Properties

Label 845.6.a.a.1.1
Level $845$
Weight $6$
Character 845.1
Self dual yes
Analytic conductor $135.524$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,6,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.524327742\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 845.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000 q^{2} +6.00000 q^{3} -7.00000 q^{4} +25.0000 q^{5} -30.0000 q^{6} +244.000 q^{7} +195.000 q^{8} -207.000 q^{9} -125.000 q^{10} -794.000 q^{11} -42.0000 q^{12} -1220.00 q^{14} +150.000 q^{15} -751.000 q^{16} -1534.00 q^{17} +1035.00 q^{18} -2706.00 q^{19} -175.000 q^{20} +1464.00 q^{21} +3970.00 q^{22} -702.000 q^{23} +1170.00 q^{24} +625.000 q^{25} -2700.00 q^{27} -1708.00 q^{28} -5038.00 q^{29} -750.000 q^{30} +3634.00 q^{31} -2485.00 q^{32} -4764.00 q^{33} +7670.00 q^{34} +6100.00 q^{35} +1449.00 q^{36} +7058.00 q^{37} +13530.0 q^{38} +4875.00 q^{40} +294.000 q^{41} -7320.00 q^{42} +7618.00 q^{43} +5558.00 q^{44} -5175.00 q^{45} +3510.00 q^{46} +3020.00 q^{47} -4506.00 q^{48} +42729.0 q^{49} -3125.00 q^{50} -9204.00 q^{51} +626.000 q^{53} +13500.0 q^{54} -19850.0 q^{55} +47580.0 q^{56} -16236.0 q^{57} +25190.0 q^{58} +30066.0 q^{59} -1050.00 q^{60} -5806.00 q^{61} -18170.0 q^{62} -50508.0 q^{63} +36457.0 q^{64} +23820.0 q^{66} +12436.0 q^{67} +10738.0 q^{68} -4212.00 q^{69} -30500.0 q^{70} -4734.00 q^{71} -40365.0 q^{72} +14694.0 q^{73} -35290.0 q^{74} +3750.00 q^{75} +18942.0 q^{76} -193736. q^{77} -39804.0 q^{79} -18775.0 q^{80} +34101.0 q^{81} -1470.00 q^{82} +41776.0 q^{83} -10248.0 q^{84} -38350.0 q^{85} -38090.0 q^{86} -30228.0 q^{87} -154830. q^{88} -7970.00 q^{89} +25875.0 q^{90} +4914.00 q^{92} +21804.0 q^{93} -15100.0 q^{94} -67650.0 q^{95} -14910.0 q^{96} +78050.0 q^{97} -213645. q^{98} +164358. q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.00000 −0.883883 −0.441942 0.897044i \(-0.645710\pi\)
−0.441942 + 0.897044i \(0.645710\pi\)
\(3\) 6.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) −7.00000 −0.218750
\(5\) 25.0000 0.447214
\(6\) −30.0000 −0.340207
\(7\) 244.000 1.88211 0.941054 0.338255i \(-0.109837\pi\)
0.941054 + 0.338255i \(0.109837\pi\)
\(8\) 195.000 1.07723
\(9\) −207.000 −0.851852
\(10\) −125.000 −0.395285
\(11\) −794.000 −1.97851 −0.989256 0.146192i \(-0.953298\pi\)
−0.989256 + 0.146192i \(0.953298\pi\)
\(12\) −42.0000 −0.0841969
\(13\) 0 0
\(14\) −1220.00 −1.66356
\(15\) 150.000 0.172133
\(16\) −751.000 −0.733398
\(17\) −1534.00 −1.28737 −0.643685 0.765291i \(-0.722595\pi\)
−0.643685 + 0.765291i \(0.722595\pi\)
\(18\) 1035.00 0.752938
\(19\) −2706.00 −1.71966 −0.859832 0.510576i \(-0.829432\pi\)
−0.859832 + 0.510576i \(0.829432\pi\)
\(20\) −175.000 −0.0978280
\(21\) 1464.00 0.724424
\(22\) 3970.00 1.74877
\(23\) −702.000 −0.276705 −0.138353 0.990383i \(-0.544181\pi\)
−0.138353 + 0.990383i \(0.544181\pi\)
\(24\) 1170.00 0.414627
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −2700.00 −0.712778
\(28\) −1708.00 −0.411711
\(29\) −5038.00 −1.11241 −0.556203 0.831047i \(-0.687742\pi\)
−0.556203 + 0.831047i \(0.687742\pi\)
\(30\) −750.000 −0.152145
\(31\) 3634.00 0.679173 0.339587 0.940575i \(-0.389713\pi\)
0.339587 + 0.940575i \(0.389713\pi\)
\(32\) −2485.00 −0.428994
\(33\) −4764.00 −0.761530
\(34\) 7670.00 1.13788
\(35\) 6100.00 0.841705
\(36\) 1449.00 0.186343
\(37\) 7058.00 0.847573 0.423787 0.905762i \(-0.360701\pi\)
0.423787 + 0.905762i \(0.360701\pi\)
\(38\) 13530.0 1.51998
\(39\) 0 0
\(40\) 4875.00 0.481753
\(41\) 294.000 0.0273141 0.0136571 0.999907i \(-0.495653\pi\)
0.0136571 + 0.999907i \(0.495653\pi\)
\(42\) −7320.00 −0.640306
\(43\) 7618.00 0.628304 0.314152 0.949373i \(-0.398280\pi\)
0.314152 + 0.949373i \(0.398280\pi\)
\(44\) 5558.00 0.432800
\(45\) −5175.00 −0.380960
\(46\) 3510.00 0.244575
\(47\) 3020.00 0.199417 0.0997085 0.995017i \(-0.468209\pi\)
0.0997085 + 0.995017i \(0.468209\pi\)
\(48\) −4506.00 −0.282285
\(49\) 42729.0 2.54233
\(50\) −3125.00 −0.176777
\(51\) −9204.00 −0.495509
\(52\) 0 0
\(53\) 626.000 0.0306115 0.0153058 0.999883i \(-0.495128\pi\)
0.0153058 + 0.999883i \(0.495128\pi\)
\(54\) 13500.0 0.630013
\(55\) −19850.0 −0.884818
\(56\) 47580.0 2.02747
\(57\) −16236.0 −0.661899
\(58\) 25190.0 0.983237
\(59\) 30066.0 1.12446 0.562232 0.826979i \(-0.309943\pi\)
0.562232 + 0.826979i \(0.309943\pi\)
\(60\) −1050.00 −0.0376540
\(61\) −5806.00 −0.199780 −0.0998901 0.994998i \(-0.531849\pi\)
−0.0998901 + 0.994998i \(0.531849\pi\)
\(62\) −18170.0 −0.600310
\(63\) −50508.0 −1.60328
\(64\) 36457.0 1.11258
\(65\) 0 0
\(66\) 23820.0 0.673104
\(67\) 12436.0 0.338449 0.169225 0.985577i \(-0.445874\pi\)
0.169225 + 0.985577i \(0.445874\pi\)
\(68\) 10738.0 0.281612
\(69\) −4212.00 −0.106504
\(70\) −30500.0 −0.743969
\(71\) −4734.00 −0.111451 −0.0557253 0.998446i \(-0.517747\pi\)
−0.0557253 + 0.998446i \(0.517747\pi\)
\(72\) −40365.0 −0.917643
\(73\) 14694.0 0.322725 0.161363 0.986895i \(-0.448411\pi\)
0.161363 + 0.986895i \(0.448411\pi\)
\(74\) −35290.0 −0.749156
\(75\) 3750.00 0.0769800
\(76\) 18942.0 0.376177
\(77\) −193736. −3.72378
\(78\) 0 0
