Properties

Label 65.2.k.b
Level 6565
Weight 22
Character orbit 65.k
Analytic conductor 0.5190.519
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [65,2,Mod(8,65)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(65, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("65.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 65=513 65 = 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 65.k (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5190276131380.519027613138
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: 8.0.619810816.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x82x5+14x48x3+2x2+2x+1 x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β5q2+(β5+β4+β21)q3+(β7β5+β4+1)q4+(β7+β6)q5+(β6β4+β21)q6++(β7β1)q99+O(q100) q + \beta_{5} q^{2} + ( - \beta_{5} + \beta_{4} + \beta_{2} - 1) q^{3} + ( - \beta_{7} - \beta_{5} + \beta_{4} + 1) q^{4} + (\beta_{7} + \beta_{6}) q^{5} + ( - \beta_{6} - \beta_{4} + \beta_{2} - 1) q^{6}+ \cdots + ( - \beta_{7} - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q26q3+8q4+2q56q66q10+6q11+2q122q132q158q1616q17+14q1922q2012q21+10q22+14q23+2q24+2q99+O(q100) 8 q - 4 q^{2} - 6 q^{3} + 8 q^{4} + 2 q^{5} - 6 q^{6} - 6 q^{10} + 6 q^{11} + 2 q^{12} - 2 q^{13} - 2 q^{15} - 8 q^{16} - 16 q^{17} + 14 q^{19} - 22 q^{20} - 12 q^{21} + 10 q^{22} + 14 q^{23} + 2 q^{24}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x5+14x48x3+2x2+2x+1 x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 : Copy content Toggle raw display

β1\beta_{1}== (64ν7+16ν6+4ν5127ν4+944ν3276ν2+378ν+63)/319 ( 64\nu^{7} + 16\nu^{6} + 4\nu^{5} - 127\nu^{4} + 944\nu^{3} - 276\nu^{2} + 378\nu + 63 ) / 319 Copy content Toggle raw display
β2\beta_{2}== (63ν7+64ν6+16ν5+130ν41009ν3+1448ν2402ν67)/319 ( -63\nu^{7} + 64\nu^{6} + 16\nu^{5} + 130\nu^{4} - 1009\nu^{3} + 1448\nu^{2} - 402\nu - 67 ) / 319 Copy content Toggle raw display
β3\beta_{3}== (67ν7+63ν664ν5+118ν41068ν3+1545ν21263ν+268)/319 ( -67\nu^{7} + 63\nu^{6} - 64\nu^{5} + 118\nu^{4} - 1068\nu^{3} + 1545\nu^{2} - 1263\nu + 268 ) / 319 Copy content Toggle raw display
β4\beta_{4}== (83ν759ν6+65ν570ν4+1304ν31614ν2+1198ν+306)/319 ( 83\nu^{7} - 59\nu^{6} + 65\nu^{5} - 70\nu^{4} + 1304\nu^{3} - 1614\nu^{2} + 1198\nu + 306 ) / 319 Copy content Toggle raw display
β5\beta_{5}== (172ν743ν6+69ν5+441ν42218ν3+662ν2+619ν269)/319 ( -172\nu^{7} - 43\nu^{6} + 69\nu^{5} + 441\nu^{4} - 2218\nu^{3} + 662\nu^{2} + 619\nu - 269 ) / 319 Copy content Toggle raw display
β6\beta_{6}== (196ν749ν692ν5+369ν42572ν3+1244ν21038ν173)/319 ( -196\nu^{7} - 49\nu^{6} - 92\nu^{5} + 369\nu^{4} - 2572\nu^{3} + 1244\nu^{2} - 1038\nu - 173 ) / 319 Copy content Toggle raw display
β7\beta_{7}== ν72ν4+14ν38ν2+ν+2 \nu^{7} - 2\nu^{4} + 14\nu^{3} - 8\nu^{2} + \nu + 2 Copy content Toggle raw display
ν\nu== (β7β5+β4+β1)/2 ( -\beta_{7} - \beta_{5} + \beta_{4} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β6β5+β4β3+2β2 \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== (3β7+5β55β42β2+3β1+2)/2 ( 3\beta_{7} + 5\beta_{5} - 5\beta_{4} - 2\beta_{2} + 3\beta _1 + 2 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== β7β5+5β4+4β37 -\beta_{7} - \beta_{5} + 5\beta_{4} + 4\beta_{3} - 7 Copy content Toggle raw display
ν5\nu^{5}== (11β7+2β6+9β511β412β3+12β211β1+12)/2 ( 11\beta_{7} + 2\beta_{6} + 9\beta_{5} - 11\beta_{4} - 12\beta_{3} + 12\beta_{2} - 11\beta _1 + 12 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 15β6+16β516β4+16β328β2+7β1 -15\beta_{6} + 16\beta_{5} - 16\beta_{4} + 16\beta_{3} - 28\beta_{2} + 7\beta_1 Copy content Toggle raw display
ν7\nu^{7}== (43β7+16β689β5+105β4+60β243β160)/2 ( -43\beta_{7} + 16\beta_{6} - 89\beta_{5} + 105\beta_{4} + 60\beta_{2} - 43\beta _1 - 60 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/65Z)×\left(\mathbb{Z}/65\mathbb{Z}\right)^\times.

