Properties

Label 65.6.a.d.1.2
Level $65$
Weight $6$
Character 65.1
Self dual yes
Analytic conductor $10.425$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.93318\) of defining polynomial
Character \(\chi\) \(=\) 65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.93318 q^{2} -7.05430 q^{3} +3.20258 q^{4} -25.0000 q^{5} +41.8544 q^{6} -185.746 q^{7} +170.860 q^{8} -193.237 q^{9} +148.329 q^{10} -353.912 q^{11} -22.5920 q^{12} +169.000 q^{13} +1102.06 q^{14} +176.358 q^{15} -1116.23 q^{16} +634.652 q^{17} +1146.51 q^{18} +1118.29 q^{19} -80.0646 q^{20} +1310.31 q^{21} +2099.83 q^{22} +3509.85 q^{23} -1205.30 q^{24} +625.000 q^{25} -1002.71 q^{26} +3077.35 q^{27} -594.867 q^{28} -3765.67 q^{29} -1046.36 q^{30} +2906.63 q^{31} +1155.24 q^{32} +2496.60 q^{33} -3765.50 q^{34} +4643.65 q^{35} -618.857 q^{36} +283.305 q^{37} -6635.04 q^{38} -1192.18 q^{39} -4271.50 q^{40} -13563.6 q^{41} -7774.29 q^{42} -5184.47 q^{43} -1133.43 q^{44} +4830.92 q^{45} -20824.6 q^{46} -6781.50 q^{47} +7874.19 q^{48} +17694.6 q^{49} -3708.24 q^{50} -4477.03 q^{51} +541.237 q^{52} +7664.43 q^{53} -18258.4 q^{54} +8847.81 q^{55} -31736.6 q^{56} -7888.78 q^{57} +22342.4 q^{58} +2806.29 q^{59} +564.800 q^{60} -13764.7 q^{61} -17245.5 q^{62} +35893.0 q^{63} +28865.0 q^{64} -4225.00 q^{65} -14812.8 q^{66} +67744.1 q^{67} +2032.53 q^{68} -24759.5 q^{69} -27551.6 q^{70} -66519.0 q^{71} -33016.5 q^{72} +75902.7 q^{73} -1680.90 q^{74} -4408.94 q^{75} +3581.43 q^{76} +65737.9 q^{77} +7073.39 q^{78} +101641. q^{79} +27905.7 q^{80} +25248.0 q^{81} +80475.1 q^{82} -50882.7 q^{83} +4196.37 q^{84} -15866.3 q^{85} +30760.4 q^{86} +26564.2 q^{87} -60469.5 q^{88} -52439.2 q^{89} -28662.7 q^{90} -31391.1 q^{91} +11240.6 q^{92} -20504.2 q^{93} +40235.8 q^{94} -27957.4 q^{95} -8149.42 q^{96} -142557. q^{97} -104985. q^{98} +68388.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 38 q^{3} + 134 q^{4} - 150 q^{5} + 318 q^{6} + 220 q^{7} + 24 q^{8} + 518 q^{9} - 170 q^{11} + 2238 q^{12} + 1014 q^{13} - 1440 q^{14} - 950 q^{15} + 3506 q^{16} + 728 q^{17} + 7788 q^{18} + 1218 q^{19}+ \cdots - 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.93318 −1.04885 −0.524424 0.851457i \(-0.675719\pi\)
−0.524424 + 0.851457i \(0.675719\pi\)
\(3\) −7.05430 −0.452534 −0.226267 0.974065i \(-0.572652\pi\)
−0.226267 + 0.974065i \(0.572652\pi\)
\(4\) 3.20258 0.100081
\(5\) −25.0000 −0.447214
\(6\) 41.8544 0.474639
\(7\) −185.746 −1.43276 −0.716382 0.697708i \(-0.754203\pi\)
−0.716382 + 0.697708i \(0.754203\pi\)
\(8\) 170.860 0.943878
\(9\) −193.237 −0.795213
\(10\) 148.329 0.469059
\(11\) −353.912 −0.881889 −0.440945 0.897534i \(-0.645357\pi\)
−0.440945 + 0.897534i \(0.645357\pi\)
\(12\) −22.5920 −0.0452899
\(13\) 169.000 0.277350
\(14\) 1102.06 1.50275
\(15\) 176.358 0.202379
\(16\) −1116.23 −1.09006
\(17\) 634.652 0.532615 0.266308 0.963888i \(-0.414196\pi\)
0.266308 + 0.963888i \(0.414196\pi\)
\(18\) 1146.51 0.834057
\(19\) 1118.29 0.710677 0.355338 0.934738i \(-0.384366\pi\)
0.355338 + 0.934738i \(0.384366\pi\)
\(20\) −80.0646 −0.0447575
\(21\) 1310.31 0.648374
\(22\) 2099.83 0.924967
\(23\) 3509.85 1.38347 0.691734 0.722153i \(-0.256847\pi\)
0.691734 + 0.722153i \(0.256847\pi\)
\(24\) −1205.30 −0.427136
\(25\) 625.000 0.200000
\(26\) −1002.71 −0.290898
\(27\) 3077.35 0.812394
\(28\) −594.867 −0.143392
\(29\) −3765.67 −0.831471 −0.415735 0.909486i \(-0.636476\pi\)
−0.415735 + 0.909486i \(0.636476\pi\)
\(30\) −1046.36 −0.212265
\(31\) 2906.63 0.543232 0.271616 0.962406i \(-0.412442\pi\)
0.271616 + 0.962406i \(0.412442\pi\)
\(32\) 1155.24 0.199433
\(33\) 2496.60 0.399085
\(34\) −3765.50 −0.558632
\(35\) 4643.65 0.640751
\(36\) −618.857 −0.0795855
\(37\) 283.305 0.0340213 0.0170106 0.999855i \(-0.494585\pi\)
0.0170106 + 0.999855i \(0.494585\pi\)
\(38\) −6635.04 −0.745391
\(39\) −1192.18 −0.125510
\(40\) −4271.50 −0.422115
\(41\) −13563.6 −1.26013 −0.630064 0.776544i \(-0.716971\pi\)
−0.630064 + 0.776544i \(0.716971\pi\)
\(42\) −7774.29 −0.680045
\(43\) −5184.47 −0.427596 −0.213798 0.976878i \(-0.568583\pi\)
−0.213798 + 0.976878i \(0.568583\pi\)
\(44\) −1133.43 −0.0882601
\(45\) 4830.92 0.355630
\(46\) −20824.6 −1.45105
\(47\) −6781.50 −0.447797 −0.223898 0.974612i \(-0.571878\pi\)
−0.223898 + 0.974612i \(0.571878\pi\)
\(48\) 7874.19 0.493291
\(49\) 17694.6 1.05281
\(50\) −3708.24 −0.209769
\(51\) −4477.03 −0.241026
\(52\) 541.237 0.0277574
\(53\) 7664.43 0.374792 0.187396 0.982284i \(-0.439995\pi\)
0.187396 + 0.982284i \(0.439995\pi\)
\(54\) −18258.4 −0.852078
\(55\) 8847.81 0.394393
\(56\) −31736.6 −1.35235
\(57\) −7888.78 −0.321605
\(58\) 22342.4 0.872086
\(59\) 2806.29 0.104955 0.0524773 0.998622i \(-0.483288\pi\)
0.0524773 + 0.998622i \(0.483288\pi\)
\(60\) 564.800 0.0202543
\(61\) −13764.7 −0.473634 −0.236817 0.971554i \(-0.576104\pi\)
−0.236817 + 0.971554i \(0.576104\pi\)
\(62\) −17245.5 −0.569768
\(63\) 35893.0 1.13935
\(64\) 28865.0 0.880889
\(65\) −4225.00 −0.124035
\(66\) −14812.8 −0.418579
\(67\) 67744.1 1.84368 0.921838 0.387576i \(-0.126687\pi\)
0.921838 + 0.387576i \(0.126687\pi\)
\(68\) 2032.53 0.0533045
\(69\) −24759.5 −0.626065
\(70\) −27551.6 −0.672050
\(71\) −66519.0 −1.56603 −0.783014 0.622004i \(-0.786319\pi\)
