(-0.656798\pi\)
0.999519 0.0309981i \(-0.00986859\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2952.00 5113.01i 0.189838 0.328810i
\(624\) 0 0
\(625\) 9729.50 + 16852.0i 0.622688 + 1.07853i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2460.00 −0.155941
\(630\) 0 0
\(631\) −20360.0 −1.28450 −0.642249 0.766496i \(-0.721999\pi\)
−0.642249 + 0.766496i \(0.721999\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12208.0 + 21144.9i 0.762929 + 1.32143i
\(636\) 0 0
\(637\) 8621.00 14932.0i 0.536227 0.928772i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7249.00 12555.6i 0.446674 0.773663i −0.551493 0.834180i \(-0.685942\pi\)
0.998167 + 0.0605169i \(0.0192749\pi\)
\(642\) 0 0
\(643\) −10806.0 18716.5i −0.662748 1.14791i −0.979891 0.199536i \(-0.936057\pi\)
0.317142 0.948378i \(-0.397277\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12184.0 −0.740344 −0.370172 0.928963i \(-0.620701\pi\)
−0.370172 + 0.928963i \(0.620701\pi\)
\(648\) 0 0
\(649\) −16688.0 −1.00934
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14061.0 24354.4i −0.842648 1.45951i −0.887648 0.460523i \(-0.847662\pi\)
0.0449993 0.998987i \(-0.485671\pi\)
\(654\) 0 0
\(655\) −4564.00 + 7905.08i −0.272260 + 0.471568i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2850.00 + 4936.34i −0.168468 + 0.291795i −0.937881 0.346956i \(-0.887215\pi\)
0.769414 + 0.638751i \(0.220549\pi\)
\(660\) 0 0
\(661\) 14729.0 + 25511.4i 0.866705 + 1.50118i 0.865345 + 0.501177i \(0.167100\pi\)
0.00135988 + 0.999999i \(0.499567\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 30912.0 1.80258
\(666\) 0 0
\(667\) −1104.00 −0.0640885
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3052.00 + 5286.22i 0.175590 + 0.304131i
\(672\) 0 0
\(673\) −9905.00 + 17156.0i −0.567325 + 0.982636i 0.429504 + 0.903065i \(0.358688\pi\)
−0.996829 + 0.0795708i \(0.974645\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5225.00 + 9049.97i −0.296622 + 0.513764i −0.975361 0.220615i \(-0.929193\pi\)
0.678739 + 0.734380i \(0.262527\pi\)
\(678\) 0 0
\(679\) 10392.0 + 17999.5i 0.587347 + 1.01731i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −23300.0 −1.30534 −0.652672 0.757641i \(-0.726352\pi\)
−0.652672 + 0.757641i \(0.726352\pi\)
\(684\) 0 0
\(685\) 21420.0 1.19477
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4810.00 + 8331.16i 0.265960 + 0.460656i
\(690\) 0 0
\(691\) 7106.00 12308.0i 0.391208 0.677593i −0.601401 0.798947i \(-0.705391\pi\)
0.992609 + 0.121355i \(0.0387238\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3612.00 6256.17i 0.197138 0.341453i
\(696\) 0 0
\(697\) −11562.0 20026.0i −0.628324 1.08829i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15978.0 0.860885 0.430443 0.902618i \(-0.358357\pi\)
0.430443 + 0.902618i \(0.358357\pi\)
\(702\) 0 0
\(703\) 2760.00 0.148073
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3240.00 5611.84i −0.172352 0.298522i
\(708\) 0 0
\(709\) 4433.00 7678.18i 0.234816 0.406714i −0.724403 0.689377i \(-0.757884\pi\)
0.959219 + 0.282663i \(0.0912178\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 320.000 554.256i 0.0168080 0.0291123i
\(714\) 0 0
\(715\) −14504.0 25121.7i −0.758628 1.31398i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7760.00 −0.402502 −0.201251 0.979540i \(-0.564501\pi\)
−0.201251 + 0.979540i \(0.564501\pi\)
\(720\) 0 0
\(721\) 35904.0 1.85456
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4899.00 8485.32i −0.250958 0.434671i
\(726\) 0 0
\(727\) −6540.00 + 11327.6i −0.333638 + 0.577879i −0.983222 0.182411i \(-0.941610\pi\)
