Properties

Label 65.6.a.a.1.1
Level $65$
Weight $6$
Character 65.1
Self dual yes
Analytic conductor $10.425$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{2} +6.00000 q^{3} -7.00000 q^{4} -25.0000 q^{5} +30.0000 q^{6} -244.000 q^{7} -195.000 q^{8} -207.000 q^{9} -125.000 q^{10} +794.000 q^{11} -42.0000 q^{12} -169.000 q^{13} -1220.00 q^{14} -150.000 q^{15} -751.000 q^{16} -1534.00 q^{17} -1035.00 q^{18} +2706.00 q^{19} +175.000 q^{20} -1464.00 q^{21} +3970.00 q^{22} -702.000 q^{23} -1170.00 q^{24} +625.000 q^{25} -845.000 q^{26} -2700.00 q^{27} +1708.00 q^{28} -5038.00 q^{29} -750.000 q^{30} -3634.00 q^{31} +2485.00 q^{32} +4764.00 q^{33} -7670.00 q^{34} +6100.00 q^{35} +1449.00 q^{36} -7058.00 q^{37} +13530.0 q^{38} -1014.00 q^{39} +4875.00 q^{40} -294.000 q^{41} -7320.00 q^{42} +7618.00 q^{43} -5558.00 q^{44} +5175.00 q^{45} -3510.00 q^{46} -3020.00 q^{47} -4506.00 q^{48} +42729.0 q^{49} +3125.00 q^{50} -9204.00 q^{51} +1183.00 q^{52} +626.000 q^{53} -13500.0 q^{54} -19850.0 q^{55} +47580.0 q^{56} +16236.0 q^{57} -25190.0 q^{58} -30066.0 q^{59} +1050.00 q^{60} -5806.00 q^{61} -18170.0 q^{62} +50508.0 q^{63} +36457.0 q^{64} +4225.00 q^{65} +23820.0 q^{66} -12436.0 q^{67} +10738.0 q^{68} -4212.00 q^{69} +30500.0 q^{70} +4734.00 q^{71} +40365.0 q^{72} -14694.0 q^{73} -35290.0 q^{74} +3750.00 q^{75} -18942.0 q^{76} -193736. q^{77} -5070.00 q^{78} -39804.0 q^{79} +18775.0 q^{80} +34101.0 q^{81} -1470.00 q^{82} -41776.0 q^{83} +10248.0 q^{84} +38350.0 q^{85} +38090.0 q^{86} -30228.0 q^{87} -154830. q^{88} +7970.00 q^{89} +25875.0 q^{90} +41236.0 q^{91} +4914.00 q^{92} -21804.0 q^{93} -15100.0 q^{94} -67650.0 q^{95} +14910.0 q^{96} -78050.0 q^{97} +213645. q^{98} -164358. q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.00000 0.883883 0.441942 0.897044i \(-0.354290\pi\)
0.441942 + 0.897044i \(0.354290\pi\)
\(3\) 6.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) −7.00000 −0.218750
\(5\) −25.0000 −0.447214
\(6\) 30.0000 0.340207
\(7\) −244.000 −1.88211 −0.941054 0.338255i \(-0.890163\pi\)
−0.941054 + 0.338255i \(0.890163\pi\)
\(8\) −195.000 −1.07723
\(9\) −207.000 −0.851852
\(10\) −125.000 −0.395285
\(11\) 794.000 1.97851 0.989256 0.146192i \(-0.0467017\pi\)
0.989256 + 0.146192i \(0.0467017\pi\)
\(12\) −42.0000 −0.0841969
\(13\) −169.000 −0.277350
\(14\) −1220.00 −1.66356
\(15\) −150.000 −0.172133
\(16\) −751.000 −0.733398
\(17\) −1534.00 −1.28737 −0.643685 0.765291i \(-0.722595\pi\)
−0.643685 + 0.765291i \(0.722595\pi\)
\(18\) −1035.00 −0.752938
\(19\) 2706.00 1.71966 0.859832 0.510576i \(-0.170568\pi\)
0.859832 + 0.510576i \(0.170568\pi\)
\(20\) 175.000 0.0978280
\(21\) −1464.00 −0.724424
\(22\) 3970.00 1.74877
\(23\) −702.000 −0.276705 −0.138353 0.990383i \(-0.544181\pi\)
−0.138353 + 0.990383i \(0.544181\pi\)
\(24\) −1170.00 −0.414627
\(25\) 625.000 0.200000
\(26\) −845.000 −0.245145
\(27\) −2700.00 −0.712778
\(28\) 1708.00 0.411711
\(29\) −5038.00 −1.11241 −0.556203 0.831047i \(-0.687742\pi\)
−0.556203 + 0.831047i \(0.687742\pi\)
\(30\) −750.000 −0.152145
\(31\) −3634.00 −0.679173 −0.339587 0.940575i \(-0.610287\pi\)
−0.339587 + 0.940575i \(0.610287\pi\)
\(32\) 2485.00 0.428994
\(33\) 4764.00 0.761530
\(34\) −7670.00 −1.13788
\(35\) 6100.00 0.841705
\(36\) 1449.00 0.186343
\(37\) −7058.00 −0.847573 −0.423787 0.905762i \(-0.639299\pi\)
−0.423787 + 0.905762i \(0.639299\pi\)
\(38\) 13530.0 1.51998
\(39\) −1014.00 −0.106752
\(40\) 4875.00 0.481753
\(41\) −294.000 −0.0273141 −0.0136571 0.999907i \(-0.504347\pi\)
−0.0136571 + 0.999907i \(0.504347\pi\)
\(42\) −7320.00 −0.640306
\(43\) 7618.00 0.628304 0.314152 0.949373i \(-0.398280\pi\)
0.314152 + 0.949373i \(0.398280\pi\)
\(44\) −5558.00 −0.432800
\(45\) 5175.00 0.380960
\(46\) −3510.00 −0.244575
\(47\) −3020.00 −0.199417 −0.0997085 0.995017i \(-0.531791\pi\)
−0.0997085 + 0.995017i \(0.531791\pi\)
\(48\) −4506.00 −0.282285
\(49\) 42729.0 2.54233
\(50\) 3125.00 0.176777
\(51\) −9204.00 −0.495509
\(52\) 1183.00 0.0606703
\(53\) 626.000 0.0306115 0.0153058 0.999883i \(-0.495128\pi\)
0.0153058 + 0.999883i \(0.495128\pi\)
\(54\) −13500.0 −0.630013
\(55\) −19850.0 −0.884818
\(56\) 47580.0 2.02747
\(57\) 16236.0 0.661899
\(58\) −25190.0 −0.983237
\(59\) −30066.0 −1.12446 −0.562232 0.826979i \(-0.690057\pi\)
−0.562232 + 0.826979i \(0.690057\pi\)
\(60\) 1050.00 0.0376540
\(61\) −5806.00 −0.199780 −0.0998901 0.994998i \(-0.531849\pi\)
−0.0998901 + 0.994998i \(0.531849\pi\)
\(62\) −18170.0 −0.600310
\(63\) 50508.0 1.60328
\(64\) 36457.0 1.11258
\(65\) 4225.00 0.124035
\(66\) 23820.0 0.673104
\(67\) −12436.0 −0.338449 −0.169225 0.985577i \(-0.554126\pi\)
−0.169225 + 0.985577i \(0.554126\pi\)
\(68\) 10738.0 0.281612
\(69\) −4212.00 −0.106504
\(70\) 30500.0 0.743969
\(71\) 4734.00 0.111451 0.0557253 0.998446i \(-0.482253\pi\)
0.0557253 + 0.998446i \(0.482253\pi\)
\(72\) 40365.0 0.917643
\(73\) −14694.0 −0.322725 −0.161363 0.986895i \(-0.551589\pi\)
−0.161363 + 0.986895i \(0.551589\pi\)
\(74\) −35290.0 −0.749156
\(75\) 3750.00 0.0769800
\(76\) −18942.0 −0.376177
\(77\) −193736. −3.72378
\(78\) −5070.00 −0.0943564
\(79\) −39804.0 −0.717561 −0.358781 0.933422i \(-0.616807\pi\)
−0.358781 + 0.933422i \(0.616807\pi\)
\(80\) 18775.0 0.327986