\(79\) −39804.0 −0.717561 −0.358781 0.933422i \(-0.616807\pi\)
−0.358781 + 0.933422i \(0.616807\pi\)
\(80\) −18775.0 −0.327986
\(81\) 34101.0 0.577503
\(82\) −1470.00 −0.0241425
\(83\) 41776.0 0.665628 0.332814 0.942992i \(-0.392002\pi\)
0.332814 + 0.942992i \(0.392002\pi\)
\(84\) −10248.0 −0.158468
\(85\) −38350.0 −0.575729
\(86\) −38090.0 −0.555348
\(87\) −30228.0 −0.428165
\(88\) −154830. −2.13132
\(89\) −7970.00 −0.106656 −0.0533278 0.998577i \(-0.516983\pi\)
−0.0533278 + 0.998577i \(0.516983\pi\)
\(90\) 25875.0 0.336724
\(91\) 0 0
\(92\) 4914.00 0.0605293
\(93\) 21804.0 0.261414
\(94\) −15100.0 −0.176261
\(95\) −67650.0 −0.769057
\(96\) −14910.0 −0.165120
\(97\) 78050.0 0.842255 0.421127 0.907001i \(-0.361634\pi\)
0.421127 + 0.907001i \(0.361634\pi\)
\(98\) −213645. −2.24713
\(99\) 164358. 1.68540
\(100\) −4375.00 −0.0437500
\(101\) −23010.0 −0.224447 −0.112223 0.993683i \(-0.535797\pi\)
−0.112223 + 0.993683i \(0.535797\pi\)
\(102\) 46020.0 0.437972
\(103\) 121706. 1.13037 0.565183 0.824966i \(-0.308806\pi\)
0.565183 + 0.824966i \(0.308806\pi\)
\(104\) 0 0
\(105\) 36600.0 0.323972
\(106\) −3130.00 −0.0270570
\(107\) −70142.0 −0.592269 −0.296134 0.955146i \(-0.595698\pi\)
−0.296134 + 0.955146i \(0.595698\pi\)
\(108\) 18900.0 0.155920
\(109\) 195878. 1.57914 0.789568 0.613663i \(-0.210305\pi\)
0.789568 + 0.613663i \(0.210305\pi\)
\(110\) 99250.0 0.782076
\(111\) 42348.0 0.326231
\(112\) −183244. −1.38034
\(113\) −100238. −0.738476 −0.369238 0.929335i \(-0.620381\pi\)
−0.369238 + 0.929335i \(0.620381\pi\)
\(114\) 81180.0 0.585042
\(115\) −17550.0 −0.123746
\(116\) 35266.0 0.243339
\(117\) 0 0
\(118\) −150330. −0.993895
\(119\) −374296. −2.42297
\(120\) 29250.0 0.185427
\(121\) 469385. 2.91451
\(122\) 29030.0 0.176582
\(123\) 1764.00 0.0105132
\(124\) −25438.0 −0.148569
\(125\) 15625.0 0.0894427
\(126\) 252540. 1.41711
\(127\) 39286.0 0.216137 0.108068 0.994143i \(-0.465533\pi\)
0.108068 + 0.994143i \(0.465533\pi\)
\(128\) −102765. −0.554396
\(129\) 45708.0 0.241834
\(130\) 0 0
\(131\) 211460. 1.07659 0.538295 0.842757i \(-0.319069\pi\)
0.538295 + 0.842757i \(0.319069\pi\)
\(132\) 33348.0 0.166585
\(133\) −660264. −3.23660
\(134\) −62180.0 −0.299150
\(135\) −67500.0 −0.318764
\(136\) −299130. −1.38680
\(137\) −26302.0 −0.119726 −0.0598628 0.998207i \(-0.519066\pi\)
−0.0598628 + 0.998207i \(0.519066\pi\)
\(138\) 21060.0 0.0941371
\(139\) 1344.00 0.00590014 0.00295007 0.999996i \(-0.499061\pi\)
0.00295007 + 0.999996i \(0.499061\pi\)
\(140\) −42700.0 −0.184123
\(141\) 18120.0 0.0767557
\(142\) 23670.0 0.0985093
\(143\) 0 0
\(144\) 155457. 0.624747
\(145\) −125950. −0.497483
\(146\) −73470.0 −0.285251
\(147\) 256374. 0.978545
\(148\) −49406.0 −0.185407
\(149\) 49086.0 0.181131 0.0905653 0.995891i \(-0.471133\pi\)
0.0905653 + 0.995891i \(0.471133\pi\)
\(150\) −18750.0 −0.0680414
\(151\) 357998. 1.27773 0.638864 0.769320i \(-0.279405\pi\)
0.638864 + 0.769320i \(0.279405\pi\)
\(152\) −527670. −1.85248
\(153\) 317538. 1.09665
\(154\) 968680. 3.29138
\(155\) 90850.0 0.303736
\(156\) 0 0
\(157\) 45450.0 0.147158 0.0735791 0.997289i \(-0.476558\pi\)
0.0735791 + 0.997289i \(0.476558\pi\)
\(158\) 199020. 0.634241
\(159\) 3756.00 0.0117824
\(160\) −62125.0 −0.191852
\(161\) −171288. −0.520790
\(162\) −170505. −0.510446
\(163\) −5892.00 −0.0173698 −0.00868488 0.999962i \(-0.502765\pi\)
−0.00868488 + 0.999962i \(0.502765\pi\)
\(164\) −2058.00 −0.00597497
\(165\) −119100. −0.340566
\(166\) −208880. −0.588338
\(167\) −212772. −0.590369 −0.295184 0.955440i \(-0.595381\pi\)
−0.295184 + 0.955440i \(0.595381\pi\)
\(168\) 285480. 0.780373
\(169\) 0 0
\(170\) 191750. 0.508877
\(171\) 560142. 1.46490
\(172\) −53326.0 −0.137442
\(173\) 503178. 1.27822 0.639111 0.769114i \(-0.279302\pi\)
0.639111 + 0.769114i \(0.279302\pi\)
\(174\) 151140. 0.378448
\(175\) 152500. 0.376422
\(176\) 596294. 1.45104
\(177\) 180396. 0.432806
\(178\) 39850.0 0.0942710
\(179\) 581724. 1.35701 0.678507 0.734594i \(-0.262627\pi\)
0.678507 + 0.734594i \(0.262627\pi\)
\(180\) 36225.0 0.0833349
\(181\) 202202. 0.458764 0.229382 0.973337i \(-0.426330\pi\)
0.229382 + 0.973337i \(0.426330\pi\)
\(182\) 0 0
\(183\) −34836.0 −0.0768954
\(184\) −136890. −0.298076
\(185\) 176450. 0.379046
\(186\) −109020. −0.231059
\(187\) 1.21800e6 2.54708
\(188\) −21140.0 −0.0436225
\(189\) −658800. −1.34153
\(190\) 338250. 0.679757
\(191\) −340608. −0.675572 −0.337786 0.941223i \(-0.609678\pi\)
−0.337786 + 0.941223i \(0.609678\pi\)
\(192\) 218742. 0.428232
\(193\) −275614. −0.532608 −0.266304 0.963889i \(-0.585803\pi\)
−0.266304 + 0.963889i \(0.585803\pi\)
\(194\) −390250. −0.744455
\(195\) 0 0
\(196\) −299103. −0.556135
\(197\) −538218. −0.988081 −0.494041 0.869439i \(-0.664481\pi\)
−0.494041 + 0.869439i \(0.664481\pi\)
\(198\) −821790. −1.48970
\(199\) −853840. −1.52842 −0.764212 0.644965i \(-0.776872\pi\)
−0.764212 + 0.644965i \(0.776872\pi\)
\(200\) 121875. 0.215447
\(201\) 74616.0 0.130269
\(202\) 115050. 0.198385
\(203\) −1.22927e6 −2.09367
\(204\) 64428.0 0.108392
\(205\) 7350.00 0.0122153
\(206\) −608530. −0.999111
\(207\) 145314. 0.235712
