gp: [N,k,chi] = [65,2,Mod(8,65)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(65, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([3, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("65.8");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − 2 x 5 + 14 x 4 − 8 x 3 + 2 x 2 + 2 x + 1 x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 x 8 − 2 x 5 + 1 4 x 4 − 8 x 3 + 2 x 2 + 2 x + 1
x^8 - 2*x^5 + 14*x^4 - 8*x^3 + 2*x^2 + 2*x + 1
:
β 1 \beta_{1} β 1 = = =
( 64 ν 7 + 16 ν 6 + 4 ν 5 − 127 ν 4 + 944 ν 3 − 276 ν 2 + 378 ν + 63 ) / 319 ( 64\nu^{7} + 16\nu^{6} + 4\nu^{5} - 127\nu^{4} + 944\nu^{3} - 276\nu^{2} + 378\nu + 63 ) / 319 ( 6 4 ν 7 + 1 6 ν 6 + 4 ν 5 − 1 2 7 ν 4 + 9 4 4 ν 3 − 2 7 6 ν 2 + 3 7 8 ν + 6 3 ) / 3 1 9
(64*v^7 + 16*v^6 + 4*v^5 - 127*v^4 + 944*v^3 - 276*v^2 + 378*v + 63) / 319
β 2 \beta_{2} β 2 = = =
( − 63 ν 7 + 64 ν 6 + 16 ν 5 + 130 ν 4 − 1009 ν 3 + 1448 ν 2 − 402 ν − 67 ) / 319 ( -63\nu^{7} + 64\nu^{6} + 16\nu^{5} + 130\nu^{4} - 1009\nu^{3} + 1448\nu^{2} - 402\nu - 67 ) / 319 ( − 6 3 ν 7 + 6 4 ν 6 + 1 6 ν 5 + 1 3 0 ν 4 − 1 0 0 9 ν 3 + 1 4 4 8 ν 2 − 4 0 2 ν − 6 7 ) / 3 1 9
(-63*v^7 + 64*v^6 + 16*v^5 + 130*v^4 - 1009*v^3 + 1448*v^2 - 402*v - 67) / 319
β 3 \beta_{3} β 3 = = =
( − 67 ν 7 + 63 ν 6 − 64 ν 5 + 118 ν 4 − 1068 ν 3 + 1545 ν 2 − 1263 ν + 268 ) / 319 ( -67\nu^{7} + 63\nu^{6} - 64\nu^{5} + 118\nu^{4} - 1068\nu^{3} + 1545\nu^{2} - 1263\nu + 268 ) / 319 ( − 6 7 ν 7 + 6 3 ν 6 − 6 4 ν 5 + 1 1 8 ν 4 − 1 0 6 8 ν 3 + 1 5 4 5 ν 2 − 1 2 6 3 ν + 2 6 8 ) / 3 1 9
(-67*v^7 + 63*v^6 - 64*v^5 + 118*v^4 - 1068*v^3 + 1545*v^2 - 1263*v + 268) / 319
β 4 \beta_{4} β 4 = = =
( 83 ν 7 − 59 ν 6 + 65 ν 5 − 70 ν 4 + 1304 ν 3 − 1614 ν 2 + 1198 ν + 306 ) / 319 ( 83\nu^{7} - 59\nu^{6} + 65\nu^{5} - 70\nu^{4} + 1304\nu^{3} - 1614\nu^{2} + 1198\nu + 306 ) / 319 ( 8 3 ν 7 − 5 9 ν 6 + 6 5 ν 5 − 7 0 ν 4 + 1 3 0 4 ν 3 − 1 6 1 4 ν 2 + 1 1 9 8 ν + 3 0 6 ) / 3 1 9
(83*v^7 - 59*v^6 + 65*v^5 - 70*v^4 + 1304*v^3 - 1614*v^2 + 1198*v + 306) / 319
β 5 \beta_{5} β 5 = = =
( − 172 ν 7 − 43 ν 6 + 69 ν 5 + 441 ν 4 − 2218 ν 3 + 662 ν 2 + 619 ν − 269 ) / 319 ( -172\nu^{7} - 43\nu^{6} + 69\nu^{5} + 441\nu^{4} - 2218\nu^{3} + 662\nu^{2} + 619\nu - 269 ) / 319 ( − 1 7 2 ν 7 − 4 3 ν 6 + 6 9 ν 5 + 4 4 1 ν 4 − 2 2 1 8 ν 3 + 6 6 2 ν 2 + 6 1 9 ν − 2 6 9 ) / 3 1 9
(-172*v^7 - 43*v^6 + 69*v^5 + 441*v^4 - 2218*v^3 + 662*v^2 + 619*v - 269) / 319