\(81\) 34101.0 0.577503
\(82\) −1470.00 −0.0241425
\(83\) −41776.0 −0.665628 −0.332814 0.942992i \(-0.607998\pi\)
−0.332814 + 0.942992i \(0.607998\pi\)
\(84\) 10248.0 0.158468
\(85\) 38350.0 0.575729
\(86\) 38090.0 0.555348
\(87\) −30228.0 −0.428165
\(88\) −154830. −2.13132
\(89\) 7970.00 0.106656 0.0533278 0.998577i \(-0.483017\pi\)
0.0533278 + 0.998577i \(0.483017\pi\)
\(90\) 25875.0 0.336724
\(91\) 41236.0 0.522003
\(92\) 4914.00 0.0605293
\(93\) −21804.0 −0.261414
\(94\) −15100.0 −0.176261
\(95\) −67650.0 −0.769057
\(96\) 14910.0 0.165120
\(97\) −78050.0 −0.842255 −0.421127 0.907001i \(-0.638366\pi\)
−0.421127 + 0.907001i \(0.638366\pi\)
\(98\) 213645. 2.24713
\(99\) −164358. −1.68540
\(100\) −4375.00 −0.0437500
\(101\) −23010.0 −0.224447 −0.112223 0.993683i \(-0.535797\pi\)
−0.112223 + 0.993683i \(0.535797\pi\)
\(102\) −46020.0 −0.437972
\(103\) 121706. 1.13037 0.565183 0.824966i \(-0.308806\pi\)
0.565183 + 0.824966i \(0.308806\pi\)
\(104\) 32955.0 0.298771
\(105\) 36600.0 0.323972
\(106\) 3130.00 0.0270570
\(107\) −70142.0 −0.592269 −0.296134 0.955146i \(-0.595698\pi\)
−0.296134 + 0.955146i \(0.595698\pi\)
\(108\) 18900.0 0.155920
\(109\) −195878. −1.57914 −0.789568 0.613663i \(-0.789695\pi\)
−0.789568 + 0.613663i \(0.789695\pi\)
\(110\) −99250.0 −0.782076
\(111\) −42348.0 −0.326231
\(112\) 183244. 1.38034
\(113\) −100238. −0.738476 −0.369238 0.929335i \(-0.620381\pi\)
−0.369238 + 0.929335i \(0.620381\pi\)
\(114\) 81180.0 0.585042
\(115\) 17550.0 0.123746
\(116\) 35266.0 0.243339
\(117\) 34983.0 0.236261
\(118\) −150330. −0.993895
\(119\) 374296. 2.42297
\(120\) 29250.0 0.185427
\(121\) 469385. 2.91451
\(122\) −29030.0 −0.176582
\(123\) −1764.00 −0.0105132
\(124\) 25438.0 0.148569
\(125\) −15625.0 −0.0894427
\(126\) 252540. 1.41711
\(127\) 39286.0 0.216137 0.108068 0.994143i \(-0.465533\pi\)
0.108068 + 0.994143i \(0.465533\pi\)
\(128\) 102765. 0.554396
\(129\) 45708.0 0.241834
\(130\) 21125.0 0.109632
\(131\) 211460. 1.07659 0.538295 0.842757i \(-0.319069\pi\)
0.538295 + 0.842757i \(0.319069\pi\)
\(132\) −33348.0 −0.166585
\(133\) −660264. −3.23660
\(134\) −62180.0 −0.299150
\(135\) 67500.0 0.318764
\(136\) 299130. 1.38680
\(137\) 26302.0 0.119726 0.0598628 0.998207i \(-0.480934\pi\)
0.0598628 + 0.998207i \(0.480934\pi\)
\(138\) −21060.0 −0.0941371
\(139\) 1344.00 0.00590014 0.00295007 0.999996i \(-0.499061\pi\)
0.00295007 + 0.999996i \(0.499061\pi\)
\(140\) −42700.0 −0.184123
\(141\) −18120.0 −0.0767557
\(142\) 23670.0 0.0985093
\(143\) −134186. −0.548741
\(144\) 155457. 0.624747
\(145\) 125950. 0.497483
\(146\) −73470.0 −0.285251
\(147\) 256374. 0.978545
\(148\) 49406.0 0.185407
\(149\) −49086.0 −0.181131 −0.0905653 0.995891i \(-0.528867\pi\)
−0.0905653 + 0.995891i \(0.528867\pi\)
\(150\) 18750.0 0.0680414
\(151\) −357998. −1.27773 −0.638864 0.769320i \(-0.720595\pi\)
−0.638864 + 0.769320i \(0.720595\pi\)
\(152\) −527670. −1.85248
\(153\) 317538. 1.09665
\(154\) −968680. −3.29138
\(155\) 90850.0 0.303736
\(156\) 7098.00 0.0233520
\(157\) 45450.0 0.147158 0.0735791 0.997289i \(-0.476558\pi\)
0.0735791 + 0.997289i \(0.476558\pi\)
\(158\) −199020. −0.634241
\(159\) 3756.00 0.0117824
\(160\) −62125.0 −0.191852
\(161\) 171288. 0.520790
\(162\) 170505. 0.510446
\(163\) 5892.00 0.0173698 0.00868488 0.999962i \(-0.497235\pi\)
0.00868488 + 0.999962i \(0.497235\pi\)
\(164\) 2058.00 0.00597497
\(165\) −119100. −0.340566
\(166\) −208880. −0.588338
\(167\) 212772. 0.590369 0.295184 0.955440i \(-0.404619\pi\)
0.295184 + 0.955440i \(0.404619\pi\)
\(168\) 285480. 0.780373
\(169\) 28561.0 0.0769231
\(170\) 191750. 0.508877
\(171\) −560142. −1.46490
\(172\) −53326.0 −0.137442
\(173\) 503178. 1.27822 0.639111 0.769114i \(-0.279302\pi\)
0.639111 + 0.769114i \(0.279302\pi\)
\(174\) −151140. −0.378448
\(175\) −152500. −0.376422
\(176\) −596294. −1.45104
\(177\) −180396. −0.432806
\(178\) 39850.0 0.0942710
\(179\) 581724. 1.35701 0.678507 0.734594i \(-0.262627\pi\)
0.678507 + 0.734594i \(0.262627\pi\)
\(180\) −36225.0 −0.0833349
\(181\) 202202. 0.458764 0.229382 0.973337i \(-0.426330\pi\)
0.229382 + 0.973337i \(0.426330\pi\)
\(182\) 206180. 0.461390
\(183\) −34836.0 −0.0768954
\(184\) 136890. 0.298076
\(185\) 176450. 0.379046
\(186\) −109020. −0.231059
\(187\) −1.21800e6 −2.54708
\(188\) 21140.0 0.0436225
\(189\) 658800. 1.34153
\(190\) −338250. −0.679757
\(191\) −340608. −0.675572 −0.337786 0.941223i \(-0.609678\pi\)
−0.337786 + 0.941223i \(0.609678\pi\)
\(192\) 218742. 0.428232
\(193\) 275614. 0.532608 0.266304 0.963889i \(-0.414197\pi\)
0.266304 + 0.963889i \(0.414197\pi\)
\(194\) −390250. −0.744455
\(195\) 25350.0 0.0477410
\(196\) −299103. −0.556135
\(197\) 538218. 0.988081 0.494041 0.869439i \(-0.335519\pi\)
0.494041 + 0.869439i \(0.335519\pi\)
\(198\) −821790. −1.48970
\(199\) −853840. −1.52842 −0.764212 0.644965i \(-0.776872\pi\)
−0.764212 + 0.644965i \(0.776872\pi\)
\(200\) −121875. −0.215447
\(201\) −74616.0 −0.130269
\(202\) −115050. −0.198385
\(203\) 1.22927e6 2.09367
\(204\) 64428.0 0.108392
\(205\) 7350.00 0.0122153
\(206\) 608530. 0.999111
\(207\) 145314. 0.235712
\(208\) 126919. 0.203408
\(209\) 2.14856e6 3.40238
\(210\) 183000. 0.286354
\(211\) −1.00112e6 −1.54804 −0.774019 0.633162i \(-0.781757\pi\)