−0.783014 + 0.622004i \(0.786319\pi\)
\(72\) −33016.5 −0.750584
\(73\) 75902.7 1.66706 0.833528 0.552478i \(-0.186318\pi\)
0.833528 + 0.552478i \(0.186318\pi\)
\(74\) −1680.90 −0.0356831
\(75\) −4408.94 −0.0905067
\(76\) 3581.43 0.0711250
\(77\) 65737.9 1.26354
\(78\) 7073.39 0.131641
\(79\) 101641. 1.83233 0.916163 0.400806i \(-0.131270\pi\)
0.916163 + 0.400806i \(0.131270\pi\)
\(80\) 27905.7 0.487492
\(81\) 25248.0 0.427578
\(82\) 80475.1 1.32168
\(83\) −50882.7 −0.810727 −0.405363 0.914156i \(-0.632855\pi\)
−0.405363 + 0.914156i \(0.632855\pi\)
\(84\) 4196.37 0.0648897
\(85\) −15866.3 −0.238193
\(86\) 30760.4 0.448483
\(87\) 26564.2 0.376269
\(88\) −60469.5 −0.832396
\(89\) −52439.2 −0.701748 −0.350874 0.936423i \(-0.614115\pi\)
−0.350874 + 0.936423i \(0.614115\pi\)
\(90\) −28662.7 −0.373002
\(91\) −31391.1 −0.397377
\(92\) 11240.6 0.138458
\(93\) −20504.2 −0.245831
\(94\) 40235.8 0.469671
\(95\) −27957.4 −0.317824
\(96\) −8149.42 −0.0902503
\(97\) −142557. −1.53837 −0.769183 0.639028i \(-0.779337\pi\)
−0.769183 + 0.639028i \(0.779337\pi\)
\(98\) −104985. −1.10424
\(99\) 68388.9 0.701290
\(100\) 2001.61 0.0200161
\(101\) 4751.74 0.0463499 0.0231750 0.999731i \(-0.492623\pi\)
0.0231750 + 0.999731i \(0.492623\pi\)
\(102\) 26563.0 0.252800
\(103\) −59290.6 −0.550672 −0.275336 0.961348i \(-0.588789\pi\)
−0.275336 + 0.961348i \(0.588789\pi\)
\(104\) 28875.4 0.261785
\(105\) −32757.7 −0.289961
\(106\) −45474.4 −0.393100
\(107\) 157927. 1.33351 0.666756 0.745276i \(-0.267682\pi\)
0.666756 + 0.745276i \(0.267682\pi\)
\(108\) 9855.46 0.0813050
\(109\) 58878.4 0.474668 0.237334 0.971428i \(-0.423726\pi\)
0.237334 + 0.971428i \(0.423726\pi\)
\(110\) −52495.6 −0.413658
\(111\) −1998.52 −0.0153958
\(112\) 207335. 1.56180
\(113\) 179734. 1.32414 0.662069 0.749443i \(-0.269678\pi\)
0.662069 + 0.749443i \(0.269678\pi\)
\(114\) 46805.5 0.337315
\(115\) −87746.2 −0.618705
\(116\) −12059.9 −0.0832142
\(117\) −32657.0 −0.220553
\(118\) −16650.2 −0.110081
\(119\) −117884. −0.763112
\(120\) 30132.5 0.191021
\(121\) −35797.0 −0.222271
\(122\) 81668.5 0.496770
\(123\) 95681.5 0.570250
\(124\) 9308.72 0.0543671
\(125\) −15625.0 −0.0894427
\(126\) −212959. −1.19501
\(127\) −123741. −0.680774 −0.340387 0.940286i \(-0.610558\pi\)
−0.340387 + 0.940286i \(0.610558\pi\)
\(128\) −208229. −1.12335
\(129\) 36572.8 0.193501
\(130\) 25067.7 0.130094
\(131\) −43205.0 −0.219966 −0.109983 0.993933i \(-0.535080\pi\)
−0.109983 + 0.993933i \(0.535080\pi\)
\(132\) 7995.58 0.0399407
\(133\) −207719. −1.01823
\(134\) −401938. −1.93373
\(135\) −76933.6 −0.363314
\(136\) 108437. 0.502724
\(137\) −188517. −0.858120 −0.429060 0.903276i \(-0.641155\pi\)
−0.429060 + 0.903276i \(0.641155\pi\)
\(138\) 146903. 0.656647
\(139\) 344148. 1.51081 0.755403 0.655260i \(-0.227441\pi\)
0.755403 + 0.655260i \(0.227441\pi\)
\(140\) 14871.7 0.0641269
\(141\) 47838.7 0.202643
\(142\) 394669. 1.64253
\(143\) −59811.2 −0.244592
\(144\) 215696. 0.866834
\(145\) 94141.7 0.371845
\(146\) −450344. −1.74849
\(147\) −124823. −0.476433
\(148\) 907.309 0.00340487
\(149\) −177809. −0.656126 −0.328063 0.944656i \(-0.606396\pi\)
−0.328063 + 0.944656i \(0.606396\pi\)
\(150\) 26159.0 0.0949277
\(151\) 554784. 1.98008 0.990038 0.140803i \(-0.0449685\pi\)
0.990038 + 0.140803i \(0.0449685\pi\)
\(152\) 191072. 0.670792
\(153\) −122638. −0.423543
\(154\) −390034. −1.32526
\(155\) −72665.7 −0.242941
\(156\) −3818.05 −0.0125612
\(157\) 255896. 0.828542 0.414271 0.910154i \(-0.364037\pi\)
0.414271 + 0.910154i \(0.364037\pi\)
\(158\) −603056. −1.92183
\(159\) −54067.2 −0.169606
\(160\) −28881.0 −0.0891893
\(161\) −651941. −1.98218
\(162\) −149801. −0.448464
\(163\) −262686. −0.774404 −0.387202 0.921995i \(-0.626558\pi\)
−0.387202 + 0.921995i \(0.626558\pi\)
\(164\) −43438.5 −0.126114
\(165\) −62415.1 −0.178476
\(166\) 301896. 0.850329
\(167\) 287069. 0.796517 0.398259 0.917273i \(-0.369615\pi\)
0.398259 + 0.917273i \(0.369615\pi\)
\(168\) 223880. 0.611986
\(169\) 28561.0 0.0769231
\(170\) 94137.6 0.249828
\(171\) −216096. −0.565140
\(172\) −16603.7 −0.0427941
\(173\) 719663. 1.82816 0.914080 0.405534i \(-0.132915\pi\)
0.914080 + 0.405534i \(0.132915\pi\)
\(174\) −157610. −0.394648
\(175\) −116091. −0.286553
\(176\) 395046. 0.961316
\(177\) −19796.4 −0.0474955
\(178\) 311131. 0.736026
\(179\) 779772. 1.81901 0.909505 0.415693i \(-0.136461\pi\)
0.909505 + 0.415693i \(0.136461\pi\)
\(180\) 15471.4 0.0355917
\(181\) 336065. 0.762478 0.381239 0.924477i \(-0.375498\pi\)
0.381239 + 0.924477i \(0.375498\pi\)
\(182\) 186249. 0.416788
\(183\) 97100.5 0.214335
\(184\) 599693. 1.30582
\(185\) −7082.63 −0.0152148
\(186\) 121655. 0.257839
\(187\) −224611. −0.469708
\(188\) −21718.3 −0.0448158
\(189\) −571605. −1.16397
\(190\) 165876. 0.333349
\(191\) 409479. 0.812173 0.406086 0.913835i \(-0.366893\pi\)
0.406086 + 0.913835i \(0.366893\pi\)
\(192\) −203622. −0.398632
\(193\) 339565. 0.656189 0.328095 0.944645i \(-0.393593\pi\)
0.328095 + 0.944645i \(0.393593\pi\)
\(194\) 845817. 1.61351
\(195\) 29804.4 0.0561299
\(196\) 56668.4 0.105366
\(197\) −871469. −1.59988 −0.799938 0.600082i \(-0.795135\pi\)
−0.799938 + 0.600082i \(0.795135\pi\)
\(198\) −405764. −0.735546
\(199\) 270952. 0.485019 0.242510 0.970149i \(-0.422029\pi\)