β 6 \beta_{6} β 6 = = =
( − 196 ν 7 − 49 ν 6 − 92 ν 5 + 369 ν 4 − 2572 ν 3 + 1244 ν 2 − 1038 ν − 173 ) / 319 ( -196\nu^{7} - 49\nu^{6} - 92\nu^{5} + 369\nu^{4} - 2572\nu^{3} + 1244\nu^{2} - 1038\nu - 173 ) / 319 ( − 1 9 6 ν 7 − 4 9 ν 6 − 9 2 ν 5 + 3 6 9 ν 4 − 2 5 7 2 ν 3 + 1 2 4 4 ν 2 − 1 0 3 8 ν − 1 7 3 ) / 3 1 9
(-196*v^7 - 49*v^6 - 92*v^5 + 369*v^4 - 2572*v^3 + 1244*v^2 - 1038*v - 173) / 319
β 7 \beta_{7} β 7 = = =
ν 7 − 2 ν 4 + 14 ν 3 − 8 ν 2 + ν + 2 \nu^{7} - 2\nu^{4} + 14\nu^{3} - 8\nu^{2} + \nu + 2 ν 7 − 2 ν 4 + 1 4 ν 3 − 8 ν 2 + ν + 2
v^7 - 2*v^4 + 14*v^3 - 8*v^2 + v + 2
ν \nu ν = = =
( − β 7 − β 5 + β 4 + β 1 ) / 2 ( -\beta_{7} - \beta_{5} + \beta_{4} + \beta_1 ) / 2 ( − β 7 − β 5 + β 4 + β 1 ) / 2
(-b7 - b5 + b4 + b1) / 2
ν 2 \nu^{2} ν 2 = = =
β 6 − β 5 + β 4 − β 3 + 2 β 2 \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + 2\beta_{2} β 6 − β 5 + β 4 − β 3 + 2 β 2
b6 - b5 + b4 - b3 + 2*b2
ν 3 \nu^{3} ν 3 = = =
( 3 β 7 + 5 β 5 − 5 β 4 − 2 β 2 + 3 β 1 + 2 ) / 2 ( 3\beta_{7} + 5\beta_{5} - 5\beta_{4} - 2\beta_{2} + 3\beta _1 + 2 ) / 2 ( 3 β 7 + 5 β 5 − 5 β 4 − 2 β 2 + 3 β 1 + 2 ) / 2
(3*b7 + 5*b5 - 5*b4 - 2*b2 + 3*b1 + 2) / 2
ν 4 \nu^{4} ν 4 = = =
− β 7 − β 5 + 5 β 4 + 4 β 3 − 7 -\beta_{7} - \beta_{5} + 5\beta_{4} + 4\beta_{3} - 7 − β 7 − β 5 + 5 β 4 + 4 β 3 − 7
-b7 - b5 + 5*b4 + 4*b3 - 7
ν 5 \nu^{5} ν 5 = = =
( 11 β 7 + 2 β 6 + 9 β 5 − 11 β 4 − 12 β 3 + 12 β 2 − 11 β 1 + 12 ) / 2 ( 11\beta_{7} + 2\beta_{6} + 9\beta_{5} - 11\beta_{4} - 12\beta_{3} + 12\beta_{2} - 11\beta _1 + 12 ) / 2 ( 1 1 β 7 + 2 β 6 + 9 β 5 − 1 1 β 4 − 1 2 β 3 + 1 2 β 2 − 1 1 β 1 + 1 2 ) / 2
(11*b7 + 2*b6 + 9*b5 - 11*b4 - 12*b3 + 12*b2 - 11*b1 + 12) / 2
ν 6 \nu^{6} ν 6 = = =
− 15 β 6 + 16 β 5 − 16 β 4 + 16 β 3 − 28 β 2 + 7 β 1 -15\beta_{6} + 16\beta_{5} - 16\beta_{4} + 16\beta_{3} - 28\beta_{2} + 7\beta_1 − 1 5 β 6 + 1 6 β 5 − 1 6 β 4 + 1 6 β 3 − 2 8 β 2 + 7 β 1
-15*b6 + 16*b5 - 16*b4 + 16*b3 - 28*b2 + 7*b1
ν 7 \nu^{7} ν 7 = = =
( − 43 β 7 + 16 β 6 − 89 β 5 + 105 β 4 + 60 β 2 − 43 β 1 − 60 ) / 2 ( -43\beta_{7} + 16\beta_{6} - 89\beta_{5} + 105\beta_{4} + 60\beta_{2} - 43\beta _1 - 60 ) / 2 ( − 4 3 β 7 + 1 6 β 6 − 8 9 β 5 + 1 0 5 β 4 + 6 0 β 2 − 4 3 β 1 − 6 0 ) / 2
(-43*b7 + 16*b6 - 89*b5 + 105*b4 + 60*b2 - 43*b1 - 60) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 65 Z ) × \left(\mathbb{Z}/65\mathbb{Z}\right)^\times ( Z / 6 5 Z ) × .