\(208\) 0 0
\(209\) 2.14856e6 3.40238
\(210\) −183000. −0.286354
\(211\) −1.00112e6 −1.54804 −0.774019 0.633162i \(-0.781757\pi\)
−0.774019 + 0.633162i \(0.781757\pi\)
\(212\) −4382.00 −0.00669627
\(213\) −28404.0 −0.0428974
\(214\) 350710. 0.523496
\(215\) 190450. 0.280986
\(216\) −526500. −0.767828
\(217\) 886696. 1.27828
\(218\) −979390. −1.39577
\(219\) 88164.0 0.124217
\(220\) 138950. 0.193554
\(221\) 0 0
\(222\) −211740. −0.288350
\(223\) −21364.0 −0.0287687 −0.0143844 0.999897i \(-0.504579\pi\)
−0.0143844 + 0.999897i \(0.504579\pi\)
\(224\) −606340. −0.807414
\(225\) −129375. −0.170370
\(226\) 501190. 0.652727
\(227\) 880748. 1.13445 0.567227 0.823561i \(-0.308016\pi\)
0.567227 + 0.823561i \(0.308016\pi\)
\(228\) 113652. 0.144790
\(229\) 13030.0 0.0164193 0.00820967 0.999966i \(-0.497387\pi\)
0.00820967 + 0.999966i \(0.497387\pi\)
\(230\) 87750.0 0.109377
\(231\) −1.16242e6 −1.43328
\(232\) −982410. −1.19832
\(233\) −1.20700e6 −1.45652 −0.728260 0.685300i \(-0.759671\pi\)
−0.728260 + 0.685300i \(0.759671\pi\)
\(234\) 0 0
\(235\) 75500.0 0.0891820
\(236\) −210462. −0.245977
\(237\) −238824. −0.276189
\(238\) 1.87148e6 2.14162
\(239\) 187038. 0.211804 0.105902 0.994377i \(-0.466227\pi\)
0.105902 + 0.994377i \(0.466227\pi\)
\(240\) −112650. −0.126242
\(241\) −271690. −0.301322 −0.150661 0.988585i \(-0.548140\pi\)
−0.150661 + 0.988585i \(0.548140\pi\)
\(242\) −2.34692e6 −2.57609
\(243\) 860706. 0.935059
\(244\) 40642.0 0.0437019
\(245\) 1.06822e6 1.13697
\(246\) −8820.00 −0.00929246
\(247\) 0 0
\(248\) 708630. 0.731628
\(249\) 250656. 0.256200
\(250\) −78125.0 −0.0790569
\(251\) 102648. 0.102841 0.0514205 0.998677i \(-0.483625\pi\)
0.0514205 + 0.998677i \(0.483625\pi\)
\(252\) 353556. 0.350717
\(253\) 557388. 0.547465
\(254\) −196430. −0.191040
\(255\) −230100. −0.221598
\(256\) −652799. −0.622558
\(257\) −221182. −0.208890 −0.104445 0.994531i \(-0.533307\pi\)
−0.104445 + 0.994531i \(0.533307\pi\)
\(258\) −228540. −0.213753
\(259\) 1.72215e6 1.59523
\(260\) 0 0
\(261\) 1.04287e6 0.947605
\(262\) −1.05730e6 −0.951579
\(263\) 1.40317e6 1.25090 0.625449 0.780265i \(-0.284916\pi\)
0.625449 + 0.780265i \(0.284916\pi\)
\(264\) −928980. −0.820345
\(265\) 15650.0 0.0136899
\(266\) 3.30132e6 2.86077
\(267\) −47820.0 −0.0410517
\(268\) −87052.0 −0.0740358
\(269\) −582954. −0.491195 −0.245597 0.969372i \(-0.578984\pi\)
−0.245597 + 0.969372i \(0.578984\pi\)
\(270\) 337500. 0.281750
\(271\) 1.04690e6 0.865930 0.432965 0.901411i \(-0.357467\pi\)
0.432965 + 0.901411i \(0.357467\pi\)
\(272\) 1.15203e6 0.944154
\(273\) 0 0
\(274\) 131510. 0.105824
\(275\) −496250. −0.395702
\(276\) 29484.0 0.0232977
\(277\) 1.10461e6 0.864987 0.432493 0.901637i \(-0.357634\pi\)
0.432493 + 0.901637i \(0.357634\pi\)
\(278\) −6720.00 −0.00521504
\(279\) −752238. −0.578555
\(280\) 1.18950e6 0.906712
\(281\) −908826. −0.686618 −0.343309 0.939223i \(-0.611548\pi\)
−0.343309 + 0.939223i \(0.611548\pi\)
\(282\) −90600.0 −0.0678431
\(283\) −449254. −0.333446 −0.166723 0.986004i \(-0.553319\pi\)
−0.166723 + 0.986004i \(0.553319\pi\)
\(284\) 33138.0 0.0243798
\(285\) −405900. −0.296010
\(286\) 0 0
\(287\) 71736.0 0.0514082
\(288\) 514395. 0.365440
\(289\) 933299. 0.657319
\(290\) 629750. 0.439717
\(291\) 468300. 0.324184
\(292\) −102858. −0.0705961
\(293\) 1.96083e6 1.33435 0.667175 0.744901i \(-0.267503\pi\)
0.667175 + 0.744901i \(0.267503\pi\)
\(294\) −1.28187e6 −0.864919
\(295\) 751650. 0.502876
\(296\) 1.37631e6 0.913034
\(297\) 2.14380e6 1.41024
\(298\) −245430. −0.160098
\(299\) 0 0
\(300\) −26250.0 −0.0168394
\(301\) 1.85879e6 1.18254
\(302\) −1.78999e6 −1.12936
\(303\) −138060. −0.0863896
\(304\) 2.03221e6 1.26120
\(305\) −145150. −0.0893444
\(306\) −1.58769e6 −0.969309
\(307\) 1.79385e6 1.08627 0.543137 0.839644i \(-0.317236\pi\)
0.543137 + 0.839644i \(0.317236\pi\)
\(308\) 1.35615e6 0.814576
\(309\) 730236. 0.435078
\(310\) −454250. −0.268467
\(311\) 2.41233e6 1.41428 0.707141 0.707072i \(-0.249985\pi\)
0.707141 + 0.707072i \(0.249985\pi\)
\(312\) 0 0
\(313\) −2.15436e6 −1.24296 −0.621480 0.783430i \(-0.713468\pi\)
−0.621480 + 0.783430i \(0.713468\pi\)
\(314\) −227250. −0.130071
\(315\) −1.26270e6 −0.717008
\(316\) 278628. 0.156967
\(317\) −2.59616e6 −1.45105 −0.725526 0.688195i \(-0.758403\pi\)
−0.725526 + 0.688195i \(0.758403\pi\)
\(318\) −18780.0 −0.0104142
\(319\) 4.00017e6 2.20091
\(320\) 911425. 0.497561
\(321\) −420852. −0.227964
\(322\) 856440. 0.460317
\(323\) 4.15100e6 2.21384
\(324\) −238707. −0.126329
\(325\) 0 0
\(326\) 29460.0 0.0153528
\(327\) 1.17527e6 0.607810
\(328\) 57330.0 0.0294237
\(329\) 736880. 0.375325
\(330\) 595500. 0.301021
\(331\) 917226. 0.460157 0.230079 0.973172i \(-0.426102\pi\)
0.230079 + 0.973172i \(0.426102\pi\)
\(332\) −292432. −0.145606
\(333\) −1.46101e6 −0.722007
\(334\) 1.06386e6 0.521817
\(335\) 310900. 0.151359
\(336\) −1.09946e6 −0.531291
\(337\) 2.23894e6 1.07391 0.536954 0.843611i \(-0.319575\pi\)
0.536954 + 0.843611i \(0.319575\pi\)
\(338\) 0 0
\(339\) −601428. −0.284239
\(340\) 268450. 0.125941
\(341\) −2.88540e6 −1.34375
\(342\) −2.80071e6 −1.29480