0.242510 + 0.970149i \(0.422029\pi\)
\(200\) 106788. 0.188776
\(201\) −477887. −0.834325
\(202\) −28192.9 −0.0486140
\(203\) 699458. 1.19130
\(204\) −14338.1 −0.0241221
\(205\) 339089. 0.563546
\(206\) 351781. 0.577570
\(207\) −678232. −1.10015
\(208\) −188642. −0.302330
\(209\) −395778. −0.626738
\(210\) 194357. 0.304125
\(211\) 181455. 0.280583 0.140292 0.990110i \(-0.455196\pi\)
0.140292 + 0.990110i \(0.455196\pi\)
\(212\) 24546.0 0.0375095
\(213\) 469245. 0.708681
\(214\) −937009. −1.39865
\(215\) 129612. 0.191227
\(216\) 525796. 0.766801
\(217\) −539895. −0.778323
\(218\) −349336. −0.497854
\(219\) −535440. −0.754398
\(220\) 28335.9 0.0394711
\(221\) 107256. 0.147721
\(222\) 11857.6 0.0161478
\(223\) 1.38761e6 1.86855 0.934276 0.356552i \(-0.116048\pi\)
0.934276 + 0.356552i \(0.116048\pi\)
\(224\) −214582. −0.285741
\(225\) −120773. −0.159043
\(226\) −1.06639e6 −1.38882
\(227\) −690397. −0.889271 −0.444636 0.895711i \(-0.646667\pi\)
−0.444636 + 0.895711i \(0.646667\pi\)
\(228\) −25264.5 −0.0321865
\(229\) −1.38257e6 −1.74221 −0.871104 0.491099i \(-0.836595\pi\)
−0.871104 + 0.491099i \(0.836595\pi\)
\(230\) 520614. 0.648927
\(231\) −463735. −0.571794
\(232\) −643403. −0.784807
\(233\) −71911.6 −0.0867780 −0.0433890 0.999058i \(-0.513815\pi\)
−0.0433890 + 0.999058i \(0.513815\pi\)
\(234\) 193760. 0.231326
\(235\) 169537. 0.200261
\(236\) 8987.36 0.0105039
\(237\) −717009. −0.829189
\(238\) 699427. 0.800387
\(239\) −825442. −0.934743 −0.467371 0.884061i \(-0.654799\pi\)
−0.467371 + 0.884061i \(0.654799\pi\)
\(240\) −196855. −0.220606
\(241\) −615086. −0.682171 −0.341086 0.940032i \(-0.610795\pi\)
−0.341086 + 0.940032i \(0.610795\pi\)
\(242\) 212390. 0.233128
\(243\) −925902. −1.00589
\(244\) −44082.7 −0.0474016
\(245\) −442365. −0.470832
\(246\) −567695. −0.598105
\(247\) 188992. 0.197106
\(248\) 496627. 0.512745
\(249\) 358942. 0.366881
\(250\) 92705.9 0.0938118
\(251\) 622589. 0.623759 0.311879 0.950122i \(-0.399041\pi\)
0.311879 + 0.950122i \(0.399041\pi\)
\(252\) 114950. 0.114027
\(253\) −1.24218e6 −1.22007
\(254\) 734174. 0.714028
\(255\) 111926. 0.107790
\(256\) 311779. 0.297335
\(257\) −1.04334e6 −0.985359 −0.492680 0.870211i \(-0.663983\pi\)
−0.492680 + 0.870211i \(0.663983\pi\)
\(258\) −216993. −0.202953
\(259\) −52622.9 −0.0487444
\(260\) −13530.9 −0.0124135
\(261\) 727666. 0.661197
\(262\) 256343. 0.230711
\(263\) −1.31940e6 −1.17621 −0.588106 0.808784i \(-0.700126\pi\)
−0.588106 + 0.808784i \(0.700126\pi\)
\(264\) 426570. 0.376687
\(265\) −191611. −0.167612
\(266\) 1.23243e6 1.06797
\(267\) 369922. 0.317564
\(268\) 216956. 0.184516
\(269\) 369633. 0.311452 0.155726 0.987800i \(-0.450228\pi\)
0.155726 + 0.987800i \(0.450228\pi\)
\(270\) 456461. 0.381061
\(271\) 749291. 0.619765 0.309883 0.950775i \(-0.399710\pi\)
0.309883 + 0.950775i \(0.399710\pi\)
\(272\) −708415. −0.580585
\(273\) 221442. 0.179826
\(274\) 1.11850e6 0.900037
\(275\) −221195. −0.176378
\(276\) −79294.5 −0.0626571
\(277\) 1.64757e6 1.29016 0.645081 0.764114i \(-0.276824\pi\)
0.645081 + 0.764114i \(0.276824\pi\)
\(278\) −2.04189e6 −1.58461
\(279\) −561668. −0.431986
\(280\) 793415. 0.604791
\(281\) 1.21917e6 0.921080 0.460540 0.887639i \(-0.347656\pi\)
0.460540 + 0.887639i \(0.347656\pi\)
\(282\) −283836. −0.212542
\(283\) −997517. −0.740379 −0.370190 0.928956i \(-0.620707\pi\)
−0.370190 + 0.928956i \(0.620707\pi\)
\(284\) −213033. −0.156729
\(285\) 197220. 0.143826
\(286\) 354870. 0.256540
\(287\) 2.51938e6 1.80546
\(288\) −223235. −0.158592
\(289\) −1.01707e6 −0.716321
\(290\) −558559. −0.390009
\(291\) 1.00564e6 0.696162
\(292\) 243085. 0.166840
\(293\) 1.80793e6 1.23031 0.615153 0.788408i \(-0.289094\pi\)
0.615153 + 0.788408i \(0.289094\pi\)
\(294\) 740597. 0.499705
\(295\) −70157.1 −0.0469372
\(296\) 48405.6 0.0321119
\(297\) −1.08911e6 −0.716442
\(298\) 1.05497e6 0.688176
\(299\) 593165. 0.383705
\(300\) −14120.0 −0.00905798
\(301\) 962995. 0.612644
\(302\) −3.29163e6 −2.07680
\(303\) −33520.2 −0.0209749
\(304\) −1.24827e6 −0.774683
\(305\) 344118. 0.211816
\(306\) 727634. 0.444232
\(307\) −24494.5 −0.0148328 −0.00741638 0.999972i \(-0.502361\pi\)
−0.00741638 + 0.999972i \(0.502361\pi\)
\(308\) 210531. 0.126456
\(309\) 418254. 0.249197
\(310\) 431139. 0.254808
\(311\) 1.48212e6 0.868924 0.434462 0.900690i \(-0.356939\pi\)
0.434462 + 0.900690i \(0.356939\pi\)
\(312\) −203695. −0.118466
\(313\) −348766. −0.201221 −0.100611 0.994926i \(-0.532080\pi\)
−0.100611 + 0.994926i \(0.532080\pi\)
\(314\) −1.51828e6 −0.869014
\(315\) −897325. −0.509534
\(316\) 325515. 0.183380
\(317\) −406486. −0.227194 −0.113597 0.993527i \(-0.536237\pi\)
−0.113597 + 0.993527i \(0.536237\pi\)
\(318\) 320790. 0.177891
\(319\) 1.33272e6 0.733265
\(320\) −721625. −0.393946
\(321\) −1.11406e6 −0.603459
\(322\) 3.86808e6 2.07901
\(323\) 709728. 0.378517
\(324\) 80858.9 0.0427923
\(325\) 105625. 0.0554700
\(326\) 1.55856e6 0.812231
\(327\) −415346. −0.214803
\(328\) −2.31747e6 −1.18941
\(329\) 1.25964e6 0.641587
\(330\) 370320. 0.187194
\(331\) 1.58614e6 0.795743 0.397871 0.917441i \(-0.369749\pi\)
0.397871 + 0.917441i \(0.369749\pi\)
\(332\) −162956. −0.0811381
\(333\) −54745.0 −0.0270542
\(334\) −1.70323e6 −0.835425
\(335\) −1.69360e6 −0.824517