nn 2727 4141
χ(n)\chi(n) β2\beta_{2} β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
8.1
1.18254 1.18254i
−0.252709 + 0.252709i
−1.49094 + 1.49094i
0.561103 0.561103i
1.18254 + 1.18254i
−0.252709 0.252709i
−1.49094 1.49094i
0.561103 + 0.561103i
−2.31627 −0.240275 0.240275i 3.36509 −1.60536 1.55654i 0.556540 + 0.556540i 3.95872i −3.16190 2.88454i 3.71844 + 3.60536i
8.2 −1.57942 0.725850 + 0.725850i 0.494582 2.23127 + 0.146426i −1.14643 1.14643i 4.24997i 2.37769 1.94628i −3.52412 0.231269i
8.3 −0.134632 −2.15558 2.15558i −1.98187 1.82630 1.29021i 0.290209 + 0.290209i 1.90970i 0.536087 6.29303i −0.245878 + 0.173703i
8.4 2.03032 −1.33000 1.33000i 2.12221 −1.45220 + 1.70032i −2.70032 2.70032i 1.61845i 0.248119 0.537789i −2.94844 + 3.45220i
57.1 −2.31627 −0.240275 + 0.240275i 3.36509 −1.60536 + 1.55654i 0.556540 0.556540i 3.95872i −3.16190 2.88454i 3.71844 3.60536i
57.2 −1.57942 0.725850 0.725850i 0.494582 2.23127 0.146426i −1.14643 + 1.14643i 4.24997i 2.37769 1.94628i −3.52412 + 0.231269i
57.3 −0.134632 −2.15558 + 2.15558i −1.98187 1.82630 + 1.29021i 0.290209 0.290209i 1.90970i 0.536087 6.29303i −0.245878 0.173703i
57.4 2.03032 −1.33000 + 1.33000i 2.12221 −1.45220 1.70032i −2.70032 + 2.70032i 1.61845i 0.248119 0.537789i −2.94844 3.45220i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 8.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 65.2.k.b yes 8
3.b odd 2 1 585.2.w.e 8
4.b odd 2 1 1040.2.bg.n 8
5.b even 2 1 325.2.k.b 8
5.c odd 4 1 65.2.f.b 8
5.c odd 4 1 325.2.f.b 8
13.b even 2 1 845.2.k.b 8
13.c even 3 2 845.2.o.d 16
13.d odd 4 1 65.2.f.b 8
13.d odd 4 1 845.2.f.b 8
13.e even 6 2 845.2.o.c 16
13.f odd 12 2 845.2.t.c 16
13.f odd 12 2 845.2.t.d 16
15.e even 4 1 585.2.n.e 8
20.e even 4 1 1040.2.cd.n 8
39.f even 4 1 585.2.n.e 8
52.f even 4 1 1040.2.cd.n 8
65.f even 4 1 325.2.k.b 8
65.f even 4 1 845.2.k.b 8
65.g odd 4 1 325.2.f.b 8
65.h odd 4 1 845.2.f.b 8
65.k even 4 1 inner 65.2.k.b yes 8
65.o even 12 2 845.2.o.d 16
65.q odd 12 2 845.2.t.c 16
65.r odd 12 2 845.2.t.d 16
65.t even 12 2 845.2.o.c 16
195.j odd 4 1 585.2.w.e 8
260.s odd 4 1 1040.2.bg.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.f.b 8 5.c odd 4 1
65.2.f.b 8 13.d odd 4 1
65.2.k.b yes 8 1.a even 1 1 trivial
65.2.k.b yes 8 65.k even 4 1 inner
325.2.f.b 8 5.c odd 4 1
325.2.f.b 8 65.g odd 4 1
325.2.k.b 8 5.b even 2 1
325.2.k.b 8 65.f even 4 1
585.2.n.e 8 15.e even 4 1
585.2.n.e 8 39.f even 4 1
585.2.w.e 8 3.b odd 2 1
585.2.w.e 8 195.j odd 4 1
845.2.f.b 8 13.d odd 4 1
845.2.f.b 8 65.h odd 4 1
845.2.k.b 8 13.b even 2 1
845.2.k.b 8 65.f even 4 1
845.2.o.c 16 13.e even 6 2
845.2.o.c 16 65.t even 12 2