\(343\) 6.32497e6 2.90284
\(344\) 1.48551e6 0.676830
\(345\) −105300. −0.0476300
\(346\) −2.51589e6 −1.12980
\(347\) 3.41808e6 1.52391 0.761954 0.647631i \(-0.224240\pi\)
0.761954 + 0.647631i \(0.224240\pi\)
\(348\) 211596. 0.0936611
\(349\) −2.35691e6 −1.03581 −0.517905 0.855438i \(-0.673288\pi\)
−0.517905 + 0.855438i \(0.673288\pi\)
\(350\) −762500. −0.332713
\(351\) 0 0
\(352\) 1.97309e6 0.848770
\(353\) 3.76395e6 1.60771 0.803854 0.594827i \(-0.202779\pi\)
0.803854 + 0.594827i \(0.202779\pi\)
\(354\) −901980. −0.382550
\(355\) −118350. −0.0498422
\(356\) 55790.0 0.0233309
\(357\) −2.24578e6 −0.932601
\(358\) −2.90862e6 −1.19944
\(359\) −3.28216e6 −1.34407 −0.672037 0.740517i \(-0.734581\pi\)
−0.672037 + 0.740517i \(0.734581\pi\)
\(360\) −1.00913e6 −0.410382
\(361\) 4.84634e6 1.95725
\(362\) −1.01101e6 −0.405494
\(363\) 2.81631e6 1.12180
\(364\) 0 0
\(365\) 367350. 0.144327
\(366\) 174180. 0.0679666
\(367\) −2.42605e6 −0.940233 −0.470116 0.882604i \(-0.655788\pi\)
−0.470116 + 0.882604i \(0.655788\pi\)
\(368\) 527202. 0.202935
\(369\) −60858.0 −0.0232676
\(370\) −882250. −0.335033
\(371\) 152744. 0.0576142
\(372\) −152628. −0.0571843
\(373\) 2.80635e6 1.04441 0.522204 0.852820i \(-0.325110\pi\)
0.522204 + 0.852820i \(0.325110\pi\)
\(374\) −6.08998e6 −2.25132
\(375\) 93750.0 0.0344265
\(376\) 588900. 0.214819
\(377\) 0 0
\(378\) 3.29400e6 1.18575
\(379\) −3.15392e6 −1.12785 −0.563927 0.825825i \(-0.690710\pi\)
−0.563927 + 0.825825i \(0.690710\pi\)
\(380\) 473550. 0.168231
\(381\) 235716. 0.0831911
\(382\) 1.70304e6 0.597127
\(383\) 475044. 0.165477 0.0827384 0.996571i \(-0.473633\pi\)
0.0827384 + 0.996571i \(0.473633\pi\)
\(384\) −616590. −0.213387
\(385\) −4.84340e6 −1.66532
\(386\) 1.37807e6 0.470764
\(387\) −1.57693e6 −0.535222
\(388\) −546350. −0.184243
\(389\) 150566. 0.0504490 0.0252245 0.999682i \(-0.491970\pi\)
0.0252245 + 0.999682i \(0.491970\pi\)
\(390\) 0 0
\(391\) 1.07687e6 0.356222
\(392\) 8.33216e6 2.73869
\(393\) 1.26876e6 0.414379
\(394\) 2.69109e6 0.873349
\(395\) −995100. −0.320903
\(396\) −1.15051e6 −0.368681
\(397\) −241686. −0.0769618 −0.0384809 0.999259i \(-0.512252\pi\)
−0.0384809 + 0.999259i \(0.512252\pi\)
\(398\) 4.26920e6 1.35095
\(399\) −3.96158e6 −1.24577
\(400\) −469375. −0.146680
\(401\) 3.19679e6 0.992780 0.496390 0.868100i \(-0.334659\pi\)
0.496390 + 0.868100i \(0.334659\pi\)
\(402\) −373080. −0.115143
\(403\) 0 0
\(404\) 161070. 0.0490977
\(405\) 852525. 0.258267
\(406\) 6.14636e6 1.85056
\(407\) −5.60405e6 −1.67693
\(408\) −1.79478e6 −0.533778
\(409\) −423282. −0.125119 −0.0625593 0.998041i \(-0.519926\pi\)
−0.0625593 + 0.998041i \(0.519926\pi\)
\(410\) −36750.0 −0.0107969
\(411\) −157812. −0.0460824
\(412\) −851942. −0.247267
\(413\) 7.33610e6 2.11636
\(414\) −726570. −0.208342
\(415\) 1.04440e6 0.297678
\(416\) 0 0
\(417\) 8064.00 0.00227096
\(418\) −1.07428e7 −3.00731
\(419\) −1.13159e6 −0.314887 −0.157444 0.987528i \(-0.550325\pi\)
−0.157444 + 0.987528i \(0.550325\pi\)
\(420\) −256200. −0.0708689
\(421\) −3.47699e6 −0.956088 −0.478044 0.878336i \(-0.658654\pi\)
−0.478044 + 0.878336i \(0.658654\pi\)
\(422\) 5.00562e6 1.36829
\(423\) −625140. −0.169874
\(424\) 122070. 0.0329757
\(425\) −958750. −0.257474
\(426\) 142020. 0.0379163
\(427\) −1.41666e6 −0.376008
\(428\) 490994. 0.129559
\(429\) 0 0
\(430\) −952250. −0.248359
\(431\) −3.41044e6 −0.884335 −0.442168 0.896932i \(-0.645790\pi\)
−0.442168 + 0.896932i \(0.645790\pi\)
\(432\) 2.02770e6 0.522750
\(433\) −3.40722e6 −0.873335 −0.436667 0.899623i \(-0.643841\pi\)
−0.436667 + 0.899623i \(0.643841\pi\)
\(434\) −4.43348e6 −1.12985
\(435\) −755700. −0.191481
\(436\) −1.37115e6 −0.345436
\(437\) 1.89961e6 0.475840
\(438\) −440820. −0.109793
\(439\) −7.09114e6 −1.75612 −0.878061 0.478549i \(-0.841163\pi\)
−0.878061 + 0.478549i \(0.841163\pi\)
\(440\) −3.87075e6 −0.953155
\(441\) −8.84490e6 −2.16569
\(442\) 0 0
\(443\) −8.23508e6 −1.99369 −0.996847 0.0793445i \(-0.974717\pi\)
−0.996847 + 0.0793445i \(0.974717\pi\)
\(444\) −296436. −0.0713631
\(445\) −199250. −0.0476978
\(446\) 106820. 0.0254282
\(447\) 294516. 0.0697172
\(448\) 8.89551e6 2.09400
\(449\) 1.29601e6 0.303383 0.151691 0.988428i \(-0.451528\pi\)
0.151691 + 0.988428i \(0.451528\pi\)
\(450\) 646875. 0.150588
\(451\) −233436. −0.0540414
\(452\) 701666. 0.161542
\(453\) 2.14799e6 0.491798
\(454\) −4.40374e6 −1.00273
\(455\) 0 0
\(456\) −3.16602e6 −0.713020
\(457\) −1.68196e6 −0.376725 −0.188363 0.982100i \(-0.560318\pi\)
−0.188363 + 0.982100i \(0.560318\pi\)
\(458\) −65150.0 −0.0145128
\(459\) 4.14180e6 0.917608
\(460\) 122850. 0.0270695
\(461\) 3.20663e6 0.702743 0.351372 0.936236i \(-0.385715\pi\)
0.351372 + 0.936236i \(0.385715\pi\)
\(462\) 5.81208e6 1.26685
\(463\) 5.26370e6 1.14114 0.570570 0.821249i \(-0.306722\pi\)
0.570570 + 0.821249i \(0.306722\pi\)
\(464\) 3.78354e6 0.815837
\(465\) 545100. 0.116908
\(466\) 6.03499e6 1.28739
\(467\) −8.26813e6 −1.75435 −0.877173 0.480175i \(-0.840573\pi\)
−0.877173 + 0.480175i \(0.840573\pi\)
\(468\) 0 0
\(469\) 3.03438e6 0.636999
\(470\) −377500. −0.0788265