\(336\) −1.46260e6 −0.706769
\(337\) 2.43587e6 1.16837 0.584185 0.811621i \(-0.301414\pi\)
0.584185 + 0.811621i \(0.301414\pi\)
\(338\) −169457. −0.0806806
\(339\) −1.26790e6 −0.599217
\(340\) −50813.2 −0.0238385
\(341\) −1.02869e6 −0.479071
\(342\) 1.28213e6 0.592745
\(343\) −164869. −0.0756664
\(344\) −885820. −0.403598
\(345\) 618988. 0.279985
\(346\) −4.26989e6 −1.91746
\(347\) −1.17786e6 −0.525132 −0.262566 0.964914i \(-0.584569\pi\)
−0.262566 + 0.964914i \(0.584569\pi\)
\(348\) 85073.9 0.0376572
\(349\) −338854. −0.148919 −0.0744594 0.997224i \(-0.523723\pi\)
−0.0744594 + 0.997224i \(0.523723\pi\)
\(350\) 688790. 0.300550
\(351\) 520071. 0.225318
\(352\) −408854. −0.175878
\(353\) 3.25607e6 1.39077 0.695387 0.718635i \(-0.255233\pi\)
0.695387 + 0.718635i \(0.255233\pi\)
\(354\) 117455. 0.0498156
\(355\) 1.66297e6 0.700349
\(356\) −167941. −0.0702314
\(357\) 831590. 0.345334
\(358\) −4.62652e6 −1.90786
\(359\) 2.81818e6 1.15407 0.577036 0.816719i \(-0.304209\pi\)
0.577036 + 0.816719i \(0.304209\pi\)
\(360\) 825412. 0.335672
\(361\) −1.22552e6 −0.494939
\(362\) −1.99393e6 −0.799723
\(363\) 252522. 0.100585
\(364\) −100533. −0.0397698
\(365\) −1.89757e6 −0.745530
\(366\) −576114. −0.224805
\(367\) 3.09661e6 1.20011 0.600056 0.799958i \(-0.295145\pi\)
0.600056 + 0.799958i \(0.295145\pi\)
\(368\) −3.91779e6 −1.50807
\(369\) 2.62098e6 1.00207
\(370\) 42022.5 0.0159580
\(371\) −1.42364e6 −0.536988
\(372\) −65666.5 −0.0246029
\(373\) −4.21455e6 −1.56848 −0.784240 0.620457i \(-0.786947\pi\)
−0.784240 + 0.620457i \(0.786947\pi\)
\(374\) 1.33266e6 0.492652
\(375\) 110223. 0.0404758
\(376\) −1.15869e6 −0.422666
\(377\) −636398. −0.230609
\(378\) 3.39143e6 1.22083
\(379\) −1.26649e6 −0.452903 −0.226452 0.974022i \(-0.572712\pi\)
−0.226452 + 0.974022i \(0.572712\pi\)
\(380\) −89535.8 −0.0318081
\(381\) 872903. 0.308073
\(382\) −2.42951e6 −0.851845
\(383\) 5.66939e6 1.97487 0.987436 0.158017i \(-0.0505100\pi\)
0.987436 + 0.158017i \(0.0505100\pi\)
\(384\) 1.46891e6 0.508354
\(385\) −1.64345e6 −0.565072
\(386\) −2.01470e6 −0.688242
\(387\) 1.00183e6 0.340030
\(388\) −456551. −0.153961
\(389\) −5.49114e6 −1.83988 −0.919938 0.392063i \(-0.871762\pi\)
−0.919938 + 0.392063i \(0.871762\pi\)
\(390\) −176835. −0.0588717
\(391\) 2.22753e6 0.736856
\(392\) 3.02330e6 0.993726
\(393\) 304781. 0.0995420
\(394\) 5.17058e6 1.67803
\(395\) −2.54103e6 −0.819441
\(396\) 219021. 0.0701856
\(397\) −1.53688e6 −0.489398 −0.244699 0.969599i \(-0.578689\pi\)
−0.244699 + 0.969599i \(0.578689\pi\)
\(398\) −1.60760e6 −0.508711
\(399\) 1.46531e6 0.460784
\(400\) −697641. −0.218013
\(401\) 30028.4 0.00932547 0.00466273 0.999989i \(-0.498516\pi\)
0.00466273 + 0.999989i \(0.498516\pi\)
\(402\) 2.83539e6 0.875080
\(403\) 491220. 0.150666
\(404\) 15217.8 0.00463873
\(405\) −631201. −0.191219
\(406\) −4.15001e6 −1.24949
\(407\) −100265. −0.0300030
\(408\) −764946. −0.227499
\(409\) −5.54413e6 −1.63880 −0.819398 0.573225i \(-0.805692\pi\)
−0.819398 + 0.573225i \(0.805692\pi\)
\(410\) −2.01188e6 −0.591074
\(411\) 1.32985e6 0.388328
\(412\) −189883. −0.0551116
\(413\) −521257. −0.150375
\(414\) 4.02407e6 1.15389
\(415\) 1.27207e6 0.362568
\(416\) 195236. 0.0553129
\(417\) −2.42773e6 −0.683691
\(418\) 2.34822e6 0.657353
\(419\) −1.29360e6 −0.359968 −0.179984 0.983670i \(-0.557605\pi\)
−0.179984 + 0.983670i \(0.557605\pi\)
\(420\) −104909. −0.0290196
\(421\) −3.68620e6 −1.01362 −0.506809 0.862058i \(-0.669175\pi\)
−0.506809 + 0.862058i \(0.669175\pi\)
\(422\) −1.07660e6 −0.294289
\(423\) 1.31044e6 0.356094
\(424\) 1.30955e6 0.353758
\(425\) 396658. 0.106523
\(426\) −2.78411e6 −0.743298
\(427\) 2.55674e6 0.678606
\(428\) 505774. 0.133459
\(429\) 421926. 0.110686
\(430\) −769010. −0.200568
\(431\) 1.22645e6 0.318021 0.159010 0.987277i \(-0.449170\pi\)
0.159010 + 0.987277i \(0.449170\pi\)
\(432\) −3.43501e6 −0.885562
\(433\) 1.02459e6 0.262621 0.131311 0.991341i \(-0.458081\pi\)
0.131311 + 0.991341i \(0.458081\pi\)
\(434\) 3.20329e6 0.816342
\(435\) −664104. −0.168272
\(436\) 188563. 0.0475051
\(437\) 3.92504e6 0.983198
\(438\) 3.17686e6 0.791249
\(439\) −5.04951e6 −1.25051 −0.625256 0.780420i \(-0.715005\pi\)
−0.625256 + 0.780420i \(0.715005\pi\)
\(440\) 1.51174e6 0.372259
\(441\) −3.41925e6 −0.837210
\(442\) −636370. −0.154937
\(443\) 6.30848e6 1.52727 0.763634 0.645649i \(-0.223413\pi\)
0.763634 + 0.645649i \(0.223413\pi\)
\(444\) −6400.43 −0.00154082
\(445\) 1.31098e6 0.313831
\(446\) −8.23293e6 −1.95983
\(447\) 1.25432e6 0.296919
\(448\) −5.36156e6 −1.26211
\(449\) 1.16391e6 0.272461 0.136231 0.990677i \(-0.456501\pi\)
0.136231 + 0.990677i \(0.456501\pi\)
\(450\) 716568. 0.166811
\(451\) 4.80032e6 1.11129
\(452\) 575612. 0.132521
\(453\) −3.91361e6 −0.896050
\(454\) 4.09625e6 0.932710
\(455\) 784777. 0.177712
\(456\) −1.34788e6 −0.303556
\(457\) 1.48156e6 0.331840 0.165920 0.986139i \(-0.446941\pi\)
0.165920 + 0.986139i \(0.446941\pi\)
\(458\) 8.20306e6 1.82731
\(459\) 1.95304e6 0.432693
\(460\) −281015. −0.0619205
\(461\) −5.65392e6 −1.23908 −0.619538 0.784967i \(-0.712680\pi\)
−0.619538 + 0.784967i \(0.712680\pi\)
\(462\) 2.75142e6 0.599724
\(463\) 2.09215e6 0.453566 0.226783 0.973945i \(-0.427179\pi\)
0.226783 + 0.973945i \(0.427179\pi\)