845.2.o.d 16 13.c even 3 2
845.2.o.d 16 65.o even 12 2
845.2.t.c 16 13.f odd 12 2
845.2.t.c 16 65.q odd 12 2
845.2.t.d 16 13.f odd 12 2
845.2.t.d 16 65.r odd 12 2
1040.2.bg.n 8 4.b odd 2 1
1040.2.bg.n 8 260.s odd 4 1
1040.2.cd.n 8 20.e even 4 1
1040.2.cd.n 8 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+2T234T228T21 T_{2}^{4} + 2T_{2}^{3} - 4T_{2}^{2} - 8T_{2} - 1 acting on S2new(65,[χ])S_{2}^{\mathrm{new}}(65, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+2T34T2+1)2 (T^{4} + 2 T^{3} - 4 T^{2} + \cdots - 1)^{2} Copy content Toggle raw display
33 T8+6T7++4 T^{8} + 6 T^{7} + \cdots + 4 Copy content Toggle raw display
55 T82T7++625 T^{8} - 2 T^{7} + \cdots + 625 Copy content Toggle raw display
77 T8+40T6++2704 T^{8} + 40 T^{6} + \cdots + 2704 Copy content Toggle raw display
1111 T86T7++4 T^{8} - 6 T^{7} + \cdots + 4 Copy content Toggle raw display
1313 T8+2T7++28561 T^{8} + 2 T^{7} + \cdots + 28561 Copy content Toggle raw display
1717 T8+16T7++13456 T^{8} + 16 T^{7} + \cdots + 13456 Copy content Toggle raw display
1919 T814T7++100 T^{8} - 14 T^{7} + \cdots + 100 Copy content Toggle raw display
2323 T814T7++40804 T^{8} - 14 T^{7} + \cdots + 40804 Copy content Toggle raw display
2929 T8+44T6++10000 T^{8} + 44 T^{6} + \cdots + 10000 Copy content Toggle raw display
3131 T82T7++16900 T^{8} - 2 T^{7} + \cdots + 16900 Copy content Toggle raw display
3737 T8+140T6++336400 T^{8} + 140 T^{6} + \cdots + 336400 Copy content Toggle raw display
4141 T816T7++13456 T^{8} - 16 T^{7} + \cdots + 13456 Copy content Toggle raw display
4343 T86T7++8836 T^{8} - 6 T^{7} + \cdots + 8836 Copy content Toggle raw display
4747 T8+160T6++26896 T^{8} + 160 T^{6} + \cdots + 26896 Copy content Toggle raw display
5353 T8+24T7++19600 T^{8} + 24 T^{7} + \cdots + 19600 Copy content Toggle raw display
5959 T822T7++119716 T^{8} - 22 T^{7} + \cdots + 119716 Copy content Toggle raw display
6161 (T410T3+3628)2 (T^{4} - 10 T^{3} + \cdots - 3628)^{2} Copy content Toggle raw display
6767 (T4+6T3+148)2 (T^{4} + 6 T^{3} + \cdots - 148)^{2} Copy content Toggle raw display
7171 T8+10T7++1223236 T^{8} + 10 T^{7} + \cdots + 1223236 Copy content Toggle raw display
7373 (T4+2T3++740)2 (T^{4} + 2 T^{3} + \cdots + 740)^{2} Copy content Toggle raw display
7979 T8+292T6++13719616 T^{8} + 292 T^{6} + \cdots + 13719616 Copy content Toggle raw display
8383 T8+416T6++54346384 T^{8} + 416 T^{6} + \cdots + 54346384 Copy content Toggle raw display
8989 T8+28T7++1795600 T^{8} + 28 T^{7} + \cdots + 1795600 Copy content Toggle raw display
9797 (T46T3++3704)2 (T^{4} - 6 T^{3} + \cdots + 3704)^{2} Copy content Toggle raw display
show more
show less