−0.774019 + 0.633162i \(0.781757\pi\)
\(212\) −4382.00 −0.00669627
\(213\) 28404.0 0.0428974
\(214\) −350710. −0.523496
\(215\) −190450. −0.280986
\(216\) 526500. 0.767828
\(217\) 886696. 1.27828
\(218\) −979390. −1.39577
\(219\) −88164.0 −0.124217
\(220\) 138950. 0.193554
\(221\) 259246. 0.357052
\(222\) −211740. −0.288350
\(223\) 21364.0 0.0287687 0.0143844 0.999897i \(-0.495421\pi\)
0.0143844 + 0.999897i \(0.495421\pi\)
\(224\) −606340. −0.807414
\(225\) −129375. −0.170370
\(226\) −501190. −0.652727
\(227\) −880748. −1.13445 −0.567227 0.823561i \(-0.691984\pi\)
−0.567227 + 0.823561i \(0.691984\pi\)
\(228\) −113652. −0.144790
\(229\) −13030.0 −0.0164193 −0.00820967 0.999966i \(-0.502613\pi\)
−0.00820967 + 0.999966i \(0.502613\pi\)
\(230\) 87750.0 0.109377
\(231\) −1.16242e6 −1.43328
\(232\) 982410. 1.19832
\(233\) −1.20700e6 −1.45652 −0.728260 0.685300i \(-0.759671\pi\)
−0.728260 + 0.685300i \(0.759671\pi\)
\(234\) 174915. 0.208827
\(235\) 75500.0 0.0891820
\(236\) 210462. 0.245977
\(237\) −238824. −0.276189
\(238\) 1.87148e6 2.14162
\(239\) −187038. −0.211804 −0.105902 0.994377i \(-0.533773\pi\)
−0.105902 + 0.994377i \(0.533773\pi\)
\(240\) 112650. 0.126242
\(241\) 271690. 0.301322 0.150661 0.988585i \(-0.451860\pi\)
0.150661 + 0.988585i \(0.451860\pi\)
\(242\) 2.34692e6 2.57609
\(243\) 860706. 0.935059
\(244\) 40642.0 0.0437019
\(245\) −1.06822e6 −1.13697
\(246\) −8820.00 −0.00929246
\(247\) −457314. −0.476949
\(248\) 708630. 0.731628
\(249\) −250656. −0.256200
\(250\) −78125.0 −0.0790569
\(251\) 102648. 0.102841 0.0514205 0.998677i \(-0.483625\pi\)
0.0514205 + 0.998677i \(0.483625\pi\)
\(252\) −353556. −0.350717
\(253\) −557388. −0.547465
\(254\) 196430. 0.191040
\(255\) 230100. 0.221598
\(256\) −652799. −0.622558
\(257\) −221182. −0.208890 −0.104445 0.994531i \(-0.533307\pi\)
−0.104445 + 0.994531i \(0.533307\pi\)
\(258\) 228540. 0.213753
\(259\) 1.72215e6 1.59523
\(260\) −29575.0 −0.0271326
\(261\) 1.04287e6 0.947605
\(262\) 1.05730e6 0.951579
\(263\) 1.40317e6 1.25090 0.625449 0.780265i \(-0.284916\pi\)
0.625449 + 0.780265i \(0.284916\pi\)
\(264\) −928980. −0.820345
\(265\) −15650.0 −0.0136899
\(266\) −3.30132e6 −2.86077
\(267\) 47820.0 0.0410517
\(268\) 87052.0 0.0740358
\(269\) −582954. −0.491195 −0.245597 0.969372i \(-0.578984\pi\)
−0.245597 + 0.969372i \(0.578984\pi\)
\(270\) 337500. 0.281750
\(271\) −1.04690e6 −0.865930 −0.432965 0.901411i \(-0.642533\pi\)
−0.432965 + 0.901411i \(0.642533\pi\)
\(272\) 1.15203e6 0.944154
\(273\) 247416. 0.200919
\(274\) 131510. 0.105824
\(275\) 496250. 0.395702
\(276\) 29484.0 0.0232977
\(277\) 1.10461e6 0.864987 0.432493 0.901637i \(-0.357634\pi\)
0.432493 + 0.901637i \(0.357634\pi\)
\(278\) 6720.00 0.00521504
\(279\) 752238. 0.578555
\(280\) −1.18950e6 −0.906712
\(281\) 908826. 0.686618 0.343309 0.939223i \(-0.388452\pi\)
0.343309 + 0.939223i \(0.388452\pi\)
\(282\) −90600.0 −0.0678431
\(283\) −449254. −0.333446 −0.166723 0.986004i \(-0.553319\pi\)
−0.166723 + 0.986004i \(0.553319\pi\)
\(284\) −33138.0 −0.0243798
\(285\) −405900. −0.296010
\(286\) −670930. −0.485023
\(287\) 71736.0 0.0514082
\(288\) −514395. −0.365440
\(289\) 933299. 0.657319
\(290\) 629750. 0.439717
\(291\) −468300. −0.324184
\(292\) 102858. 0.0705961
\(293\) −1.96083e6 −1.33435 −0.667175 0.744901i \(-0.732497\pi\)
−0.667175 + 0.744901i \(0.732497\pi\)
\(294\) 1.28187e6 0.864919
\(295\) 751650. 0.502876
\(296\) 1.37631e6 0.913034
\(297\) −2.14380e6 −1.41024
\(298\) −245430. −0.160098
\(299\) 118638. 0.0767442
\(300\) −26250.0 −0.0168394
\(301\) −1.85879e6 −1.18254
\(302\) −1.78999e6 −1.12936
\(303\) −138060. −0.0863896
\(304\) −2.03221e6 −1.26120
\(305\) 145150. 0.0893444
\(306\) 1.58769e6 0.969309
\(307\) −1.79385e6 −1.08627 −0.543137 0.839644i \(-0.682764\pi\)
−0.543137 + 0.839644i \(0.682764\pi\)
\(308\) 1.35615e6 0.814576
\(309\) 730236. 0.435078
\(310\) 454250. 0.268467
\(311\) 2.41233e6 1.41428 0.707141 0.707072i \(-0.249985\pi\)
0.707141 + 0.707072i \(0.249985\pi\)
\(312\) 197730. 0.114997
\(313\) −2.15436e6 −1.24296 −0.621480 0.783430i \(-0.713468\pi\)
−0.621480 + 0.783430i \(0.713468\pi\)
\(314\) 227250. 0.130071
\(315\) −1.26270e6 −0.717008
\(316\) 278628. 0.156967
\(317\) 2.59616e6 1.45105 0.725526 0.688195i \(-0.241597\pi\)
0.725526 + 0.688195i \(0.241597\pi\)
\(318\) 18780.0 0.0104142
\(319\) −4.00017e6 −2.20091
\(320\) −911425. −0.497561
\(321\) −420852. −0.227964
\(322\) 856440. 0.460317
\(323\) −4.15100e6 −2.21384
\(324\) −238707. −0.126329
\(325\) −105625. −0.0554700
\(326\) 29460.0 0.0153528
\(327\) −1.17527e6 −0.607810
\(328\) 57330.0 0.0294237
\(329\) 736880. 0.375325
\(330\) −595500. −0.301021
\(331\) −917226. −0.460157 −0.230079 0.973172i \(-0.573898\pi\)
−0.230079 + 0.973172i \(0.573898\pi\)
\(332\) 292432. 0.145606
\(333\) 1.46101e6 0.722007
\(334\) 1.06386e6 0.521817
\(335\) 310900. 0.151359
\(336\) 1.09946e6 0.531291
\(337\) 2.23894e6 1.07391 0.536954 0.843611i \(-0.319575\pi\)
0.536954 + 0.843611i \(0.319575\pi\)
\(338\) 142805. 0.0679910
\(339\) −601428. −0.284239
\(340\) −268450. −0.125941
\(341\) −2.88540e6 −1.34375
\(342\) −2.80071e6 −1.29480
\(343\) −6.32497e6 −2.90284
\(344\) −1.48551e6 −0.676830