\(464\) 4.20334e6 0.906357
\(465\) 512606. 0.109939
\(466\) 426664. 0.0910168
\(467\) −7.48481e6 −1.58814 −0.794069 0.607827i \(-0.792041\pi\)
−0.794069 + 0.607827i \(0.792041\pi\)
\(468\) −104587. −0.0220731
\(469\) −1.25832e7 −2.64155
\(470\) −1.00590e6 −0.210043
\(471\) −1.80517e6 −0.374943
\(472\) 479482. 0.0990644
\(473\) 1.83485e6 0.377092
\(474\) 4.25414e6 0.869693
\(475\) 698934. 0.142135
\(476\) −377534. −0.0763728
\(477\) −1.48105e6 −0.298040
\(478\) 4.89750e6 0.980402
\(479\) 2.54779e6 0.507371 0.253685 0.967287i \(-0.418357\pi\)
0.253685 + 0.967287i \(0.418357\pi\)
\(480\) 203736. 0.0403612
\(481\) 47878.6 0.00943580
\(482\) 3.64941e6 0.715493
\(483\) 4.59899e6 0.897004
\(484\) −114643. −0.0222450
\(485\) 3.56393e6 0.687978
\(486\) 5.49354e6 1.05502
\(487\) 3.67779e6 0.702692 0.351346 0.936246i \(-0.385724\pi\)
0.351346 + 0.936246i \(0.385724\pi\)
\(488\) −2.35184e6 −0.447053
\(489\) 1.85306e6 0.350444
\(490\) 2.62463e6 0.493830
\(491\) −7.23294e6 −1.35398 −0.676988 0.735994i \(-0.736715\pi\)
−0.676988 + 0.735994i \(0.736715\pi\)
\(492\) 306428. 0.0570710
\(493\) −2.38989e6 −0.442854
\(494\) −1.12132e6 −0.206734
\(495\) −1.70972e6 −0.313627
\(496\) −3.24446e6 −0.592158
\(497\) 1.23556e7 2.24375
\(498\) −2.12966e6 −0.384802
\(499\) 875124. 0.157332 0.0786662 0.996901i \(-0.474934\pi\)
0.0786662 + 0.996901i \(0.474934\pi\)
\(500\) −50040.4 −0.00895149
\(501\) −2.02507e6 −0.360451
\(502\) −3.69393e6 −0.654228
\(503\) −2.95982e6 −0.521609 −0.260805 0.965392i \(-0.583988\pi\)
−0.260805 + 0.965392i \(0.583988\pi\)
\(504\) 6.13268e6 1.07541
\(505\) −118793. −0.0207283
\(506\) 7.37007e6 1.27966
\(507\) −201478. −0.0348103
\(508\) −396289. −0.0681323
\(509\) −1.12208e7 −1.91968 −0.959842 0.280540i \(-0.909487\pi\)
−0.959842 + 0.280540i \(0.909487\pi\)
\(510\) −664075. −0.113055
\(511\) −1.40986e7 −2.38850
\(512\) 4.81348e6 0.811493
\(513\) 3.44138e6 0.577350
\(514\) 6.19034e6 1.03349
\(515\) 1.48226e6 0.246268
\(516\) 117128. 0.0193658
\(517\) 2.40006e6 0.394907
\(518\) 312221. 0.0511255
\(519\) −5.07672e6 −0.827304
\(520\) −721884. −0.117074
\(521\) 8.92586e6 1.44064 0.720321 0.693641i \(-0.243995\pi\)
0.720321 + 0.693641i \(0.243995\pi\)
\(522\) −4.31737e6 −0.693495
\(523\) 6.44897e6 1.03095 0.515473 0.856906i \(-0.327616\pi\)
0.515473 + 0.856906i \(0.327616\pi\)
\(524\) −138368. −0.0220144
\(525\) 818943. 0.129675
\(526\) 7.82821e6 1.23367
\(527\) 1.84470e6 0.289334
\(528\) −2.78678e6 −0.435028
\(529\) 5.88270e6 0.913982
\(530\) 1.13686e6 0.175800
\(531\) −542278. −0.0834614
\(532\) −665237. −0.101905
\(533\) −2.29224e6 −0.349496
\(534\) −2.19481e6 −0.333077
\(535\) −3.94818e6 −0.596365
\(536\) 1.15748e7 1.74020
\(537\) −5.50075e6 −0.823163
\(538\) −2.19310e6 −0.326665
\(539\) −6.26234e6 −0.928463
\(540\) −246386. −0.0363607
\(541\) 6.01652e6 0.883796 0.441898 0.897065i \(-0.354305\pi\)
0.441898 + 0.897065i \(0.354305\pi\)
\(542\) −4.44567e6 −0.650039
\(543\) −2.37071e6 −0.345047
\(544\) 733177. 0.106221
\(545\) −1.47196e6 −0.212278
\(546\) −1.31386e6 −0.188611
\(547\) 928354. 0.132662 0.0663308 0.997798i \(-0.478871\pi\)
0.0663308 + 0.997798i \(0.478871\pi\)
\(548\) −603740. −0.0858813
\(549\) 2.65985e6 0.376640
\(550\) 1.31239e6 0.184993
\(551\) −4.21113e6 −0.590907
\(552\) −4.23042e6 −0.590929
\(553\) −1.88795e7 −2.62529
\(554\) −9.77532e6 −1.35318
\(555\) 49963.0 0.00688520
\(556\) 1.10216e6 0.151203
\(557\) 652347. 0.0890924 0.0445462 0.999007i \(-0.485816\pi\)
0.0445462 + 0.999007i \(0.485816\pi\)
\(558\) 3.33248e6 0.453087
\(559\) −876176. −0.118594
\(560\) −5.18337e6 −0.698460
\(561\) 1.58448e6 0.212558
\(562\) −7.23353e6 −0.966072
\(563\) −992674. −0.131988 −0.0659942 0.997820i \(-0.521022\pi\)
−0.0659942 + 0.997820i \(0.521022\pi\)
\(564\) 153208. 0.0202807
\(565\) −4.49334e6 −0.592173
\(566\) 5.91844e6 0.776545
\(567\) −4.68972e6 −0.612618
\(568\) −1.13654e7 −1.47814
\(569\) 8.79703e6 1.13908 0.569541 0.821963i \(-0.307121\pi\)
0.569541 + 0.821963i \(0.307121\pi\)
\(570\) −1.17014e6 −0.150852
\(571\) −6.18261e6 −0.793563 −0.396782 0.917913i \(-0.629873\pi\)
−0.396782 + 0.917913i \(0.629873\pi\)
\(572\) −191550. −0.0244790
\(573\) −2.88859e6 −0.367535
\(574\) −1.49479e7 −1.89366
\(575\) 2.19366e6 0.276693
\(576\) −5.57778e6 −0.700495
\(577\) 1.42671e7 1.78401 0.892003 0.452030i \(-0.149300\pi\)
0.892003 + 0.452030i \(0.149300\pi\)
\(578\) 6.03448e6 0.751312
\(579\) −2.39539e6 −0.296948
\(580\) 301497. 0.0372145
\(581\) 9.45125e6 1.16158
\(582\) −5.96665e6 −0.730168
\(583\) −2.71254e6 −0.330525
\(584\) 1.29687e7 1.57350
\(585\) 816426. 0.0986341
\(586\) −1.07268e7 −1.29040
\(587\) −7.84422e6 −0.939625 −0.469812 0.882766i \(-0.655678\pi\)
−0.469812 + 0.882766i \(0.655678\pi\)
\(588\) −399756. −0.0476817
\(589\) 3.25047e6 0.386062
\(590\) 416255. 0.0492299
\(591\) 6.14761e6 0.723998
\(592\) −316233. −0.0370854
\(593\) −1.85555e6 −0.216689 −0.108344 0.994113i \(-0.534555\pi\)
−0.108344 + 0.994113i \(0.534555\pi\)
\(594\) 6.46189e6 0.751438
\(595\) 2.94710e6 0.341274
\(596\) −569447. −0.0656656
\(597\) −1.91137e6 −0.219487
\(598\) −3.51935e6 −0.402448
\(599\) −1.54479e7 −1.75915 −0.879573 0.475764i \(-0.842172\pi\)
−0.879573 + 0.475764i \(0.842172\pi\)
\(600\) −753312. −0.0854273