\(471\) 272700. 0.0566413
\(472\) 5.86287e6 1.21131
\(473\) −6.04869e6 −1.24311
\(474\) 1.19412e6 0.244119
\(475\) −1.69125e6 −0.343933
\(476\) 2.62007e6 0.530024
\(477\) −129582. −0.0260765
\(478\) −935190. −0.187210
\(479\) −3.65468e6 −0.727797 −0.363899 0.931439i \(-0.618555\pi\)
−0.363899 + 0.931439i \(0.618555\pi\)
\(480\) −372750. −0.0738439
\(481\) 0 0
\(482\) 1.35845e6 0.266334
\(483\) −1.02773e6 −0.200452
\(484\) −3.28570e6 −0.637549
\(485\) 1.95125e6 0.376668
\(486\) −4.30353e6 −0.826483
\(487\) −7.13084e6 −1.36244 −0.681221 0.732077i \(-0.738551\pi\)
−0.681221 + 0.732077i \(0.738551\pi\)
\(488\) −1.13217e6 −0.215210
\(489\) −35352.0 −0.00668562
\(490\) −5.34113e6 −1.00495
\(491\) 5.72551e6 1.07179 0.535896 0.844284i \(-0.319974\pi\)
0.535896 + 0.844284i \(0.319974\pi\)
\(492\) −12348.0 −0.00229977
\(493\) 7.72829e6 1.43208
\(494\) 0 0
\(495\) 4.10895e6 0.753734
\(496\) −2.72913e6 −0.498105
\(497\) −1.15510e6 −0.209762
\(498\) −1.25328e6 −0.226451
\(499\) 7.17251e6 1.28950 0.644748 0.764395i \(-0.276962\pi\)
0.644748 + 0.764395i \(0.276962\pi\)
\(500\) −109375. −0.0195656
\(501\) −1.27663e6 −0.227233
\(502\) −513240. −0.0908994
\(503\) −2.90611e6 −0.512143 −0.256072 0.966658i \(-0.582428\pi\)
−0.256072 + 0.966658i \(0.582428\pi\)
\(504\) −9.84906e6 −1.72710
\(505\) −575250. −0.100376
\(506\) −2.78694e6 −0.483895
\(507\) 0 0
\(508\) −275002. −0.0472799
\(509\) 8.37125e6 1.43217 0.716087 0.698011i \(-0.245931\pi\)
0.716087 + 0.698011i \(0.245931\pi\)
\(510\) 1.15050e6 0.195867
\(511\) 3.58534e6 0.607404
\(512\) 6.55248e6 1.10466
\(513\) 7.30620e6 1.22574
\(514\) 1.10591e6 0.184634
\(515\) 3.04265e6 0.505515
\(516\) −319956. −0.0529013
\(517\) −2.39788e6 −0.394549
\(518\) −8.61076e6 −1.40999
\(519\) 3.01907e6 0.491988
\(520\) 0 0
\(521\) 5.37332e6 0.867258 0.433629 0.901092i \(-0.357233\pi\)
0.433629 + 0.901092i \(0.357233\pi\)
\(522\) −5.21433e6 −0.837572
\(523\) 5.26875e6 0.842274 0.421137 0.906997i \(-0.361631\pi\)
0.421137 + 0.906997i \(0.361631\pi\)
\(524\) −1.48022e6 −0.235504
\(525\) 915000. 0.144885
\(526\) −7.01587e6 −1.10565
\(527\) −5.57456e6 −0.874347
\(528\) 3.57776e6 0.558505
\(529\) −5.94354e6 −0.923434
\(530\) −78250.0 −0.0121003
\(531\) −6.22366e6 −0.957877
\(532\) 4.62185e6 0.708005
\(533\) 0 0
\(534\) 239100. 0.0362849
\(535\) −1.75355e6 −0.264871
\(536\) 2.42502e6 0.364589
\(537\) 3.49034e6 0.522315
\(538\) 2.91477e6 0.434159
\(539\) −3.39268e7 −5.03004
\(540\) 472500. 0.0697296
\(541\) 6.07956e6 0.893056 0.446528 0.894770i \(-0.352660\pi\)
0.446528 + 0.894770i \(0.352660\pi\)
\(542\) −5.23451e6 −0.765381
\(543\) 1.21321e6 0.176578
\(544\) 3.81199e6 0.552274
\(545\) 4.89695e6 0.706211
\(546\) 0 0
\(547\) −7.88715e6 −1.12707 −0.563536 0.826091i \(-0.690559\pi\)
−0.563536 + 0.826091i \(0.690559\pi\)
\(548\) 184114. 0.0261900
\(549\) 1.20184e6 0.170183
\(550\) 2.48125e6 0.349755
\(551\) 1.36328e7 1.91296
\(552\) −821340. −0.114730
\(553\) −9.71218e6 −1.35053
\(554\) −5.52305e6 −0.764548
\(555\) 1.05870e6 0.145895
\(556\) −9408.00 −0.00129066
\(557\) 5.88545e6 0.803788 0.401894 0.915686i \(-0.368352\pi\)
0.401894 + 0.915686i \(0.368352\pi\)
\(558\) 3.76119e6 0.511375
\(559\) 0 0
\(560\) −4.58110e6 −0.617305
\(561\) 7.30798e6 0.980370
\(562\) 4.54413e6 0.606890
\(563\) −3.91526e6 −0.520583 −0.260291 0.965530i \(-0.583819\pi\)
−0.260291 + 0.965530i \(0.583819\pi\)
\(564\) −126840. −0.0167903
\(565\) −2.50595e6 −0.330256
\(566\) 2.24627e6 0.294728
\(567\) 8.32064e6 1.08692
\(568\) −923130. −0.120058
\(569\) 9.78180e6 1.26660 0.633298 0.773908i \(-0.281701\pi\)
0.633298 + 0.773908i \(0.281701\pi\)
\(570\) 2.02950e6 0.261639
\(571\) −1.08198e7 −1.38877 −0.694386 0.719603i \(-0.744324\pi\)
−0.694386 + 0.719603i \(0.744324\pi\)
\(572\) 0 0
\(573\) −2.04365e6 −0.260028
\(574\) −358680. −0.0454389
\(575\) −438750. −0.0553411
\(576\) −7.54660e6 −0.947753
\(577\) −1.48792e7 −1.86055 −0.930274 0.366865i \(-0.880431\pi\)
−0.930274 + 0.366865i \(0.880431\pi\)
\(578\) −4.66650e6 −0.580993
\(579\) −1.65368e6 −0.205001
\(580\) 881650. 0.108824
\(581\) 1.01933e7 1.25278
\(582\) −2.34150e6 −0.286541
\(583\) −497044. −0.0605652
\(584\) 2.86533e6 0.347650
\(585\) 0 0
\(586\) −9.80413e6 −1.17941
\(587\) −1.22649e7 −1.46916 −0.734578 0.678525i \(-0.762620\pi\)
−0.734578 + 0.678525i \(0.762620\pi\)
\(588\) −1.79462e6 −0.214057
\(589\) −9.83360e6 −1.16795
\(590\) −3.75825e6 −0.444483
\(591\) −3.22931e6 −0.380313
\(592\) −5.30056e6 −0.621609
\(593\) 1.54878e7 1.80864 0.904320 0.426856i \(-0.140379\pi\)
0.904320 + 0.426856i \(0.140379\pi\)
\(594\) −1.07190e7 −1.24649
\(595\) −9.35740e6 −1.08358
\(596\) −343602. −0.0396223
\(597\) −5.12304e6 −0.588291
\(598\) 0 0
\(599\) 9.75710e6 1.11110 0.555551 0.831483i \(-0.312507\pi\)
0.555551 + 0.831483i \(0.312507\pi\)
\(600\) 731250. 0.0829254
\(601\) −7.57967e6 −0.855981 −0.427990 0.903783i \(-0.640778\pi\)
−0.427990 + 0.903783i \(0.640778\pi\)
\(602\) −9.29396e6 −1.04522
\(603\) −2.57425e6 −0.288309
\(604\) −2.50599e6 −0.279503
\(605\) 1.17346e7 1.30341
\(606\) 690300. 0.0763583
\(607\) 1.36231e7 1.50073 0.750367 0.661022i \(-0.229877\pi\)