\(345\) 105300. 0.0476300
\(346\) 2.51589e6 1.12980
\(347\) 3.41808e6 1.52391 0.761954 0.647631i \(-0.224240\pi\)
0.761954 + 0.647631i \(0.224240\pi\)
\(348\) 211596. 0.0936611
\(349\) 2.35691e6 1.03581 0.517905 0.855438i \(-0.326712\pi\)
0.517905 + 0.855438i \(0.326712\pi\)
\(350\) −762500. −0.332713
\(351\) 456300. 0.197689
\(352\) 1.97309e6 0.848770
\(353\) −3.76395e6 −1.60771 −0.803854 0.594827i \(-0.797221\pi\)
−0.803854 + 0.594827i \(0.797221\pi\)
\(354\) −901980. −0.382550
\(355\) −118350. −0.0498422
\(356\) −55790.0 −0.0233309
\(357\) 2.24578e6 0.932601
\(358\) 2.90862e6 1.19944
\(359\) 3.28216e6 1.34407 0.672037 0.740517i \(-0.265419\pi\)
0.672037 + 0.740517i \(0.265419\pi\)
\(360\) −1.00913e6 −0.410382
\(361\) 4.84634e6 1.95725
\(362\) 1.01101e6 0.405494
\(363\) 2.81631e6 1.12180
\(364\) −288652. −0.114188
\(365\) 367350. 0.144327
\(366\) −174180. −0.0679666
\(367\) −2.42605e6 −0.940233 −0.470116 0.882604i \(-0.655788\pi\)
−0.470116 + 0.882604i \(0.655788\pi\)
\(368\) 527202. 0.202935
\(369\) 60858.0 0.0232676
\(370\) 882250. 0.335033
\(371\) −152744. −0.0576142
\(372\) 152628. 0.0571843
\(373\) 2.80635e6 1.04441 0.522204 0.852820i \(-0.325110\pi\)
0.522204 + 0.852820i \(0.325110\pi\)
\(374\) −6.08998e6 −2.25132
\(375\) −93750.0 −0.0344265
\(376\) 588900. 0.214819
\(377\) 851422. 0.308526
\(378\) 3.29400e6 1.18575
\(379\) 3.15392e6 1.12785 0.563927 0.825825i \(-0.309290\pi\)
0.563927 + 0.825825i \(0.309290\pi\)
\(380\) 473550. 0.168231
\(381\) 235716. 0.0831911
\(382\) −1.70304e6 −0.597127
\(383\) −475044. −0.165477 −0.0827384 0.996571i \(-0.526367\pi\)
−0.0827384 + 0.996571i \(0.526367\pi\)
\(384\) 616590. 0.213387
\(385\) 4.84340e6 1.66532
\(386\) 1.37807e6 0.470764
\(387\) −1.57693e6 −0.535222
\(388\) 546350. 0.184243
\(389\) 150566. 0.0504490 0.0252245 0.999682i \(-0.491970\pi\)
0.0252245 + 0.999682i \(0.491970\pi\)
\(390\) 126750. 0.0421975
\(391\) 1.07687e6 0.356222
\(392\) −8.33216e6 −2.73869
\(393\) 1.26876e6 0.414379
\(394\) 2.69109e6 0.873349
\(395\) 995100. 0.320903
\(396\) 1.15051e6 0.368681
\(397\) 241686. 0.0769618 0.0384809 0.999259i \(-0.487748\pi\)
0.0384809 + 0.999259i \(0.487748\pi\)
\(398\) −4.26920e6 −1.35095
\(399\) −3.96158e6 −1.24577
\(400\) −469375. −0.146680
\(401\) −3.19679e6 −0.992780 −0.496390 0.868100i \(-0.665341\pi\)
−0.496390 + 0.868100i \(0.665341\pi\)
\(402\) −373080. −0.115143
\(403\) 614146. 0.188369
\(404\) 161070. 0.0490977
\(405\) −852525. −0.258267
\(406\) 6.14636e6 1.85056
\(407\) −5.60405e6 −1.67693
\(408\) 1.79478e6 0.533778
\(409\) 423282. 0.125119 0.0625593 0.998041i \(-0.480074\pi\)
0.0625593 + 0.998041i \(0.480074\pi\)
\(410\) 36750.0 0.0107969
\(411\) 157812. 0.0460824
\(412\) −851942. −0.247267
\(413\) 7.33610e6 2.11636
\(414\) 726570. 0.208342
\(415\) 1.04440e6 0.297678
\(416\) −419965. −0.118982
\(417\) 8064.00 0.00227096
\(418\) 1.07428e7 3.00731
\(419\) −1.13159e6 −0.314887 −0.157444 0.987528i \(-0.550325\pi\)
−0.157444 + 0.987528i \(0.550325\pi\)
\(420\) −256200. −0.0708689
\(421\) 3.47699e6 0.956088 0.478044 0.878336i \(-0.341346\pi\)
0.478044 + 0.878336i \(0.341346\pi\)
\(422\) −5.00562e6 −1.36829
\(423\) 625140. 0.169874
\(424\) −122070. −0.0329757
\(425\) −958750. −0.257474
\(426\) 142020. 0.0379163
\(427\) 1.41666e6 0.376008
\(428\) 490994. 0.129559
\(429\) −805116. −0.211210
\(430\) −952250. −0.248359
\(431\) 3.41044e6 0.884335 0.442168 0.896932i \(-0.354210\pi\)
0.442168 + 0.896932i \(0.354210\pi\)
\(432\) 2.02770e6 0.522750
\(433\) −3.40722e6 −0.873335 −0.436667 0.899623i \(-0.643841\pi\)
−0.436667 + 0.899623i \(0.643841\pi\)
\(434\) 4.43348e6 1.12985
\(435\) 755700. 0.191481
\(436\) 1.37115e6 0.345436
\(437\) −1.89961e6 −0.475840
\(438\) −440820. −0.109793
\(439\) −7.09114e6 −1.75612 −0.878061 0.478549i \(-0.841163\pi\)
−0.878061 + 0.478549i \(0.841163\pi\)
\(440\) 3.87075e6 0.953155
\(441\) −8.84490e6 −2.16569
\(442\) 1.29623e6 0.315592
\(443\) −8.23508e6 −1.99369 −0.996847 0.0793445i \(-0.974717\pi\)
−0.996847 + 0.0793445i \(0.974717\pi\)
\(444\) 296436. 0.0713631
\(445\) −199250. −0.0476978
\(446\) 106820. 0.0254282
\(447\) −294516. −0.0697172
\(448\) −8.89551e6 −2.09400
\(449\) −1.29601e6 −0.303383 −0.151691 0.988428i \(-0.548472\pi\)
−0.151691 + 0.988428i \(0.548472\pi\)
\(450\) −646875. −0.150588
\(451\) −233436. −0.0540414
\(452\) 701666. 0.161542
\(453\) −2.14799e6 −0.491798
\(454\) −4.40374e6 −1.00273
\(455\) −1.03090e6 −0.233447
\(456\) −3.16602e6 −0.713020
\(457\) 1.68196e6 0.376725 0.188363 0.982100i \(-0.439682\pi\)
0.188363 + 0.982100i \(0.439682\pi\)
\(458\) −65150.0 −0.0145128
\(459\) 4.14180e6 0.917608
\(460\) −122850. −0.0270695
\(461\) −3.20663e6 −0.702743 −0.351372 0.936236i \(-0.614285\pi\)
−0.351372 + 0.936236i \(0.614285\pi\)
\(462\) −5.81208e6 −1.26685
\(463\) −5.26370e6 −1.14114 −0.570570 0.821249i \(-0.693278\pi\)
−0.570570 + 0.821249i \(0.693278\pi\)
\(464\) 3.78354e6 0.815837
\(465\) 545100. 0.116908
\(466\) −6.03499e6 −1.28739
\(467\) −8.26813e6 −1.75435 −0.877173 0.480175i \(-0.840573\pi\)
−0.877173 + 0.480175i \(0.840573\pi\)
\(468\) −244881. −0.0516821
\(469\) 3.03438e6 0.636999
\(470\) 377500. 0.0788265
\(471\) 272700. 0.0566413
\(472\) 5.86287e6 1.21131
\(473\) 6.04869e6 1.24311