\(601\) 431785. 0.0487619 0.0243810 0.999703i \(-0.492239\pi\)
0.0243810 + 0.999703i \(0.492239\pi\)
\(602\) −5.71362e6 −0.642570
\(603\) −1.30907e7 −1.46612
\(604\) 1.77674e6 0.198167
\(605\) 894924. 0.0994026
\(606\) 198881. 0.0219995
\(607\) 1.21071e7 1.33373 0.666863 0.745180i \(-0.267637\pi\)
0.666863 + 0.745180i \(0.267637\pi\)
\(608\) 1.29190e6 0.141733
\(609\) −4.93419e6 −0.539104
\(610\) −2.04171e6 −0.222162
\(611\) −1.14607e6 −0.124197
\(612\) −392759. −0.0423885
\(613\) 9.44151e6 1.01482 0.507411 0.861704i \(-0.330602\pi\)
0.507411 + 0.861704i \(0.330602\pi\)
\(614\) 145330. 0.0155573
\(615\) −2.39204e6 −0.255023
\(616\) 1.12320e7 1.19263
\(617\) −9.98389e6 −1.05581 −0.527906 0.849303i \(-0.677023\pi\)
−0.527906 + 0.849303i \(0.677023\pi\)
\(618\) −2.48157e6 −0.261370
\(619\) −6.44689e6 −0.676275 −0.338138 0.941097i \(-0.609797\pi\)
−0.338138 + 0.941097i \(0.609797\pi\)
\(620\) −232718. −0.0243137
\(621\) 1.08010e7 1.12392
\(622\) −8.79367e6 −0.911369
\(623\) 9.74037e6 1.00544
\(624\) 1.33074e6 0.136814
\(625\) 390625. 0.0400000
\(626\) 2.06929e6 0.211050
\(627\) 2.79194e6 0.283620
\(628\) 819528. 0.0829211
\(629\) 179800. 0.0181202
\(630\) 5.32399e6 0.534423
\(631\) 4.35897e6 0.435823 0.217912 0.975969i \(-0.430076\pi\)
0.217912 + 0.975969i \(0.430076\pi\)
\(632\) 1.73665e7 1.72949
\(633\) −1.28003e6 −0.126973
\(634\) 2.41176e6 0.238292
\(635\) 3.09351e6 0.304451
\(636\) −173155. −0.0169743
\(637\) 2.99039e6 0.291997
\(638\) −7.90725e6 −0.769084
\(639\) 1.28539e7 1.24533
\(640\) 5.20572e6 0.502378
\(641\) 1.63272e7 1.56952 0.784758 0.619803i \(-0.212787\pi\)
0.784758 + 0.619803i \(0.212787\pi\)
\(642\) 6.60994e6 0.632936
\(643\) 1.31929e7 1.25838 0.629192 0.777250i \(-0.283386\pi\)
0.629192 + 0.777250i \(0.283386\pi\)
\(644\) −2.08789e6 −0.198378
\(645\) −914321. −0.0865365
\(646\) −4.21094e6 −0.397007
\(647\) −9.42830e6 −0.885468 −0.442734 0.896653i \(-0.645991\pi\)
−0.442734 + 0.896653i \(0.645991\pi\)
\(648\) 4.31388e6 0.403581
\(649\) −993180. −0.0925584
\(650\) −626692. −0.0581796
\(651\) 3.80858e6 0.352217
\(652\) −841273. −0.0775029
\(653\) 1.60701e7 1.47481 0.737406 0.675450i \(-0.236050\pi\)
0.737406 + 0.675450i \(0.236050\pi\)
\(654\) 2.46432e6 0.225296
\(655\) 1.08012e6 0.0983718
\(656\) 1.51400e7 1.37362
\(657\) −1.46672e7 −1.32566
\(658\) −7.47365e6 −0.672927
\(659\) 6.63639e6 0.595276 0.297638 0.954679i \(-0.403801\pi\)
0.297638 + 0.954679i \(0.403801\pi\)
\(660\) −199890. −0.0178620
\(661\) 2.01198e7 1.79110 0.895552 0.444956i \(-0.146781\pi\)
0.895552 + 0.444956i \(0.146781\pi\)
\(662\) −9.41087e6 −0.834613
\(663\) −756618. −0.0668486
\(664\) −8.69382e6 −0.765227
\(665\) 5.19297e6 0.455367
\(666\) 324812. 0.0283757
\(667\) −1.32169e7 −1.15031
\(668\) 919363. 0.0797160
\(669\) −9.78861e6 −0.845582
\(670\) 1.00484e7 0.864792
\(671\) 4.87151e6 0.417693
\(672\) 1.51372e6 0.129307
\(673\) −9.52533e6 −0.810667 −0.405334 0.914169i \(-0.632845\pi\)
−0.405334 + 0.914169i \(0.632845\pi\)
\(674\) −1.44525e7 −1.22544
\(675\) 1.92334e6 0.162479
\(676\) 91469.0 0.00769852
\(677\) −3.37825e6 −0.283283 −0.141641 0.989918i \(-0.545238\pi\)
−0.141641 + 0.989918i \(0.545238\pi\)
\(678\) 7.52265e6 0.628487
\(679\) 2.64794e7 2.20412
\(680\) −2.71092e6 −0.224825
\(681\) 4.87027e6 0.402425
\(682\) 6.10341e6 0.502472
\(683\) −8.86253e6 −0.726953 −0.363476 0.931603i \(-0.618410\pi\)
−0.363476 + 0.931603i \(0.618410\pi\)
\(684\) −692064. −0.0565596
\(685\) 4.71291e6 0.383763
\(686\) 978195. 0.0793625
\(687\) 9.75310e6 0.788407
\(688\) 5.78704e6 0.466107
\(689\) 1.29529e6 0.103949
\(690\) −3.67257e6 −0.293661
\(691\) 25025.8 0.00199385 0.000996925 1.00000i \(-0.499683\pi\)
0.000996925 1.00000i \(0.499683\pi\)
\(692\) 2.30478e6 0.182964
\(693\) −1.27030e7 −1.00478
\(694\) 6.98842e6 0.550783
\(695\) −8.60371e6 −0.675653
\(696\) 4.53876e6 0.355152
\(697\) −8.60815e6 −0.671163
\(698\) 2.01048e6 0.156193
\(699\) 507286. 0.0392699
\(700\) −371792. −0.0286784
\(701\) −2.15506e7 −1.65640 −0.828198 0.560436i \(-0.810634\pi\)
−0.828198 + 0.560436i \(0.810634\pi\)
\(702\) −3.08568e6 −0.236324
\(703\) 316819. 0.0241781
\(704\) −1.02157e7 −0.776847
\(705\) −1.19597e6 −0.0906248
\(706\) −1.93188e7 −1.45871
\(707\) −882617. −0.0664085
\(708\) −63399.6 −0.00475339
\(709\) 2.07938e7 1.55352 0.776761 0.629796i \(-0.216861\pi\)
0.776761 + 0.629796i \(0.216861\pi\)
\(710\) −9.86672e6 −0.734560
\(711\) −1.96409e7 −1.45709
\(712\) −8.95977e6 −0.662364
\(713\) 1.02018e7 0.751544
\(714\) −4.93397e6 −0.362202
\(715\) 1.49528e6 0.109385
\(716\) 2.49728e6 0.182048
\(717\) 5.82292e6 0.423002
\(718\) −1.67208e7 −1.21045
\(719\) −3.65717e6 −0.263829 −0.131915 0.991261i \(-0.542113\pi\)
−0.131915 + 0.991261i \(0.542113\pi\)
\(720\) −5.39240e6 −0.387660
\(721\) 1.10130e7 0.788982
\(722\) 7.27121e6 0.519115
\(723\) 4.33900e6 0.308705
\(724\) 1.07628e6 0.0763093
\(725\) −2.35354e6 −0.166294
\(726\) −1.49826e6 −0.105498
\(727\) −8.36880e6 −0.587256 −0.293628 0.955920i \(-0.594863\pi\)
−0.293628 + 0.955920i \(0.594863\pi\)
\(728\) −5.36349e6 −0.375075
\(729\) 396319. 0.0276202
\(730\) 1.12586e7 0.781947
\(731\) −3.29034e6 −0.227744
\(732\) 310972. 0.0214508
\(733\) 1.81111e7 1.24504 0.622522 0.782602i \(-0.286108\pi\)