0.750367 + 0.661022i \(0.229877\pi\)
\(608\) 6.72441e6 0.737726
\(609\) −7.37563e6 −0.805853
\(610\) 725750. 0.0789701
\(611\) 0 0
\(612\) −2.22277e6 −0.239892
\(613\) 1.20366e7 1.29376 0.646880 0.762592i \(-0.276073\pi\)
0.646880 + 0.762592i \(0.276073\pi\)
\(614\) −8.96924e6 −0.960140
\(615\) 44100.0 0.00470166
\(616\) −3.77785e7 −4.01137
\(617\) −8.55509e6 −0.904715 −0.452358 0.891837i \(-0.649417\pi\)
−0.452358 + 0.891837i \(0.649417\pi\)
\(618\) −3.65118e6 −0.384558
\(619\) 1.33018e7 1.39535 0.697675 0.716414i \(-0.254218\pi\)
0.697675 + 0.716414i \(0.254218\pi\)
\(620\) −635950. −0.0664422
\(621\) 1.89540e6 0.197230
\(622\) −1.20617e7 −1.25006
\(623\) −1.94468e6 −0.200737
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 1.07718e7 1.09863
\(627\) 1.28914e7 1.30958
\(628\) −318150. −0.0321909
\(629\) −1.08270e7 −1.09114
\(630\) 6.31350e6 0.633751
\(631\) −9.16681e6 −0.916526 −0.458263 0.888817i \(-0.651528\pi\)
−0.458263 + 0.888817i \(0.651528\pi\)
\(632\) −7.76178e6 −0.772981
\(633\) −6.00674e6 −0.595840
\(634\) 1.29808e7 1.28256
\(635\) 982150. 0.0966593
\(636\) −26292.0 −0.00257739
\(637\) 0 0
\(638\) −2.00009e7 −1.94535
\(639\) 979938. 0.0949394
\(640\) −2.56912e6 −0.247934
\(641\) 9.96437e6 0.957866 0.478933 0.877851i \(-0.341024\pi\)
0.478933 + 0.877851i \(0.341024\pi\)
\(642\) 2.10426e6 0.201494
\(643\) −6.64194e6 −0.633530 −0.316765 0.948504i \(-0.602597\pi\)
−0.316765 + 0.948504i \(0.602597\pi\)
\(644\) 1.19902e6 0.113923
\(645\) 1.14270e6 0.108152
\(646\) −2.07550e7 −1.95678
\(647\) 844766. 0.0793370 0.0396685 0.999213i \(-0.487370\pi\)
0.0396685 + 0.999213i \(0.487370\pi\)
\(648\) 6.64969e6 0.622106
\(649\) −2.38724e7 −2.22477
\(650\) 0 0
\(651\) 5.32018e6 0.492010
\(652\) 41244.0 0.00379963
\(653\) 5.79681e6 0.531993 0.265997 0.963974i \(-0.414299\pi\)
0.265997 + 0.963974i \(0.414299\pi\)
\(654\) −5.87634e6 −0.537233
\(655\) 5.28650e6 0.481465
\(656\) −220794. −0.0200322
\(657\) −3.04166e6 −0.274914
\(658\) −3.68440e6 −0.331743
\(659\) −1.12406e7 −1.00827 −0.504136 0.863624i \(-0.668189\pi\)
−0.504136 + 0.863624i \(0.668189\pi\)
\(660\) 833700. 0.0744989
\(661\) 1.54928e7 1.37920 0.689599 0.724191i \(-0.257787\pi\)
0.689599 + 0.724191i \(0.257787\pi\)
\(662\) −4.58613e6 −0.406725
\(663\) 0 0
\(664\) 8.14632e6 0.717037
\(665\) −1.65066e7 −1.44745
\(666\) 7.30503e6 0.638170
\(667\) 3.53668e6 0.307809
\(668\) 1.48940e6 0.129143
\(669\) −128184. −0.0110731
\(670\) −1.55450e6 −0.133784
\(671\) 4.60996e6 0.395268
\(672\) −3.63804e6 −0.310774
\(673\) −723294. −0.0615570 −0.0307785 0.999526i \(-0.509799\pi\)
−0.0307785 + 0.999526i \(0.509799\pi\)
\(674\) −1.11947e7 −0.949210
\(675\) −1.68750e6 −0.142556
\(676\) 0 0
\(677\) −7.57359e6 −0.635082 −0.317541 0.948244i \(-0.602857\pi\)
−0.317541 + 0.948244i \(0.602857\pi\)
\(678\) 3.00714e6 0.251235
\(679\) 1.90442e7 1.58522
\(680\) −7.47825e6 −0.620194
\(681\) 5.28449e6 0.436652
\(682\) 1.44270e7 1.18772
\(683\) 1.65552e7 1.35794 0.678972 0.734164i \(-0.262426\pi\)
0.678972 + 0.734164i \(0.262426\pi\)
\(684\) −3.92099e6 −0.320447
\(685\) −657550. −0.0535430
\(686\) −3.16248e7 −2.56577
\(687\) 78180.0 0.00631981
\(688\) −5.72112e6 −0.460797
\(689\) 0 0
\(690\) 526500. 0.0420994
\(691\) 2.04593e7 1.63003 0.815016 0.579438i \(-0.196728\pi\)
0.815016 + 0.579438i \(0.196728\pi\)
\(692\) −3.52225e6 −0.279611
\(693\) 4.01034e7 3.17211
\(694\) −1.70904e7 −1.34696
\(695\) 33600.0 0.00263862
\(696\) −5.89446e6 −0.461234
\(697\) −450996. −0.0351634
\(698\) 1.17846e7 0.915535
\(699\) −7.24199e6 −0.560615
\(700\) −1.06750e6 −0.0823423
\(701\) 1.52050e7 1.16867 0.584334 0.811514i \(-0.301356\pi\)
0.584334 + 0.811514i \(0.301356\pi\)
\(702\) 0 0
\(703\) −1.90989e7 −1.45754
\(704\) −2.89469e7 −2.20125
\(705\) 453000. 0.0343262
\(706\) −1.88198e7 −1.42103
\(707\) −5.61444e6 −0.422433
\(708\) −1.26277e6 −0.0946764
\(709\) 1.80833e7 1.35102 0.675509 0.737351i \(-0.263924\pi\)
0.675509 + 0.737351i \(0.263924\pi\)
\(710\) 591750. 0.0440547
\(711\) 8.23943e6 0.611256
\(712\) −1.55415e6 −0.114893
\(713\) −2.55107e6 −0.187931
\(714\) 1.12289e7 0.824311
\(715\) 0 0
\(716\) −4.07207e6 −0.296847
\(717\) 1.12223e6 0.0815236
\(718\) 1.64108e7 1.18801
\(719\) −2.08096e7 −1.50121 −0.750604 0.660752i \(-0.770237\pi\)
−0.750604 + 0.660752i \(0.770237\pi\)
\(720\) 3.88643e6 0.279395
\(721\) 2.96963e7 2.12747
\(722\) −2.42317e7 −1.72998
\(723\) −1.63014e6 −0.115979
\(724\) −1.41541e6 −0.100355
\(725\) −3.14875e6 −0.222481
\(726\) −1.40816e7 −0.991537
\(727\) −2.59006e7 −1.81750 −0.908749 0.417344i \(-0.862961\pi\)
−0.908749 + 0.417344i \(0.862961\pi\)
\(728\) 0 0
\(729\) −3.12231e6 −0.217599
\(730\) −1.83675e6 −0.127568
\(731\) −1.16860e7 −0.808859
\(732\) 243852. 0.0168209
\(733\) 1.96307e7 1.34951 0.674754 0.738043i \(-0.264250\pi\)
0.674754 + 0.738043i \(0.264250\pi\)
\(734\) 1.21303e7 0.831056
\(735\) 6.40935e6 0.437618
\(736\) 1.74447e6 0.118705
\(737\) −9.87418e6 −0.669626
\(738\) 304290. 0.0205659
\(739\) 1.67436e7 1.12781 0.563906 0.825839i \(-0.309298\pi\)
0.563906 + 0.825839i \(0.309298\pi\)
\(740\) −1.23515e6 −0.0829164