\(474\) −1.19412e6 −0.244119
\(475\) 1.69125e6 0.343933
\(476\) −2.62007e6 −0.530024
\(477\) −129582. −0.0260765
\(478\) −935190. −0.187210
\(479\) 3.65468e6 0.727797 0.363899 0.931439i \(-0.381445\pi\)
0.363899 + 0.931439i \(0.381445\pi\)
\(480\) −372750. −0.0738439
\(481\) 1.19280e6 0.235075
\(482\) 1.35845e6 0.266334
\(483\) 1.02773e6 0.200452
\(484\) −3.28570e6 −0.637549
\(485\) 1.95125e6 0.376668
\(486\) 4.30353e6 0.826483
\(487\) 7.13084e6 1.36244 0.681221 0.732077i \(-0.261449\pi\)
0.681221 + 0.732077i \(0.261449\pi\)
\(488\) 1.13217e6 0.215210
\(489\) 35352.0 0.00668562
\(490\) −5.34113e6 −1.00495
\(491\) 5.72551e6 1.07179 0.535896 0.844284i \(-0.319974\pi\)
0.535896 + 0.844284i \(0.319974\pi\)
\(492\) 12348.0 0.00229977
\(493\) 7.72829e6 1.43208
\(494\) −2.28657e6 −0.421568
\(495\) 4.10895e6 0.753734
\(496\) 2.72913e6 0.498105
\(497\) −1.15510e6 −0.209762
\(498\) −1.25328e6 −0.226451
\(499\) −7.17251e6 −1.28950 −0.644748 0.764395i \(-0.723038\pi\)
−0.644748 + 0.764395i \(0.723038\pi\)
\(500\) 109375. 0.0195656
\(501\) 1.27663e6 0.227233
\(502\) 513240. 0.0908994
\(503\) −2.90611e6 −0.512143 −0.256072 0.966658i \(-0.582428\pi\)
−0.256072 + 0.966658i \(0.582428\pi\)
\(504\) −9.84906e6 −1.72710
\(505\) 575250. 0.100376
\(506\) −2.78694e6 −0.483895
\(507\) 171366. 0.0296077
\(508\) −275002. −0.0472799
\(509\) −8.37125e6 −1.43217 −0.716087 0.698011i \(-0.754069\pi\)
−0.716087 + 0.698011i \(0.754069\pi\)
\(510\) 1.15050e6 0.195867
\(511\) 3.58534e6 0.607404
\(512\) −6.55248e6 −1.10466
\(513\) −7.30620e6 −1.22574
\(514\) −1.10591e6 −0.184634
\(515\) −3.04265e6 −0.505515
\(516\) −319956. −0.0529013
\(517\) −2.39788e6 −0.394549
\(518\) 8.61076e6 1.40999
\(519\) 3.01907e6 0.491988
\(520\) −823875. −0.133614
\(521\) 5.37332e6 0.867258 0.433629 0.901092i \(-0.357233\pi\)
0.433629 + 0.901092i \(0.357233\pi\)
\(522\) 5.21433e6 0.837572
\(523\) 5.26875e6 0.842274 0.421137 0.906997i \(-0.361631\pi\)
0.421137 + 0.906997i \(0.361631\pi\)
\(524\) −1.48022e6 −0.235504
\(525\) −915000. −0.144885
\(526\) 7.01587e6 1.10565
\(527\) 5.57456e6 0.874347
\(528\) −3.57776e6 −0.558505
\(529\) −5.94354e6 −0.923434
\(530\) −78250.0 −0.0121003
\(531\) 6.22366e6 0.957877
\(532\) 4.62185e6 0.708005
\(533\) 49686.0 0.00757558
\(534\) 239100. 0.0362849
\(535\) 1.75355e6 0.264871
\(536\) 2.42502e6 0.364589
\(537\) 3.49034e6 0.522315
\(538\) −2.91477e6 −0.434159
\(539\) 3.39268e7 5.03004
\(540\) −472500. −0.0697296
\(541\) −6.07956e6 −0.893056 −0.446528 0.894770i \(-0.647340\pi\)
−0.446528 + 0.894770i \(0.647340\pi\)
\(542\) −5.23451e6 −0.765381
\(543\) 1.21321e6 0.176578
\(544\) −3.81199e6 −0.552274
\(545\) 4.89695e6 0.706211
\(546\) 1.23708e6 0.177589
\(547\) −7.88715e6 −1.12707 −0.563536 0.826091i \(-0.690559\pi\)
−0.563536 + 0.826091i \(0.690559\pi\)
\(548\) −184114. −0.0261900
\(549\) 1.20184e6 0.170183
\(550\) 2.48125e6 0.349755
\(551\) −1.36328e7 −1.91296
\(552\) 821340. 0.114730
\(553\) 9.71218e6 1.35053
\(554\) 5.52305e6 0.764548
\(555\) 1.05870e6 0.145895
\(556\) −9408.00 −0.00129066
\(557\) −5.88545e6 −0.803788 −0.401894 0.915686i \(-0.631648\pi\)
−0.401894 + 0.915686i \(0.631648\pi\)
\(558\) 3.76119e6 0.511375
\(559\) −1.28744e6 −0.174260
\(560\) −4.58110e6 −0.617305
\(561\) −7.30798e6 −0.980370
\(562\) 4.54413e6 0.606890
\(563\) −3.91526e6 −0.520583 −0.260291 0.965530i \(-0.583819\pi\)
−0.260291 + 0.965530i \(0.583819\pi\)
\(564\) 126840. 0.0167903
\(565\) 2.50595e6 0.330256
\(566\) −2.24627e6 −0.294728
\(567\) −8.32064e6 −1.08692
\(568\) −923130. −0.120058
\(569\) 9.78180e6 1.26660 0.633298 0.773908i \(-0.281701\pi\)
0.633298 + 0.773908i \(0.281701\pi\)
\(570\) −2.02950e6 −0.261639
\(571\) −1.08198e7 −1.38877 −0.694386 0.719603i \(-0.744324\pi\)
−0.694386 + 0.719603i \(0.744324\pi\)
\(572\) 939302. 0.120037
\(573\) −2.04365e6 −0.260028
\(574\) 358680. 0.0454389
\(575\) −438750. −0.0553411
\(576\) −7.54660e6 −0.947753
\(577\) 1.48792e7 1.86055 0.930274 0.366865i \(-0.119569\pi\)
0.930274 + 0.366865i \(0.119569\pi\)
\(578\) 4.66650e6 0.580993
\(579\) 1.65368e6 0.205001
\(580\) −881650. −0.108824
\(581\) 1.01933e7 1.25278
\(582\) −2.34150e6 −0.286541
\(583\) 497044. 0.0605652
\(584\) 2.86533e6 0.347650
\(585\) −874575. −0.105659
\(586\) −9.80413e6 −1.17941
\(587\) 1.22649e7 1.46916 0.734578 0.678525i \(-0.237380\pi\)
0.734578 + 0.678525i \(0.237380\pi\)
\(588\) −1.79462e6 −0.214057
\(589\) −9.83360e6 −1.16795
\(590\) 3.75825e6 0.444483
\(591\) 3.22931e6 0.380313
\(592\) 5.30056e6 0.621609
\(593\) −1.54878e7 −1.80864 −0.904320 0.426856i \(-0.859621\pi\)
−0.904320 + 0.426856i \(0.859621\pi\)
\(594\) −1.07190e7 −1.24649
\(595\) −9.35740e6 −1.08358
\(596\) 343602. 0.0396223
\(597\) −5.12304e6 −0.588291
\(598\) 593190. 0.0678330
\(599\) 9.75710e6 1.11110 0.555551 0.831483i \(-0.312507\pi\)
0.555551 + 0.831483i \(0.312507\pi\)
\(600\) −731250. −0.0829254
\(601\) −7.57967e6 −0.855981 −0.427990 0.903783i \(-0.640778\pi\)
−0.427990 + 0.903783i \(0.640778\pi\)
\(602\) −9.29396e6 −1.04522
\(603\) 2.57425e6 0.288309
\(604\) 2.50599e6 0.279503
\(605\) −1.17346e7 −1.30341
\(606\) −690300. −0.0763583
\(607\) 1.36231e7 1.50073 0.750367 0.661022i \(-0.229877\pi\)
0.750367 + 0.661022i \(0.229877\pi\)
\(608\) 6.72441e6 0.737726