0.649584 + 0.760290i \(0.274943\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 164.000 284.056i 0.00829789 0.0143724i
\(732\) 0 0
\(733\) −8467.00 14665.3i −0.426652 0.738983i 0.569921 0.821699i \(-0.306974\pi\)
−0.996573 + 0.0827167i \(0.973640\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12208.0 −0.610159
\(738\) 0 0
\(739\) −7060.00 −0.351429 −0.175715 0.984441i \(-0.556224\pi\)
−0.175715 + 0.984441i \(0.556224\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6260.00 10842.6i −0.309094 0.535367i 0.669070 0.743199i \(-0.266693\pi\)
−0.978165 + 0.207832i \(0.933359\pi\)
\(744\) 0 0
\(745\) −9394.00 + 16270.9i −0.461973 + 0.800160i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 20304.0 35167.6i 0.990510 1.71561i
\(750\) 0 0
\(751\) 4896.00 + 8480.12i 0.237893 + 0.412043i 0.960109 0.279624i \(-0.0902099\pi\)
−0.722217 + 0.691667i \(0.756877\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5936.00 0.286137
\(756\) 0 0
\(757\) 13166.0 0.632135 0.316068 0.948737i \(-0.397637\pi\)
0.316068 + 0.948737i \(0.397637\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11611.0 20110.8i −0.553086 0.957973i −0.998050 0.0624244i \(-0.980117\pi\)
0.444964 0.895549i \(-0.353217\pi\)
\(762\) 0 0
\(763\) 4872.00 8438.55i 0.231164 0.400388i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22052.0 + 38195.2i −1.03814 + 1.79811i
\(768\) 0 0
\(769\) 19967.0 + 34583.9i 0.936318 + 1.62175i 0.772267 + 0.635298i \(0.219123\pi\)
0.164051 + 0.986452i \(0.447544\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17106.0 0.795938 0.397969 0.917399i \(-0.369715\pi\)
0.397969 + 0.917399i \(0.369715\pi\)
\(774\) 0 0
\(775\) 5680.00 0.263267
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12972.0 + 22468.2i 0.596624 + 1.03338i
\(780\) 0 0
\(781\) 11984.0 20756.9i 0.549067 0.951012i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1834.00 3176.58i 0.0833863 0.144429i
\(786\) 0 0
\(787\) 4978.00 + 8622.15i 0.225472 + 0.390529i 0.956461 0.291860i \(-0.0942742\pi\)
−0.730989 + 0.682389i \(0.760941\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 18864.0 0.847948
\(792\) 0 0
\(793\) 16132.0 0.722401
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4565.00 7906.81i −0.202887 0.351410i 0.746571 0.665306i \(-0.231699\pi\)
−0.949457 + 0.313896i \(0.898366\pi\)
\(798\) 0 0
\(799\) −9840.00 + 17043.4i −0.435687 + 0.754633i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13972.0 24200.2i 0.614024 1.06352i
\(804\) 0 0
\(805\) 1344.00 + 2327.88i 0.0588444 + 0.101922i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −11482.0 −0.498993 −0.249497 0.968376i \(-0.580265\pi\)
−0.249497 + 0.968376i \(0.580265\pi\)
\(810\) 0 0
\(811\) 4612.00 0.199691 0.0998454 0.995003i \(-0.468165\pi\)
0.0998454 + 0.995003i \(0.468165\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16044.0 27789.0i −0.689567 1.19436i
\(816\) 0 0
\(817\) −184.000 + 318.697i −0.00787925 + 0.0136473i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17505.0 + 30319.5i −0.744128 + 1.28887i 0.206474 + 0.978452i \(0.433801\pi\)
−0.950601 + 0.310415i \(0.899532\pi\)
\(822\) 0 0
\(823\) −6844.00 11854.2i −0.289875 0.502078i 0.683905 0.729571i \(-0.260280\pi\)
−0.973780 + 0.227493i \(0.926947\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11668.0 −0.490612 −0.245306 0.969446i \(-0.578888\pi\)
−0.245306 + 0.969446i \(0.578888\pi\)
\(828\) 0 0
\(829\) −29306.0 −1.22779 −0.613896 0.789387i \(-0.710399\pi\)
−0.613896 + 0.789387i \(0.710399\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9553.00 + 16546.3i 0.397349 + 0.688229i