\(741\) 0 0
\(742\) −763720. −0.0509242
\(743\) −5.57725e6 −0.370637 −0.185318 0.982679i \(-0.559332\pi\)
−0.185318 + 0.982679i \(0.559332\pi\)
\(744\) 4.25178e6 0.281604
\(745\) 1.22715e6 0.0810041
\(746\) −1.40318e7 −0.923135
\(747\) −8.64763e6 −0.567016
\(748\) −8.52597e6 −0.557173
\(749\) −1.71146e7 −1.11471
\(750\) −468750. −0.0304290
\(751\) 1.24035e7 0.802499 0.401250 0.915969i \(-0.368576\pi\)
0.401250 + 0.915969i \(0.368576\pi\)
\(752\) −2.26802e6 −0.146252
\(753\) 615888. 0.0395835
\(754\) 0 0
\(755\) 8.94995e6 0.571417
\(756\) 4.61160e6 0.293459
\(757\) 4.37170e6 0.277275 0.138637 0.990343i \(-0.455728\pi\)
0.138637 + 0.990343i \(0.455728\pi\)
\(758\) 1.57696e7 0.996892
\(759\) 3.34433e6 0.210719
\(760\) −1.31918e7 −0.828454
\(761\) 2.10490e7 1.31756 0.658780 0.752335i \(-0.271073\pi\)
0.658780 + 0.752335i \(0.271073\pi\)
\(762\) −1.17858e6 −0.0735312
\(763\) 4.77942e7 2.97210
\(764\) 2.38426e6 0.147781
\(765\) 7.93845e6 0.490436
\(766\) −2.37522e6 −0.146262
\(767\) 0 0
\(768\) −3.91679e6 −0.239623
\(769\) −2.26551e7 −1.38150 −0.690748 0.723096i \(-0.742718\pi\)
−0.690748 + 0.723096i \(0.742718\pi\)
\(770\) 2.42170e7 1.47195
\(771\) −1.32709e6 −0.0804017
\(772\) 1.92930e6 0.116508
\(773\) −1.15053e7 −0.692545 −0.346272 0.938134i \(-0.612553\pi\)
−0.346272 + 0.938134i \(0.612553\pi\)
\(774\) 7.88463e6 0.473074
\(775\) 2.27125e6 0.135835
\(776\) 1.52198e7 0.907305
\(777\) 1.03329e7 0.614003
\(778\) −752830. −0.0445911
\(779\) −795564. −0.0469712
\(780\) 0 0
\(781\) 3.75880e6 0.220506
\(782\) −5.38434e6 −0.314859
\(783\) 1.36026e7 0.792898
\(784\) −3.20895e7 −1.86454
\(785\) 1.13625e6 0.0658112
\(786\) −6.34380e6 −0.366263
\(787\) −967112. −0.0556596 −0.0278298 0.999613i \(-0.508860\pi\)
−0.0278298 + 0.999613i \(0.508860\pi\)
\(788\) 3.76753e6 0.216143
\(789\) 8.41904e6 0.481471
\(790\) 4.97550e6 0.283641
\(791\) −2.44581e7 −1.38989
\(792\) 3.20498e7 1.81557
\(793\) 0 0
\(794\) 1.20843e6 0.0680253
\(795\) 93900.0 0.00526924
\(796\) 5.97688e6 0.334343
\(797\) −2.85072e7 −1.58968 −0.794838 0.606821i \(-0.792444\pi\)
−0.794838 + 0.606821i \(0.792444\pi\)
\(798\) 1.98079e7 1.10111
\(799\) −4.63268e6 −0.256723
\(800\) −1.55313e6 −0.0857988
\(801\) 1.64979e6 0.0908547
\(802\) −1.59840e7 −0.877502
\(803\) −1.16670e7 −0.638516
\(804\) −522312. −0.0284964
\(805\) −4.28220e6 −0.232904
\(806\) 0 0
\(807\) −3.49772e6 −0.189061
\(808\) −4.48695e6 −0.241781
\(809\) 1.08912e7 0.585065 0.292533 0.956256i \(-0.405502\pi\)
0.292533 + 0.956256i \(0.405502\pi\)
\(810\) −4.26262e6 −0.228278
\(811\) −1.28535e7 −0.686228 −0.343114 0.939294i \(-0.611482\pi\)
−0.343114 + 0.939294i \(0.611482\pi\)
\(812\) 8.60490e6 0.457990
\(813\) 6.28141e6 0.333297
\(814\) 2.80203e7 1.48221
\(815\) −147300. −0.00776799
\(816\) 6.91220e6 0.363405
\(817\) −2.06143e7 −1.08047
\(818\) 2.11641e6 0.110590
\(819\) 0 0
\(820\) −51450.0 −0.00267209
\(821\) 9.60605e6 0.497378 0.248689 0.968583i \(-0.420000\pi\)
0.248689 + 0.968583i \(0.420000\pi\)
\(822\) 789060. 0.0407315
\(823\) 1.42909e7 0.735460 0.367730 0.929933i \(-0.380135\pi\)
0.367730 + 0.929933i \(0.380135\pi\)
\(824\) 2.37327e7 1.21767
\(825\) −2.97750e6 −0.152306
\(826\) −3.66805e7 −1.87062
\(827\) −2.40317e7 −1.22186 −0.610930 0.791685i \(-0.709204\pi\)
−0.610930 + 0.791685i \(0.709204\pi\)
\(828\) −1.01720e6 −0.0515620
\(829\) 1.10830e7 0.560107 0.280053 0.959984i \(-0.409648\pi\)
0.280053 + 0.959984i \(0.409648\pi\)
\(830\) −5.22200e6 −0.263113
\(831\) 6.62766e6 0.332934
\(832\) 0 0
\(833\) −6.55463e7 −3.27292
\(834\) −40320.0 −0.00200727
\(835\) −5.31930e6 −0.264021
\(836\) −1.50399e7 −0.744270
\(837\) −9.81180e6 −0.484100
\(838\) 5.65796e6 0.278323
\(839\) 6.89303e6 0.338069 0.169034 0.985610i \(-0.445935\pi\)
0.169034 + 0.985610i \(0.445935\pi\)
\(840\) 7.13700e6 0.348994
\(841\) 4.87030e6 0.237446
\(842\) 1.73849e7 0.845070
\(843\) −5.45296e6 −0.264279
\(844\) 7.00787e6 0.338633
\(845\) 0 0
\(846\) 3.12570e6 0.150149
\(847\) 1.14530e8 5.48543
\(848\) −470126. −0.0224504
\(849\) −2.69552e6 −0.128344
\(850\) 4.79375e6 0.227577
\(851\) −4.95472e6 −0.234528
\(852\) 198828. 0.00938380
\(853\) 683466. 0.0321621 0.0160810 0.999871i \(-0.494881\pi\)
0.0160810 + 0.999871i \(0.494881\pi\)
\(854\) 7.08332e6 0.332347
\(855\) 1.40035e7 0.655123
\(856\) −1.36777e7 −0.638011
\(857\) −7.89742e6 −0.367310 −0.183655 0.982991i \(-0.558793\pi\)
−0.183655 + 0.982991i \(0.558793\pi\)
\(858\) 0 0
\(859\) 3.52556e7 1.63021 0.815107 0.579310i \(-0.196678\pi\)
0.815107 + 0.579310i \(0.196678\pi\)
\(860\) −1.33315e6 −0.0614657
\(861\) 430416. 0.0197870
\(862\) 1.70522e7 0.781649
\(863\) −1.76565e7 −0.807007 −0.403503 0.914978i \(-0.632208\pi\)
−0.403503 + 0.914978i \(0.632208\pi\)
\(864\) 6.70950e6 0.305778
\(865\) 1.25794e7 0.571638
\(866\) 1.70361e7 0.771926
\(867\) 5.59979e6 0.253002
\(868\) −6.20687e6 −0.279623
\(869\) 3.16044e7 1.41970
\(870\) 3.77850e6 0.169247
\(871\) 0 0
\(872\) 3.81962e7 1.70110
\(873\) −1.61564e7 −0.717476
\(874\) −9.49806e6 −0.420587
\(875\) 3.81250e6 0.168341
\(876\) −617148. −0.0271725
\(877\) 6.40016e6 0.280991 0.140495 0.990081i \(-0.455131\pi\)