0.622522 + 0.782602i \(0.286108\pi\)
\(734\) −1.83727e7 −1.25873
\(735\) 3.12058e6 0.213067
\(736\) 4.05472e6 0.275910
\(737\) −2.39755e7 −1.62592
\(738\) −1.55507e7 −1.05102
\(739\) 7.31705e6 0.492861 0.246431 0.969160i \(-0.420742\pi\)
0.246431 + 0.969160i \(0.420742\pi\)
\(740\) −22682.7 −0.00152271
\(741\) −1.33320e6 −0.0891972
\(742\) 8.44670e6 0.563219
\(743\) 1.04179e7 0.692322 0.346161 0.938175i \(-0.387485\pi\)
0.346161 + 0.938175i \(0.387485\pi\)
\(744\) −3.50336e6 −0.232034
\(745\) 4.44522e6 0.293428
\(746\) 2.50057e7 1.64510
\(747\) 9.83240e6 0.644701
\(748\) −719336. −0.0470087
\(749\) −2.93343e7 −1.91061
\(750\) −653975. −0.0424530
\(751\) −1.16729e6 −0.0755229 −0.0377615 0.999287i \(-0.512023\pi\)
−0.0377615 + 0.999287i \(0.512023\pi\)
\(752\) 7.56969e6 0.488128
\(753\) −4.39193e6 −0.282272
\(754\) 3.77586e6 0.241873
\(755\) −1.38696e7 −0.885517
\(756\) −1.83061e6 −0.116491
\(757\) 4.75104e6 0.301334 0.150667 0.988585i \(-0.451858\pi\)
0.150667 + 0.988585i \(0.451858\pi\)
\(758\) 7.51433e6 0.475026
\(759\) 8.76271e6 0.552120
\(760\) −4.77680e6 −0.299987
\(761\) −5.92209e6 −0.370692 −0.185346 0.982673i \(-0.559341\pi\)
−0.185346 + 0.982673i \(0.559341\pi\)
\(762\) −5.17909e6 −0.323121
\(763\) −1.09364e7 −0.680087
\(764\) 1.31139e6 0.0812828
\(765\) 3.06595e6 0.189414
\(766\) −3.36375e7 −2.07134
\(767\) 474262. 0.0291092
\(768\) −2.19938e6 −0.134554
\(769\) −5.07027e6 −0.309183 −0.154591 0.987979i \(-0.549406\pi\)
−0.154591 + 0.987979i \(0.549406\pi\)
\(770\) 9.75086e6 0.592674
\(771\) 7.36006e6 0.445908
\(772\) 1.08748e6 0.0656719
\(773\) 2.31839e7 1.39552 0.697761 0.716330i \(-0.254180\pi\)
0.697761 + 0.716330i \(0.254180\pi\)
\(774\) −5.94404e6 −0.356639
\(775\) 1.81664e6 0.108646
\(776\) −2.43573e7 −1.45203
\(777\) 371217. 0.0220585
\(778\) 3.25799e7 1.92975
\(779\) −1.51681e7 −0.895543
\(780\) 95451.1 0.00561752
\(781\) 2.35419e7 1.38106
\(782\) −1.32163e7 −0.772849
\(783\) −1.15883e7 −0.675482
\(784\) −1.97512e7 −1.14763
\(785\) −6.39740e6 −0.370535
\(786\) −1.80832e6 −0.104404
\(787\) −6.07650e6 −0.349717 −0.174858 0.984594i \(-0.555947\pi\)
−0.174858 + 0.984594i \(0.555947\pi\)
\(788\) −2.79095e6 −0.160117
\(789\) 9.30742e6 0.532276
\(790\) 1.50764e7 0.859469
\(791\) −3.33848e7 −1.89718
\(792\) 1.16849e7 0.661932
\(793\) −2.32624e6 −0.131362
\(794\) 9.11855e6 0.513304
\(795\) 1.35168e6 0.0758501
\(796\) 867745. 0.0485411
\(797\) 2.78805e7 1.55473 0.777363 0.629052i \(-0.216557\pi\)
0.777363 + 0.629052i \(0.216557\pi\)
\(798\) −8.69394e6 −0.483292
\(799\) −4.30389e6 −0.238503
\(800\) 722026. 0.0398867
\(801\) 1.01332e7 0.558039
\(802\) −178164. −0.00978099
\(803\) −2.68629e7 −1.47016
\(804\) −1.53047e6 −0.0834999
\(805\) 1.62985e7 0.886459
\(806\) −2.91450e6 −0.158025
\(807\) −2.60750e6 −0.140942
\(808\) 811883. 0.0437487
\(809\) 6.10438e6 0.327922 0.163961 0.986467i \(-0.447573\pi\)
0.163961 + 0.986467i \(0.447573\pi\)
\(810\) 3.74503e6 0.200559
\(811\) −2.23956e7 −1.19567 −0.597835 0.801619i \(-0.703972\pi\)
−0.597835 + 0.801619i \(0.703972\pi\)
\(812\) 2.24007e6 0.119226
\(813\) −5.28572e6 −0.280465
\(814\) 594892. 0.0314686
\(815\) 6.56714e6 0.346324
\(816\) 4.99737e6 0.262734
\(817\) −5.79777e6 −0.303882
\(818\) 3.28943e7 1.71885
\(819\) 6.06591e6 0.316000
\(820\) 1.08596e6 0.0564001
\(821\) −2.42967e7 −1.25803 −0.629014 0.777394i \(-0.716541\pi\)
−0.629014 + 0.777394i \(0.716541\pi\)
\(822\) −7.89025e6 −0.407297
\(823\) 3.64578e7 1.87625 0.938127 0.346293i \(-0.112560\pi\)
0.938127 + 0.346293i \(0.112560\pi\)
\(824\) −1.01304e7 −0.519767
\(825\) 1.56038e6 0.0798169
\(826\) 3.09271e6 0.157721
\(827\) −2.81247e7 −1.42996 −0.714981 0.699143i \(-0.753565\pi\)
−0.714981 + 0.699143i \(0.753565\pi\)
\(828\) −2.17210e6 −0.110104
\(829\) 2.68734e7 1.35812 0.679058 0.734085i \(-0.262389\pi\)
0.679058 + 0.734085i \(0.262389\pi\)
\(830\) −7.54739e6 −0.380279
\(831\) −1.16224e7 −0.583841
\(832\) 4.87818e6 0.244315
\(833\) 1.12299e7 0.560743
\(834\) 1.44041e7 0.717087
\(835\) −7.17673e6 −0.356213
\(836\) −1.26751e6 −0.0627244
\(837\) 8.94470e6 0.441319
\(838\) 7.67514e6 0.377552
\(839\) 3.46774e7 1.70076 0.850378 0.526172i \(-0.176373\pi\)
0.850378 + 0.526172i \(0.176373\pi\)
\(840\) −5.59699e6 −0.273688
\(841\) −6.33089e6 −0.308656
\(842\) 2.18709e7 1.06313
\(843\) −8.60037e6 −0.416819
\(844\) 581123. 0.0280810
\(845\) −714025. −0.0344010
\(846\) −7.77505e6 −0.373488
\(847\) 6.64914e6 0.318462
\(848\) −8.55524e6 −0.408548
\(849\) 7.03678e6 0.335046
\(850\) −2.35344e6 −0.111726
\(851\) 994359. 0.0470673
\(852\) 1.50280e6 0.0709253
\(853\) 1.54571e6 0.0727368 0.0363684 0.999338i \(-0.488421\pi\)
0.0363684 + 0.999338i \(0.488421\pi\)
\(854\) −1.51696e7 −0.711754
\(855\) 5.40239e6 0.252738
\(856\) 2.69834e7 1.25867
\(857\) −1.27926e7 −0.594987 −0.297493 0.954724i \(-0.596151\pi\)
−0.297493 + 0.954724i \(0.596151\pi\)
\(858\) −2.50336e6 −0.116093
\(859\) 2.66940e6 0.123433 0.0617165 0.998094i \(-0.480343\pi\)
0.0617165 + 0.998094i \(0.480343\pi\)
\(860\) 415093. 0.0191381
\(861\) −1.77725e7 −0.817033
\(862\) −7.27673e6 −0.333555
\(863\) −3.37798e7 −1.54394 −0.771970 0.635659i \(-0.780728\pi\)
−0.771970 + 0.635659i \(0.780728\pi\)
\(864\) 3.55508e6 0.162019
\(865\) −1.79916e7 −0.817578