n n n
27 27 2 7
41 41 4 1
χ ( n ) \chi(n) χ ( n )
β 2 \beta_{2} β 2
− β 2 -\beta_{2} − β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 4 + 2 T 2 3 − 4 T 2 2 − 8 T 2 − 1 T_{2}^{4} + 2T_{2}^{3} - 4T_{2}^{2} - 8T_{2} - 1 T 2 4 + 2 T 2 3 − 4 T 2 2 − 8 T 2 − 1
T2^4 + 2*T2^3 - 4*T2^2 - 8*T2 - 1
acting on S 2 n e w ( 65 , [ χ ] ) S_{2}^{\mathrm{new}}(65, [\chi]) S 2 n e w ( 6 5 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 4 + 2 T 3 − 4 T 2 + ⋯ − 1 ) 2 (T^{4} + 2 T^{3} - 4 T^{2} + \cdots - 1)^{2} ( T 4 + 2 T 3 − 4 T 2 + ⋯ − 1 ) 2
(T^4 + 2*T^3 - 4*T^2 - 8*T - 1)^2
3 3 3
T 8 + 6 T 7 + ⋯ + 4 T^{8} + 6 T^{7} + \cdots + 4 T 8 + 6 T 7 + ⋯ + 4
T^8 + 6*T^7 + 18*T^6 + 20*T^5 + 8*T^4 - 4*T^3 + 32*T^2 + 16*T + 4
5 5 5
T 8 − 2 T 7 + ⋯ + 625 T^{8} - 2 T^{7} + \cdots + 625 T 8 − 2 T 7 + ⋯ + 6 2 5
T^8 - 2*T^7 - 4*T^6 - 6*T^5 + 62*T^4 - 30*T^3 - 100*T^2 - 250*T + 625
7 7 7
T 8 + 40 T 6 + ⋯ + 2704 T^{8} + 40 T^{6} + \cdots + 2704 T 8 + 4 0 T 6 + ⋯ + 2 7 0 4
T^8 + 40*T^6 + 504*T^4 + 2096*T^2 + 2704
11 11 1 1
T 8 − 6 T 7 + ⋯ + 4 T^{8} - 6 T^{7} + \cdots + 4 T 8 − 6 T 7 + ⋯ + 4
T^8 - 6*T^7 + 18*T^6 - 8*T^5 - 4*T^4 + 12*T^3 + 32*T^2 + 16*T + 4
13 13 1 3
T 8 + 2 T 7 + ⋯ + 28561 T^{8} + 2 T^{7} + \cdots + 28561 T 8 + 2 T 7 + ⋯ + 2 8 5 6 1
T^8 + 2*T^7 - 26*T^5 - 330*T^4 - 338*T^3 + 4394*T + 28561
17 17 1 7
T 8 + 16 T 7 + ⋯ + 13456 T^{8} + 16 T^{7} + \cdots + 13456 T 8 + 1 6 T 7 + ⋯ + 1 3 4 5 6
T^8 + 16*T^7 + 128*T^6 + 536*T^5 + 1256*T^4 + 1088*T^3 + 288*T^2 + 2784*T + 13456
19 19 1 9
T 8 − 14 T 7 + ⋯ + 100 T^{8} - 14 T^{7} + \cdots + 100 T 8 − 1 4 T 7 + ⋯ + 1 0 0
T^8 - 14*T^7 + 98*T^6 - 396*T^5 + 1004*T^4 - 1524*T^3 + 1352*T^2 - 520*T + 100
23 23 2 3
T 8 − 14 T 7 + ⋯ + 40804 T^{8} - 14 T^{7} + \cdots + 40804 T 8 − 1 4 T 7 + ⋯ + 4 0 8 0 4
T^8 - 14*T^7 + 98*T^6 - 288*T^5 + 504*T^4 - 1348*T^3 + 10952*T^2 - 29896*T + 40804
29 29 2 9
T 8 + 44 T 6 + ⋯ + 10000 T^{8} + 44 T^{6} + \cdots + 10000 T 8 + 4 4 T 6 + ⋯ + 1 0 0 0 0
T^8 + 44*T^6 + 680*T^4 + 4384*T^2 + 10000
31 31 3 1
T 8 − 2 T 7 + ⋯ + 16900 T^{8} - 2 T^{7} + \cdots + 16900 T 8 − 2 T 7 + ⋯ + 1 6 9 0 0
T^8 - 2*T^7 + 2*T^6 + 32*T^5 + 316*T^4 - 124*T^3 + 128*T^2 + 2080*T + 16900
37 37 3 7
T 8 + 140 T 6 + ⋯ + 336400 T^{8} + 140 T^{6} + \cdots + 336400 T 8 + 1 4 0 T 6 + ⋯ + 3 3 6 4 0 0