\(609\) 7.37563e6 0.805853
\(610\) 725750. 0.0789701
\(611\) 510380. 0.0553083
\(612\) −2.22277e6 −0.239892
\(613\) −1.20366e7 −1.29376 −0.646880 0.762592i \(-0.723927\pi\)
−0.646880 + 0.762592i \(0.723927\pi\)
\(614\) −8.96924e6 −0.960140
\(615\) 44100.0 0.00470166
\(616\) 3.77785e7 4.01137
\(617\) 8.55509e6 0.904715 0.452358 0.891837i \(-0.350583\pi\)
0.452358 + 0.891837i \(0.350583\pi\)
\(618\) 3.65118e6 0.384558
\(619\) −1.33018e7 −1.39535 −0.697675 0.716414i \(-0.745782\pi\)
−0.697675 + 0.716414i \(0.745782\pi\)
\(620\) −635950. −0.0664422
\(621\) 1.89540e6 0.197230
\(622\) 1.20617e7 1.25006
\(623\) −1.94468e6 −0.200737
\(624\) 761514. 0.0782918
\(625\) 390625. 0.0400000
\(626\) −1.07718e7 −1.09863
\(627\) 1.28914e7 1.30958
\(628\) −318150. −0.0321909
\(629\) 1.08270e7 1.09114
\(630\) −6.31350e6 −0.633751
\(631\) 9.16681e6 0.916526 0.458263 0.888817i \(-0.348472\pi\)
0.458263 + 0.888817i \(0.348472\pi\)
\(632\) 7.76178e6 0.772981
\(633\) −6.00674e6 −0.595840
\(634\) 1.29808e7 1.28256
\(635\) −982150. −0.0966593
\(636\) −26292.0 −0.00257739
\(637\) −7.22120e6 −0.705116
\(638\) −2.00009e7 −1.94535
\(639\) −979938. −0.0949394
\(640\) −2.56912e6 −0.247934
\(641\) 9.96437e6 0.957866 0.478933 0.877851i \(-0.341024\pi\)
0.478933 + 0.877851i \(0.341024\pi\)
\(642\) −2.10426e6 −0.201494
\(643\) 6.64194e6 0.633530 0.316765 0.948504i \(-0.397403\pi\)
0.316765 + 0.948504i \(0.397403\pi\)
\(644\) −1.19902e6 −0.113923
\(645\) −1.14270e6 −0.108152
\(646\) −2.07550e7 −1.95678
\(647\) 844766. 0.0793370 0.0396685 0.999213i \(-0.487370\pi\)
0.0396685 + 0.999213i \(0.487370\pi\)
\(648\) −6.64969e6 −0.622106
\(649\) −2.38724e7 −2.22477
\(650\) −528125. −0.0490290
\(651\) 5.32018e6 0.492010
\(652\) −41244.0 −0.00379963
\(653\) 5.79681e6 0.531993 0.265997 0.963974i \(-0.414299\pi\)
0.265997 + 0.963974i \(0.414299\pi\)
\(654\) −5.87634e6 −0.537233
\(655\) −5.28650e6 −0.481465
\(656\) 220794. 0.0200322
\(657\) 3.04166e6 0.274914
\(658\) 3.68440e6 0.331743
\(659\) −1.12406e7 −1.00827 −0.504136 0.863624i \(-0.668189\pi\)
−0.504136 + 0.863624i \(0.668189\pi\)
\(660\) 833700. 0.0744989
\(661\) −1.54928e7 −1.37920 −0.689599 0.724191i \(-0.742213\pi\)
−0.689599 + 0.724191i \(0.742213\pi\)
\(662\) −4.58613e6 −0.406725
\(663\) 1.55548e6 0.137429
\(664\) 8.14632e6 0.717037
\(665\) 1.65066e7 1.44745
\(666\) 7.30503e6 0.638170
\(667\) 3.53668e6 0.307809
\(668\) −1.48940e6 −0.129143
\(669\) 128184. 0.0110731
\(670\) 1.55450e6 0.133784
\(671\) −4.60996e6 −0.395268
\(672\) −3.63804e6 −0.310774
\(673\) −723294. −0.0615570 −0.0307785 0.999526i \(-0.509799\pi\)
−0.0307785 + 0.999526i \(0.509799\pi\)
\(674\) 1.11947e7 0.949210
\(675\) −1.68750e6 −0.142556
\(676\) −199927. −0.0168269
\(677\) −7.57359e6 −0.635082 −0.317541 0.948244i \(-0.602857\pi\)
−0.317541 + 0.948244i \(0.602857\pi\)
\(678\) −3.00714e6 −0.251235
\(679\) 1.90442e7 1.58522
\(680\) −7.47825e6 −0.620194
\(681\) −5.28449e6 −0.436652
\(682\) −1.44270e7 −1.18772
\(683\) −1.65552e7 −1.35794 −0.678972 0.734164i \(-0.737574\pi\)
−0.678972 + 0.734164i \(0.737574\pi\)
\(684\) 3.92099e6 0.320447
\(685\) −657550. −0.0535430
\(686\) −3.16248e7 −2.56577
\(687\) −78180.0 −0.00631981
\(688\) −5.72112e6 −0.460797
\(689\) −105794. −0.00849010
\(690\) 526500. 0.0420994
\(691\) −2.04593e7 −1.63003 −0.815016 0.579438i \(-0.803272\pi\)
−0.815016 + 0.579438i \(0.803272\pi\)
\(692\) −3.52225e6 −0.279611
\(693\) 4.01034e7 3.17211
\(694\) 1.70904e7 1.34696
\(695\) −33600.0 −0.00263862
\(696\) 5.89446e6 0.461234
\(697\) 450996. 0.0351634
\(698\) 1.17846e7 0.915535
\(699\) −7.24199e6 −0.560615
\(700\) 1.06750e6 0.0823423
\(701\) 1.52050e7 1.16867 0.584334 0.811514i \(-0.301356\pi\)
0.584334 + 0.811514i \(0.301356\pi\)
\(702\) 2.28150e6 0.174734
\(703\) −1.90989e7 −1.45754
\(704\) 2.89469e7 2.20125
\(705\) 453000. 0.0343262
\(706\) −1.88198e7 −1.42103
\(707\) 5.61444e6 0.422433
\(708\) 1.26277e6 0.0946764
\(709\) −1.80833e7 −1.35102 −0.675509 0.737351i \(-0.736076\pi\)
−0.675509 + 0.737351i \(0.736076\pi\)
\(710\) −591750. −0.0440547
\(711\) 8.23943e6 0.611256
\(712\) −1.55415e6 −0.114893
\(713\) 2.55107e6 0.187931
\(714\) 1.12289e7 0.824311
\(715\) 3.35465e6 0.245404
\(716\) −4.07207e6 −0.296847
\(717\) −1.12223e6 −0.0815236
\(718\) 1.64108e7 1.18801
\(719\) −2.08096e7 −1.50121 −0.750604 0.660752i \(-0.770237\pi\)
−0.750604 + 0.660752i \(0.770237\pi\)
\(720\) −3.88643e6 −0.279395
\(721\) −2.96963e7 −2.12747
\(722\) 2.42317e7 1.72998
\(723\) 1.63014e6 0.115979
\(724\) −1.41541e6 −0.100355
\(725\) −3.14875e6 −0.222481
\(726\) 1.40816e7 0.991537
\(727\) −2.59006e7 −1.81750 −0.908749 0.417344i \(-0.862961\pi\)
−0.908749 + 0.417344i \(0.862961\pi\)
\(728\) −8.04102e6 −0.562319
\(729\) −3.12231e6 −0.217599
\(730\) 1.83675e6 0.127568
\(731\) −1.16860e7 −0.808859
\(732\) 243852. 0.0168209
\(733\) −1.96307e7 −1.34951 −0.674754 0.738043i \(-0.735750\pi\)
−0.674754 + 0.738043i \(0.735750\pi\)
\(734\) −1.21303e7 −0.831056
\(735\) −6.40935e6 −0.437618
\(736\) −1.74447e6 −0.118705
\(737\) −9.87418e6 −0.669626
\(738\) 304290. 0.0205659
\(739\) −1.67436e7 −1.12781 −0.563906 0.825839i \(-0.690702\pi\)
−0.563906 + 0.825839i \(0.690702\pi\)
\(740\) −1.23515e6 −0.0829164
\(741\) −2.74388e6 −0.183578