0.140495 + 0.990081i \(0.455131\pi\)
\(878\) 3.54557e7 1.55221
\(879\) 1.17650e7 0.513592
\(880\) 1.49074e7 0.648924
\(881\) −1.14571e7 −0.497318 −0.248659 0.968591i \(-0.579990\pi\)
−0.248659 + 0.968591i \(0.579990\pi\)
\(882\) 4.42245e7 1.91422
\(883\) 2.42296e7 1.04579 0.522896 0.852397i \(-0.324852\pi\)
0.522896 + 0.852397i \(0.324852\pi\)
\(884\) 0 0
\(885\) 4.50990e6 0.193557
\(886\) 4.11754e7 1.76219
\(887\) 8.66087e6 0.369617 0.184809 0.982775i \(-0.440833\pi\)
0.184809 + 0.982775i \(0.440833\pi\)
\(888\) 8.25786e6 0.351427
\(889\) 9.58578e6 0.406793
\(890\) 996250. 0.0421593
\(891\) −2.70762e7 −1.14260
\(892\) 149548. 0.00629316
\(893\) −8.17212e6 −0.342930
\(894\) −1.47258e6 −0.0616219
\(895\) 1.45431e7 0.606875
\(896\) −2.50747e7 −1.04343
\(897\) 0 0
\(898\) −6.48003e6 −0.268155
\(899\) −1.83081e7 −0.755516
\(900\) 905625. 0.0372685
\(901\) −960284. −0.0394083
\(902\) 1.16718e6 0.0477663
\(903\) 1.11528e7 0.455159
\(904\) −1.95464e7 −0.795511
\(905\) 5.05505e6 0.205165
\(906\) −1.07399e7 −0.434692
\(907\) −7.84287e6 −0.316561 −0.158280 0.987394i \(-0.550595\pi\)
−0.158280 + 0.987394i \(0.550595\pi\)
\(908\) −6.16524e6 −0.248162
\(909\) 4.76307e6 0.191195
\(910\) 0 0
\(911\) −942576. −0.0376288 −0.0188144 0.999823i \(-0.505989\pi\)
−0.0188144 + 0.999823i \(0.505989\pi\)
\(912\) 1.21932e7 0.485436
\(913\) −3.31701e7 −1.31695
\(914\) 8.40979e6 0.332981
\(915\) −870900. −0.0343887
\(916\) −91210.0 −0.00359173
\(917\) 5.15962e7 2.02626
\(918\) −2.07090e7 −0.811059
\(919\) −2.00734e7 −0.784030 −0.392015 0.919959i \(-0.628222\pi\)
−0.392015 + 0.919959i \(0.628222\pi\)
\(920\) −3.42225e6 −0.133304
\(921\) 1.07631e7 0.418107
\(922\) −1.60332e7 −0.621143
\(923\) 0 0
\(924\) 8.13691e6 0.313530
\(925\) 4.41125e6 0.169515
\(926\) −2.63185e7 −1.00863
\(927\) −2.51931e7 −0.962904
\(928\) 1.25194e7 0.477216
\(929\) −1.10181e7 −0.418858 −0.209429 0.977824i \(-0.567160\pi\)
−0.209429 + 0.977824i \(0.567160\pi\)
\(930\) −2.72550e6 −0.103333
\(931\) −1.15625e8 −4.37196
\(932\) 8.44899e6 0.318614
\(933\) 1.44740e7 0.544358
\(934\) 4.13406e7 1.55064
\(935\) 3.04499e7 1.13909
\(936\) 0 0
\(937\) 3.59532e7 1.33779 0.668896 0.743356i \(-0.266767\pi\)
0.668896 + 0.743356i \(0.266767\pi\)
\(938\) −1.51719e7 −0.563032
\(939\) −1.29261e7 −0.478415
\(940\) −528500. −0.0195086
\(941\) −1.28845e7 −0.474345 −0.237172 0.971468i \(-0.576221\pi\)
−0.237172 + 0.971468i \(0.576221\pi\)
\(942\) −1.36350e6 −0.0500643
\(943\) −206388. −0.00755797
\(944\) −2.25796e7 −0.824680
\(945\) −1.64700e7 −0.599949
\(946\) 3.02435e7 1.09876
\(947\) 1.18911e7 0.430871 0.215436 0.976518i \(-0.430883\pi\)
0.215436 + 0.976518i \(0.430883\pi\)
\(948\) 1.67177e6 0.0604164
\(949\) 0 0
\(950\) 8.45625e6 0.303997
\(951\) −1.55769e7 −0.558510
\(952\) −7.29877e7 −2.61010
\(953\) 4.40094e7 1.56969 0.784844 0.619694i \(-0.212743\pi\)
0.784844 + 0.619694i \(0.212743\pi\)
\(954\) 647910. 0.0230486
\(955\) −8.51520e6 −0.302125
\(956\) −1.30927e6 −0.0463322
\(957\) 2.40010e7 0.847130
\(958\) 1.82734e7 0.643288
\(959\) −6.41769e6 −0.225337
\(960\) 5.46855e6 0.191511
\(961\) −1.54232e7 −0.538723
\(962\) 0 0
\(963\) 1.45194e7 0.504525
\(964\) 1.90183e6 0.0659142
\(965\) −6.89035e6 −0.238190
\(966\) 5.13864e6 0.177176
\(967\) −2.11144e7 −0.726128 −0.363064 0.931764i \(-0.618269\pi\)
−0.363064 + 0.931764i \(0.618269\pi\)
\(968\) 9.15301e7 3.13961
\(969\) 2.49060e7 0.852109
\(970\) −9.75625e6 −0.332931
\(971\) 2.44293e7 0.831502 0.415751 0.909478i \(-0.363519\pi\)
0.415751 + 0.909478i \(0.363519\pi\)
\(972\) −6.02494e6 −0.204544
\(973\) 327936. 0.0111047
\(974\) 3.56542e7 1.20424
\(975\) 0 0
\(976\) 4.36031e6 0.146518
\(977\) −5.15549e7 −1.72796 −0.863980 0.503527i \(-0.832036\pi\)
−0.863980 + 0.503527i \(0.832036\pi\)
\(978\) 176760. 0.00590931
\(979\) 6.32818e6 0.211019
\(980\) −7.47758e6 −0.248711
\(981\) −4.05467e7 −1.34519
\(982\) −2.86276e7 −0.947339
\(983\) 1.38938e7 0.458604 0.229302 0.973355i \(-0.426356\pi\)
0.229302 + 0.973355i \(0.426356\pi\)
\(984\) 343980. 0.0113252
\(985\) −1.34554e7 −0.441883
\(986\) −3.86415e7 −1.26579
\(987\) 4.42128e6 0.144463
\(988\) 0 0
\(989\) −5.34784e6 −0.173855
\(990\) −2.05448e7 −0.666213
\(991\) 3.31496e7 1.07225 0.536123 0.844140i \(-0.319888\pi\)
0.536123 + 0.844140i \(0.319888\pi\)
\(992\) −9.03049e6 −0.291361
\(993\) 5.50336e6 0.177115
\(994\) 5.77548e6 0.185405
\(995\) −2.13460e7 −0.683532
\(996\) −1.75459e6 −0.0560438
\(997\) 9.45871e6 0.301366 0.150683 0.988582i \(-0.451853\pi\)
0.150683 + 0.988582i \(0.451853\pi\)
\(998\) −3.58626e7 −1.13976
\(999\) −1.90566e7 −0.604132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.6.a.a.1.1 1
13.12 even 2 65.6.a.a.1.1 1
39.38 odd 2 585.6.a.a.1.1 1
52.51 odd 2 1040.6.a.a.1.1 1
65.12 odd 4 325.6.b.a.274.2 2
65.38 odd 4 325.6.b.a.274.1 2
65.64 even 2 325.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.a.1.1 1 13.12 even 2
325.6.a.a.1.1 1 65.64 even 2
325.6.b.a.274.1 2 65.38 odd 4
325.6.b.a.274.2 2 65.12 odd 4
585.6.a.a.1.1 1 39.38 odd 2
845.6.a.a.1.1 1 1.1 even 1 trivial
1040.6.a.a.1.1 1 52.51 odd 2