T^8 + 140*T^6 + 6456*T^4 + 105184*T^2 + 336400
41 41 4 1
T 8 − 16 T 7 + ⋯ + 13456 T^{8} - 16 T^{7} + \cdots + 13456 T 8 − 1 6 T 7 + ⋯ + 1 3 4 5 6
T^8 - 16*T^7 + 128*T^6 - 88*T^5 - 216*T^4 + 1248*T^3 + 11552*T^2 + 17632*T + 13456
43 43 4 3
T 8 − 6 T 7 + ⋯ + 8836 T^{8} - 6 T^{7} + \cdots + 8836 T 8 − 6 T 7 + ⋯ + 8 8 3 6
T^8 - 6*T^7 + 18*T^6 + 344*T^5 + 3176*T^4 + 332*T^3 + 8*T^2 + 376*T + 8836
47 47 4 7
T 8 + 160 T 6 + ⋯ + 26896 T^{8} + 160 T^{6} + \cdots + 26896 T 8 + 1 6 0 T 6 + ⋯ + 2 6 8 9 6
T^8 + 160*T^6 + 7800*T^4 + 116752*T^2 + 26896
53 53 5 3
T 8 + 24 T 7 + ⋯ + 19600 T^{8} + 24 T^{7} + \cdots + 19600 T 8 + 2 4 T 7 + ⋯ + 1 9 6 0 0
T^8 + 24*T^7 + 288*T^6 + 1664*T^5 + 4904*T^4 + 1184*T^3 + 512*T^2 + 4480*T + 19600
59 59 5 9
T 8 − 22 T 7 + ⋯ + 119716 T^{8} - 22 T^{7} + \cdots + 119716 T 8 − 2 2 T 7 + ⋯ + 1 1 9 7 1 6
T^8 - 22*T^7 + 242*T^6 - 572*T^5 - 116*T^4 - 18788*T^3 + 605000*T^2 + 380600*T + 119716
61 61 6 1
( T 4 − 10 T 3 + ⋯ − 3628 ) 2 (T^{4} - 10 T^{3} + \cdots - 3628)^{2} ( T 4 − 1 0 T 3 + ⋯ − 3 6 2 8 ) 2
(T^4 - 10*T^3 - 120*T^2 + 1512*T - 3628)^2
67 67 6 7
( T 4 + 6 T 3 + ⋯ − 148 ) 2 (T^{4} + 6 T^{3} + \cdots - 148)^{2} ( T 4 + 6 T 3 + ⋯ − 1 4 8 ) 2
(T^4 + 6*T^3 - 32*T^2 - 192*T - 148)^2
71 71 7 1
T 8 + 10 T 7 + ⋯ + 1223236 T^{8} + 10 T^{7} + \cdots + 1223236 T 8 + 1 0 T 7 + ⋯ + 1 2 2 3 2 3 6
T^8 + 10*T^7 + 50*T^6 + 108*T^5 + 12212*T^4 + 121860*T^3 + 613832*T^2 + 1225448*T + 1223236
73 73 7 3
( T 4 + 2 T 3 + ⋯ + 740 ) 2 (T^{4} + 2 T^{3} + \cdots + 740)^{2} ( T 4 + 2 T 3 + ⋯ + 7 4 0 ) 2
(T^4 + 2*T^3 - 56*T^2 - 56*T + 740)^2
79 79 7 9
T 8 + 292 T 6 + ⋯ + 13719616 T^{8} + 292 T^{6} + \cdots + 13719616 T 8 + 2 9 2 T 6 + ⋯ + 1 3 7 1 9 6 1 6
T^8 + 292*T^6 + 29552*T^4 + 1178624*T^2 + 13719616
83 83 8 3
T 8 + 416 T 6 + ⋯ + 54346384 T^{8} + 416 T^{6} + \cdots + 54346384 T 8 + 4 1 6 T 6 + ⋯ + 5 4 3 4 6 3 8 4
T^8 + 416*T^6 + 57896*T^4 + 3083920*T^2 + 54346384
89 89 8 9
T 8 + 28 T 7 + ⋯ + 1795600 T^{8} + 28 T^{7} + \cdots + 1795600 T 8 + 2 8 T 7 + ⋯ + 1 7 9 5 6 0 0
T^8 + 28*T^7 + 392*T^6 + 1528*T^5 - 2616*T^4 - 47952*T^3 + 850208*T^2 - 1747360*T + 1795600
97 97 9 7
( T 4 − 6 T 3 + ⋯ + 3704 ) 2 (T^{4} - 6 T^{3} + \cdots + 3704)^{2} ( T 4 − 6 T 3 + ⋯ + 3 7 0 4 ) 2
(T^4 - 6*T^3 - 128*T^2 + 480*T + 3704)^2
show more
show less