\(742\) −763720. −0.0509242
\(743\) 5.57725e6 0.370637 0.185318 0.982679i \(-0.440668\pi\)
0.185318 + 0.982679i \(0.440668\pi\)
\(744\) 4.25178e6 0.281604
\(745\) 1.22715e6 0.0810041
\(746\) 1.40318e7 0.923135
\(747\) 8.64763e6 0.567016
\(748\) 8.52597e6 0.557173
\(749\) 1.71146e7 1.11471
\(750\) −468750. −0.0304290
\(751\) 1.24035e7 0.802499 0.401250 0.915969i \(-0.368576\pi\)
0.401250 + 0.915969i \(0.368576\pi\)
\(752\) 2.26802e6 0.146252
\(753\) 615888. 0.0395835
\(754\) 4.25711e6 0.272701
\(755\) 8.94995e6 0.571417
\(756\) −4.61160e6 −0.293459
\(757\) 4.37170e6 0.277275 0.138637 0.990343i \(-0.455728\pi\)
0.138637 + 0.990343i \(0.455728\pi\)
\(758\) 1.57696e7 0.996892
\(759\) −3.34433e6 −0.210719
\(760\) 1.31918e7 0.828454
\(761\) −2.10490e7 −1.31756 −0.658780 0.752335i \(-0.728927\pi\)
−0.658780 + 0.752335i \(0.728927\pi\)
\(762\) 1.17858e6 0.0735312
\(763\) 4.77942e7 2.97210
\(764\) 2.38426e6 0.147781
\(765\) −7.93845e6 −0.490436
\(766\) −2.37522e6 −0.146262
\(767\) 5.08115e6 0.311870
\(768\) −3.91679e6 −0.239623
\(769\) 2.26551e7 1.38150 0.690748 0.723096i \(-0.257282\pi\)
0.690748 + 0.723096i \(0.257282\pi\)
\(770\) 2.42170e7 1.47195
\(771\) −1.32709e6 −0.0804017
\(772\) −1.92930e6 −0.116508
\(773\) 1.15053e7 0.692545 0.346272 0.938134i \(-0.387447\pi\)
0.346272 + 0.938134i \(0.387447\pi\)
\(774\) −7.88463e6 −0.473074
\(775\) −2.27125e6 −0.135835
\(776\) 1.52198e7 0.907305
\(777\) 1.03329e7 0.614003
\(778\) 752830. 0.0445911
\(779\) −795564. −0.0469712
\(780\) −177450. −0.0104433
\(781\) 3.75880e6 0.220506
\(782\) 5.38434e6 0.314859
\(783\) 1.36026e7 0.792898
\(784\) −3.20895e7 −1.86454
\(785\) −1.13625e6 −0.0658112
\(786\) 6.34380e6 0.366263
\(787\) 967112. 0.0556596 0.0278298 0.999613i \(-0.491140\pi\)
0.0278298 + 0.999613i \(0.491140\pi\)
\(788\) −3.76753e6 −0.216143
\(789\) 8.41904e6 0.481471
\(790\) 4.97550e6 0.283641
\(791\) 2.44581e7 1.38989
\(792\) 3.20498e7 1.81557
\(793\) 981214. 0.0554091
\(794\) 1.20843e6 0.0680253
\(795\) −93900.0 −0.00526924
\(796\) 5.97688e6 0.334343
\(797\) −2.85072e7 −1.58968 −0.794838 0.606821i \(-0.792444\pi\)
−0.794838 + 0.606821i \(0.792444\pi\)
\(798\) −1.98079e7 −1.10111
\(799\) 4.63268e6 0.256723
\(800\) 1.55313e6 0.0857988
\(801\) −1.64979e6 −0.0908547
\(802\) −1.59840e7 −0.877502
\(803\) −1.16670e7 −0.638516
\(804\) 522312. 0.0284964
\(805\) −4.28220e6 −0.232904
\(806\) 3.07073e6 0.166496
\(807\) −3.49772e6 −0.189061
\(808\) 4.48695e6 0.241781
\(809\) 1.08912e7 0.585065 0.292533 0.956256i \(-0.405502\pi\)
0.292533 + 0.956256i \(0.405502\pi\)
\(810\) −4.26262e6 −0.228278
\(811\) 1.28535e7 0.686228 0.343114 0.939294i \(-0.388518\pi\)
0.343114 + 0.939294i \(0.388518\pi\)
\(812\) −8.60490e6 −0.457990
\(813\) −6.28141e6 −0.333297
\(814\) −2.80203e7 −1.48221
\(815\) −147300. −0.00776799
\(816\) 6.91220e6 0.363405
\(817\) 2.06143e7 1.08047
\(818\) 2.11641e6 0.110590
\(819\) −8.53585e6 −0.444669
\(820\) −51450.0 −0.00267209
\(821\) −9.60605e6 −0.497378 −0.248689 0.968583i \(-0.580000\pi\)
−0.248689 + 0.968583i \(0.580000\pi\)
\(822\) 789060. 0.0407315
\(823\) 1.42909e7 0.735460 0.367730 0.929933i \(-0.380135\pi\)
0.367730 + 0.929933i \(0.380135\pi\)
\(824\) −2.37327e7 −1.21767
\(825\) 2.97750e6 0.152306
\(826\) 3.66805e7 1.87062
\(827\) 2.40317e7 1.22186 0.610930 0.791685i \(-0.290796\pi\)
0.610930 + 0.791685i \(0.290796\pi\)
\(828\) −1.01720e6 −0.0515620
\(829\) 1.10830e7 0.560107 0.280053 0.959984i \(-0.409648\pi\)
0.280053 + 0.959984i \(0.409648\pi\)
\(830\) 5.22200e6 0.263113
\(831\) 6.62766e6 0.332934
\(832\) −6.16123e6 −0.308574
\(833\) −6.55463e7 −3.27292
\(834\) 40320.0 0.00200727
\(835\) −5.31930e6 −0.264021
\(836\) −1.50399e7 −0.744270
\(837\) 9.81180e6 0.484100
\(838\) −5.65796e6 −0.278323
\(839\) −6.89303e6 −0.338069 −0.169034 0.985610i \(-0.554065\pi\)
−0.169034 + 0.985610i \(0.554065\pi\)
\(840\) −7.13700e6 −0.348994
\(841\) 4.87030e6 0.237446
\(842\) 1.73849e7 0.845070
\(843\) 5.45296e6 0.264279
\(844\) 7.00787e6 0.338633
\(845\) −714025. −0.0344010
\(846\) 3.12570e6 0.150149
\(847\) −1.14530e8 −5.48543
\(848\) −470126. −0.0224504
\(849\) −2.69552e6 −0.128344
\(850\) −4.79375e6 −0.227577
\(851\) 4.95472e6 0.234528
\(852\) −198828. −0.00938380
\(853\) −683466. −0.0321621 −0.0160810 0.999871i \(-0.505119\pi\)
−0.0160810 + 0.999871i \(0.505119\pi\)
\(854\) 7.08332e6 0.332347
\(855\) 1.40035e7 0.655123
\(856\) 1.36777e7 0.638011
\(857\) −7.89742e6 −0.367310 −0.183655 0.982991i \(-0.558793\pi\)
−0.183655 + 0.982991i \(0.558793\pi\)
\(858\) −4.02558e6 −0.186685
\(859\) 3.52556e7 1.63021 0.815107 0.579310i \(-0.196678\pi\)
0.815107 + 0.579310i \(0.196678\pi\)
\(860\) 1.33315e6 0.0614657
\(861\) 430416. 0.0197870
\(862\) 1.70522e7 0.781649
\(863\) 1.76565e7 0.807007 0.403503 0.914978i \(-0.367792\pi\)
0.403503 + 0.914978i \(0.367792\pi\)
\(864\) −6.70950e6 −0.305778
\(865\) −1.25794e7 −0.571638
\(866\) −1.70361e7 −0.771926
\(867\) 5.59979e6 0.253002
\(868\) −6.20687e6 −0.279623
\(869\) −3.16044e7 −1.41970
\(870\) 3.77850e6 0.169247
\(871\) 2.10168e6 0.0938690
\(872\) 3.81962e7 1.70110
\(873\) 1.61564e7 0.717476
\(874\) −9.49806e6 −0.420587
\(875\) 3.81250e6 0.168341
\(876\) 617148. 0.0271725