\(834\) 0 0
\(835\) 13272.0 22987.8i 0.550056 0.952724i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1332.00 + 2307.09i −0.0548102 + 0.0949340i −0.892129 0.451781i \(-0.850789\pi\)
0.837318 + 0.546715i \(0.184122\pi\)
\(840\) 0 0
\(841\) 2672.50 + 4628.91i 0.109578 + 0.189795i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −45906.0 −1.86889
\(846\) 0 0
\(847\) 13128.0 0.532566
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 120.000 + 207.846i 0.00483378 + 0.00837235i
\(852\) 0 0
\(853\) −13015.0 + 22542.6i −0.522421 + 0.904860i 0.477239 + 0.878774i \(0.341638\pi\)
−0.999660 + 0.0260860i \(0.991696\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22101.0 38280.1i 0.880929 1.52581i 0.0306184 0.999531i \(-0.490252\pi\)
0.850310 0.526282i \(-0.176414\pi\)
\(858\) 0 0
\(859\) 16374.0 + 28360.6i 0.650377 + 1.12649i 0.983031 + 0.183437i \(0.0587223\pi\)
−0.332655 + 0.943049i \(0.607944\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −45344.0 −1.78856 −0.894280 0.447507i \(-0.852312\pi\)
−0.894280 + 0.447507i \(0.852312\pi\)
\(864\) 0 0
\(865\) −40236.0 −1.58158
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 448.000 + 775.959i 0.0174883 + 0.0302907i
\(870\) 0 0
\(871\) −16132.0 + 27941.4i −0.627568 + 1.08698i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9072.00 15713.2i 0.350502 0.607088i
\(876\) 0 0
\(877\) 4389.00 + 7601.97i 0.168992 + 0.292703i 0.938066 0.346457i \(-0.112615\pi\)
−0.769074 + 0.639160i \(0.779282\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4142.00 0.158397 0.0791984 0.996859i \(-0.474764\pi\)
0.0791984 + 0.996859i \(0.474764\pi\)
\(882\) 0 0
\(883\) 22076.0 0.841355 0.420678 0.907210i \(-0.361792\pi\)
0.420678 + 0.907210i \(0.361792\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20188.0 34966.6i −0.764201 1.32364i −0.940668 0.339329i \(-0.889800\pi\)
0.176466 0.984307i \(-0.443533\pi\)
\(888\) 0 0
\(889\) 20928.0 36248.4i 0.789542 1.36753i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11040.0 19121.8i 0.413706 0.716560i
\(894\) 0 0
\(895\) 8316.00 + 14403.7i 0.310585 + 0.537948i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11040.0 0.409571
\(900\) 0 0
\(901\) −10660.0 −0.394158
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −24318.0 42120.0i −0.893213 1.54709i
\(906\) 0 0
\(907\) 13198.0 22859.6i 0.483167 0.836870i −0.516646 0.856199i \(-0.672820\pi\)
0.999813 + 0.0193293i \(0.00615309\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12184.0 21103.3i 0.443111 0.767490i −0.554808 0.831979i \(-0.687208\pi\)
0.997918 + 0.0644882i \(0.0205415\pi\)
\(912\) 0 0
\(913\) −21112.0 36567.1i −0.765285 1.32551i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15648.0 0.563514
\(918\) 0 0
\(919\) −5096.00 −0.182918 −0.0914589 0.995809i \(-0.529153\pi\)
−0.0914589 + 0.995809i \(0.529153\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −31672.0 54857.5i −1.12947 1.95629i
\(924\) 0 0
\(925\) −1065.00 + 1844.63i −0.0378562 + 0.0655689i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9247.00 + 16016.3i −0.326571 + 0.565637i −0.981829 0.189768i \(-0.939226\pi\)
0.655258 + 0.755405i \(0.272560\pi\)
\(930\) 0 0
\(931\) −10718.0 18564.1i −0.377302 0.653506i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 32144.0 1.12430
\(936\) 0 0
\(937\) −33222.0 −1.15829 −0.579144 0.815225i \(-0.696613\pi\)
−0.579144 + 0.815225i \(0.696613\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13923.0 + 24115.3i 0.482335 + 0.835428i 0.999794 0.0202796i \(-0.00645562\pi\)
−0.517460 + 0.855708i \(0.673122\pi\)
\(942\) 0 0