\(877\) −6.40016e6 −0.280991 −0.140495 0.990081i \(-0.544869\pi\)
−0.140495 + 0.990081i \(0.544869\pi\)
\(878\) −3.54557e7 −1.55221
\(879\) −1.17650e7 −0.513592
\(880\) 1.49074e7 0.648924
\(881\) −1.14571e7 −0.497318 −0.248659 0.968591i \(-0.579990\pi\)
−0.248659 + 0.968591i \(0.579990\pi\)
\(882\) −4.42245e7 −1.91422
\(883\) 2.42296e7 1.04579 0.522896 0.852397i \(-0.324852\pi\)
0.522896 + 0.852397i \(0.324852\pi\)
\(884\) −1.81472e6 −0.0781051
\(885\) 4.50990e6 0.193557
\(886\) −4.11754e7 −1.76219
\(887\) 8.66087e6 0.369617 0.184809 0.982775i \(-0.440833\pi\)
0.184809 + 0.982775i \(0.440833\pi\)
\(888\) 8.25786e6 0.351427
\(889\) −9.58578e6 −0.406793
\(890\) −996250. −0.0421593
\(891\) 2.70762e7 1.14260
\(892\) −149548. −0.00629316
\(893\) −8.17212e6 −0.342930
\(894\) −1.47258e6 −0.0616219
\(895\) −1.45431e7 −0.606875
\(896\) −2.50747e7 −1.04343
\(897\) 711828. 0.0295389
\(898\) −6.48003e6 −0.268155
\(899\) 1.83081e7 0.755516
\(900\) 905625. 0.0372685
\(901\) −960284. −0.0394083
\(902\) −1.16718e6 −0.0477663
\(903\) −1.11528e7 −0.455159
\(904\) 1.95464e7 0.795511
\(905\) −5.05505e6 −0.205165
\(906\) −1.07399e7 −0.434692
\(907\) −7.84287e6 −0.316561 −0.158280 0.987394i \(-0.550595\pi\)
−0.158280 + 0.987394i \(0.550595\pi\)
\(908\) 6.16524e6 0.248162
\(909\) 4.76307e6 0.191195
\(910\) −5.15450e6 −0.206340
\(911\) −942576. −0.0376288 −0.0188144 0.999823i \(-0.505989\pi\)
−0.0188144 + 0.999823i \(0.505989\pi\)
\(912\) −1.21932e7 −0.485436
\(913\) −3.31701e7 −1.31695
\(914\) 8.40979e6 0.332981
\(915\) 870900. 0.0343887
\(916\) 91210.0 0.00359173
\(917\) −5.15962e7 −2.02626
\(918\) 2.07090e7 0.811059
\(919\) −2.00734e7 −0.784030 −0.392015 0.919959i \(-0.628222\pi\)
−0.392015 + 0.919959i \(0.628222\pi\)
\(920\) −3.42225e6 −0.133304
\(921\) −1.07631e7 −0.418107
\(922\) −1.60332e7 −0.621143
\(923\) −800046. −0.0309108
\(924\) 8.13691e6 0.313530
\(925\) −4.41125e6 −0.169515
\(926\) −2.63185e7 −1.00863
\(927\) −2.51931e7 −0.962904
\(928\) −1.25194e7 −0.477216
\(929\) 1.10181e7 0.418858 0.209429 0.977824i \(-0.432840\pi\)
0.209429 + 0.977824i \(0.432840\pi\)
\(930\) 2.72550e6 0.103333
\(931\) 1.15625e8 4.37196
\(932\) 8.44899e6 0.318614
\(933\) 1.44740e7 0.544358
\(934\) −4.13406e7 −1.55064
\(935\) 3.04499e7 1.13909
\(936\) −6.82168e6 −0.254508
\(937\) 3.59532e7 1.33779 0.668896 0.743356i \(-0.266767\pi\)
0.668896 + 0.743356i \(0.266767\pi\)
\(938\) 1.51719e7 0.563032
\(939\) −1.29261e7 −0.478415
\(940\) −528500. −0.0195086
\(941\) 1.28845e7 0.474345 0.237172 0.971468i \(-0.423779\pi\)
0.237172 + 0.971468i \(0.423779\pi\)
\(942\) 1.36350e6 0.0500643
\(943\) 206388. 0.00755797
\(944\) 2.25796e7 0.824680
\(945\) −1.64700e7 −0.599949
\(946\) 3.02435e7 1.09876
\(947\) −1.18911e7 −0.430871 −0.215436 0.976518i \(-0.569117\pi\)
−0.215436 + 0.976518i \(0.569117\pi\)
\(948\) 1.67177e6 0.0604164
\(949\) 2.48329e6 0.0895079
\(950\) 8.45625e6 0.303997
\(951\) 1.55769e7 0.558510
\(952\) −7.29877e7 −2.61010
\(953\) 4.40094e7 1.56969 0.784844 0.619694i \(-0.212743\pi\)
0.784844 + 0.619694i \(0.212743\pi\)
\(954\) −647910. −0.0230486
\(955\) 8.51520e6 0.302125
\(956\) 1.30927e6 0.0463322
\(957\) −2.40010e7 −0.847130
\(958\) 1.82734e7 0.643288
\(959\) −6.41769e6 −0.225337
\(960\) −5.46855e6 −0.191511
\(961\) −1.54232e7 −0.538723
\(962\) 5.96401e6 0.207779
\(963\) 1.45194e7 0.504525
\(964\) −1.90183e6 −0.0659142
\(965\) −6.89035e6 −0.238190
\(966\) 5.13864e6 0.177176
\(967\) 2.11144e7 0.726128 0.363064 0.931764i \(-0.381731\pi\)
0.363064 + 0.931764i \(0.381731\pi\)
\(968\) −9.15301e7 −3.13961
\(969\) −2.49060e7 −0.852109
\(970\) 9.75625e6 0.332931
\(971\) 2.44293e7 0.831502 0.415751 0.909478i \(-0.363519\pi\)
0.415751 + 0.909478i \(0.363519\pi\)
\(972\) −6.02494e6 −0.204544
\(973\) −327936. −0.0111047
\(974\) 3.56542e7 1.20424
\(975\) −633750. −0.0213504
\(976\) 4.36031e6 0.146518
\(977\) 5.15549e7 1.72796 0.863980 0.503527i \(-0.167964\pi\)
0.863980 + 0.503527i \(0.167964\pi\)
\(978\) 176760. 0.00590931
\(979\) 6.32818e6 0.211019
\(980\) 7.47758e6 0.248711
\(981\) 4.05467e7 1.34519
\(982\) 2.86276e7 0.947339
\(983\) −1.38938e7 −0.458604 −0.229302 0.973355i \(-0.573644\pi\)
−0.229302 + 0.973355i \(0.573644\pi\)
\(984\) 343980. 0.0113252
\(985\) −1.34554e7 −0.441883
\(986\) 3.86415e7 1.26579
\(987\) 4.42128e6 0.144463
\(988\) 3.20120e6 0.104333
\(989\) −5.34784e6 −0.173855
\(990\) 2.05448e7 0.666213
\(991\) 3.31496e7 1.07225 0.536123 0.844140i \(-0.319888\pi\)
0.536123 + 0.844140i \(0.319888\pi\)
\(992\) −9.03049e6 −0.291361
\(993\) −5.50336e6 −0.177115
\(994\) −5.77548e6 −0.185405
\(995\) 2.13460e7 0.683532
\(996\) 1.75459e6 0.0560438
\(997\) 9.45871e6 0.301366 0.150683 0.988582i \(-0.451853\pi\)
0.150683 + 0.988582i \(0.451853\pi\)
\(998\) −3.58626e7 −1.13976
\(999\) 1.90566e7 0.604132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.a.a.1.1 1
3.2 odd 2 585.6.a.a.1.1 1
4.3 odd 2 1040.6.a.a.1.1 1
5.2 odd 4 325.6.b.a.274.2 2
5.3 odd 4 325.6.b.a.274.1 2
5.4 even 2 325.6.a.a.1.1 1
13.12 even 2 845.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.a.1.1 1 1.1 even 1 trivial
325.6.a.a.1.1 1 5.4 even 2
325.6.b.a.274.1 2 5.3 odd 4
325.6.b.a.274.2 2 5.2 odd 4
585.6.a.a.1.1 1 3.2 odd 2
845.6.a.a.1.1 1 13.12 even 2
1040.6.a.a.1.1 1 4.3 odd 2