\(943\) −1128.00 + 1953.75i −0.0389531 + 0.0674687i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20526.0 35552.1i 0.704335 1.21994i −0.262596 0.964906i \(-0.584579\pi\)
0.966931 0.255038i \(-0.0820881\pi\)
\(948\) 0 0
\(949\) −36926.0 63957.7i −1.26309 2.18773i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5706.00 −0.193951 −0.0969756 0.995287i \(-0.530917\pi\)
−0.0969756 + 0.995287i \(0.530917\pi\)
\(954\) 0 0
\(955\) 2688.00 0.0910802
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18360.0 31800.5i −0.618222 1.07079i
\(960\) 0 0
\(961\) 11695.5 20257.2i 0.392585 0.679977i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 33614.0 58221.2i 1.12132 1.94218i
\(966\) 0 0
\(967\) 19676.0 + 34079.8i 0.654330 + 1.13333i 0.982061 + 0.188562i \(0.0603828\pi\)
−0.327731 + 0.944771i \(0.606284\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 33180.0 1.09660 0.548299 0.836282i \(-0.315276\pi\)
0.548299 + 0.836282i \(0.315276\pi\)
\(972\) 0 0
\(973\) −12384.0 −0.408030
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2007.00 3476.23i −0.0657212 0.113832i 0.831292 0.555835i \(-0.187601\pi\)
−0.897014 + 0.442003i \(0.854268\pi\)
\(978\) 0 0
\(979\) −3444.00 + 5965.18i −0.112432 + 0.194738i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10164.0 17604.6i 0.329788 0.571209i −0.652682 0.757632i \(-0.726356\pi\)
0.982470 + 0.186423i \(0.0596895\pi\)
\(984\) 0 0
\(985\) −10626.0 18404.8i −0.343728 0.595355i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.0000 −0.00102886
\(990\) 0 0
\(991\) 11728.0 0.375936 0.187968 0.982175i \(-0.439810\pi\)
0.187968 + 0.982175i \(0.439810\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 35896.0 + 62173.7i 1.14370 + 1.98094i
\(996\) 0 0
\(997\) −25487.0 + 44144.8i −0.809610 + 1.40229i 0.103524 + 0.994627i \(0.466988\pi\)
−0.913134 + 0.407659i \(0.866345\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.4.i.k.217.1 2
3.2 odd 2 648.4.i.b.217.1 2
9.2 odd 6 24.4.a.a.1.1 1
9.4 even 3 inner 648.4.i.k.433.1 2
9.5 odd 6 648.4.i.b.433.1 2
9.7 even 3 72.4.a.b.1.1 1
36.7 odd 6 144.4.a.b.1.1 1
36.11 even 6 48.4.a.b.1.1 1
45.2 even 12 600.4.f.b.49.1 2
45.7 odd 12 1800.4.f.q.649.1 2
45.29 odd 6 600.4.a.h.1.1 1
45.34 even 6 1800.4.a.bg.1.1 1
45.38 even 12 600.4.f.b.49.2 2
45.43 odd 12 1800.4.f.q.649.2 2
63.20 even 6 1176.4.a.a.1.1 1
72.11 even 6 192.4.a.g.1.1 1
72.29 odd 6 192.4.a.a.1.1 1
72.43 odd 6 576.4.a.v.1.1 1
72.61 even 6 576.4.a.u.1.1 1
144.11 even 12 768.4.d.b.385.2 2
144.29 odd 12 768.4.d.o.385.2 2
144.83 even 12 768.4.d.b.385.1 2
144.101 odd 12 768.4.d.o.385.1 2
180.47 odd 12 1200.4.f.p.49.2 2
180.83 odd 12 1200.4.f.p.49.1 2
180.119 even 6 1200.4.a.u.1.1 1
252.83 odd 6 2352.4.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.4.a.a.1.1 1 9.2 odd 6
48.4.a.b.1.1 1 36.11 even 6
72.4.a.b.1.1 1 9.7 even 3
144.4.a.b.1.1 1 36.7 odd 6
192.4.a.a.1.1 1 72.29 odd 6
192.4.a.g.1.1 1 72.11 even 6
576.4.a.u.1.1 1 72.61 even 6
576.4.a.v.1.1 1 72.43 odd 6
600.4.a.h.1.1 1 45.29 odd 6
600.4.f.b.49.1 2 45.2 even 12
600.4.f.b.49.2 2 45.38 even 12
648.4.i.b.217.1 2 3.2 odd 2
648.4.i.b.433.1 2 9.5 odd 6
648.4.i.k.217.1 2 1.1 even 1 trivial
648.4.i.k.433.1 2 9.4 even 3 inner
768.4.d.b.385.1 2 144.83 even 12
768.4.d.b.385.2 2 144.11 even 12
768.4.d.o.385.1 2 144.101 odd 12
768.4.d.o.385.2 2 144.29 odd 12
1176.4.a.a.1.1 1 63.20 even 6
1200.4.a.u.1.1 1 180.119 even 6
1200.4.f.p.49.1 2 180.83 odd 12
1200.4.f.p.49.2 2 180.47 odd 12
1800.4.a.bg.1.1 1 45.34 even 6
1800.4.f.q.649.1 2 45.7 odd 12
1800.4.f.q.649.2 2 45.43 odd 12
2352.4.a.w.1.1 1 252.83 odd 6