\(866\) −6.07906e6 −0.275449
\(867\) 7.17474e6 0.324159
\(868\) −1.72906e6 −0.0778952
\(869\) −3.59721e7 −1.61591
\(870\) 3.94025e6 0.176492
\(871\) 1.14488e7 0.511344
\(872\) 1.00600e7 0.448029
\(873\) 2.75473e7 1.22333
\(874\) −2.32880e7 −1.03122
\(875\) 2.90228e6 0.128150
\(876\) −1.71479e6 −0.0755007
\(877\) 3.97308e7 1.74433 0.872164 0.489214i \(-0.162716\pi\)
0.872164 + 0.489214i \(0.162716\pi\)
\(878\) 2.99596e7 1.31160
\(879\) −1.27537e7 −0.556755
\(880\) −9.87616e6 −0.429914
\(881\) −1.67058e7 −0.725149 −0.362574 0.931955i \(-0.618102\pi\)
−0.362574 + 0.931955i \(0.618102\pi\)
\(882\) 2.02870e7 0.878105
\(883\) −1.67930e7 −0.724816 −0.362408 0.932020i \(-0.618045\pi\)
−0.362408 + 0.932020i \(0.618045\pi\)
\(884\) 343497. 0.0147840
\(885\) 494910. 0.0212406
\(886\) −3.74293e7 −1.60187
\(887\) 8.61531e6 0.367673 0.183837 0.982957i \(-0.441148\pi\)
0.183837 + 0.982957i \(0.441148\pi\)
\(888\) −341468. −0.0145317
\(889\) 2.29843e7 0.975388
\(890\) −7.77828e6 −0.329161
\(891\) −8.93559e6 −0.377076
\(892\) 4.44393e6 0.187006
\(893\) −7.58371e6 −0.318239
\(894\) −7.44208e6 −0.311423
\(895\) −1.94943e7 −0.813486
\(896\) 3.86777e7 1.60950
\(897\) −4.18436e6 −0.173639
\(898\) −6.90571e6 −0.285770
\(899\) −1.09454e7 −0.451682
\(900\) −386786. −0.0159171
\(901\) 4.86425e6 0.199620
\(902\) −2.84811e7 −1.16558
\(903\) −6.79326e6 −0.277242
\(904\) 3.07093e7 1.24983
\(905\) −8.40163e6 −0.340990
\(906\) 2.32202e7 0.939820
\(907\) 7.34436e6 0.296439 0.148220 0.988954i \(-0.452646\pi\)
0.148220 + 0.988954i \(0.452646\pi\)
\(908\) −2.21105e6 −0.0889989
\(909\) −918211. −0.0368581
\(910\) −4.65622e6 −0.186393
\(911\) 3.63225e7 1.45004 0.725019 0.688729i \(-0.241831\pi\)
0.725019 + 0.688729i \(0.241831\pi\)
\(912\) 8.80567e6 0.350570
\(913\) 1.80080e7 0.714971
\(914\) −8.79036e6 −0.348049
\(915\) −2.42751e6 −0.0958537
\(916\) −4.42781e6 −0.174361
\(917\) 8.02515e6 0.315159
\(918\) −1.15878e7 −0.453829
\(919\) 2.25278e7 0.879892 0.439946 0.898024i \(-0.354998\pi\)
0.439946 + 0.898024i \(0.354998\pi\)
\(920\) −1.49923e7 −0.583982
\(921\) 172791. 0.00671232
\(922\) 3.35457e7 1.29960
\(923\) −1.12417e7 −0.434338
\(924\) −1.48515e6 −0.0572255
\(925\) 177066. 0.00680425
\(926\) −1.24131e7 −0.475721
\(927\) 1.14571e7 0.437901
\(928\) −4.35026e6 −0.165823
\(929\) 3.93312e7 1.49520 0.747598 0.664152i \(-0.231207\pi\)
0.747598 + 0.664152i \(0.231207\pi\)
\(930\) −3.04138e6 −0.115309
\(931\) 1.97878e7 0.748209
\(932\) −230303. −0.00868480
\(933\) −1.04553e7 −0.393217
\(934\) 4.44087e7 1.66571
\(935\) 5.61528e6 0.210060
\(936\) −5.57978e6 −0.208175
\(937\) −1.36354e7 −0.507362 −0.253681 0.967288i \(-0.581641\pi\)
−0.253681 + 0.967288i \(0.581641\pi\)
\(938\) 7.46584e7 2.77058
\(939\) 2.46030e6 0.0910593
\(940\) 542958. 0.0200423
\(941\) 2.28438e7 0.840995 0.420498 0.907294i \(-0.361856\pi\)
0.420498 + 0.907294i \(0.361856\pi\)
\(942\) 1.07104e7 0.393258
\(943\) −4.76061e7 −1.74334
\(944\) −3.13245e6 −0.114407
\(945\) 1.42901e7 0.520543
\(946\) −1.08865e7 −0.395512
\(947\) −6.46944e6 −0.234418 −0.117209 0.993107i \(-0.537395\pi\)
−0.117209 + 0.993107i \(0.537395\pi\)
\(948\) −2.29628e6 −0.0829858
\(949\) 1.28276e7 0.462358
\(950\) −4.14690e6 −0.149078
\(951\) 2.86748e6 0.102813
\(952\) −2.01417e7 −0.720284
\(953\) 2.58068e6 0.0920452 0.0460226 0.998940i \(-0.485345\pi\)
0.0460226 + 0.998940i \(0.485345\pi\)
\(954\) 8.78734e6 0.312598
\(955\) −1.02370e7 −0.363215
\(956\) −2.64355e6 −0.0935497
\(957\) −9.40139e6 −0.331827
\(958\) −1.51165e7 −0.532154
\(959\) 3.50162e7 1.22948
\(960\) 5.09056e6 0.178274
\(961\) −2.01807e7 −0.704899
\(962\) −284072. −0.00989672
\(963\) −3.05173e7 −1.06043
\(964\) −1.96986e6 −0.0682722
\(965\) −8.48912e6 −0.293457
\(966\) −2.72866e7 −0.940820
\(967\) −1.88591e6 −0.0648568 −0.0324284 0.999474i \(-0.510324\pi\)
−0.0324284 + 0.999474i \(0.510324\pi\)
\(968\) −6.11627e6 −0.209797
\(969\) −5.00663e6 −0.171292
\(970\) −2.11454e7 −0.721584
\(971\) −2.49003e7 −0.847534 −0.423767 0.905771i \(-0.639292\pi\)
−0.423767 + 0.905771i \(0.639292\pi\)
\(972\) −2.96528e6 −0.100670
\(973\) −6.39242e7 −2.16463
\(974\) −2.18210e7 −0.737016
\(975\) −745110. −0.0251020
\(976\) 1.53645e7 0.516292
\(977\) 1.01689e7 0.340829 0.170415 0.985372i \(-0.445489\pi\)
0.170415 + 0.985372i \(0.445489\pi\)
\(978\) −1.09946e7 −0.367562
\(979\) 1.85589e7 0.618864
\(980\) −1.41671e6 −0.0471212
\(981\) −1.13775e7 −0.377462
\(982\) 4.29143e7 1.42011
\(983\) 4.29289e6 0.141699 0.0708494 0.997487i \(-0.477429\pi\)
0.0708494 + 0.997487i \(0.477429\pi\)
\(984\) 1.63482e7 0.538246
\(985\) 2.17867e7 0.715487
\(986\) 1.41796e7 0.464486
\(987\) −8.88586e6 −0.290340
\(988\) 605262. 0.0197265
\(989\) −1.81967e7 −0.591565
\(990\) 1.01441e7 0.328946
\(991\) −2.64765e7 −0.856398 −0.428199 0.903684i \(-0.640852\pi\)
−0.428199 + 0.903684i \(0.640852\pi\)
\(992\) 3.35786e6 0.108339
\(993\) −1.11891e7 −0.360100
\(994\) −7.33082e7 −2.35335
\(995\) −6.77379e6 −0.216907
\(996\) 1.14954e6 0.0367177
\(997\) 4.21089e6 0.134164 0.0670820 0.997747i \(-0.478631\pi\)
0.0670820 + 0.997747i \(0.478631\pi\)
\(998\) −5.19227e6 −0.165018
\(999\) 871829. 0.0276387
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.a.d.1.2 6
3.2 odd 2 585.6.a.m.1.5 6
4.3 odd 2 1040.6.a.q.1.5 6
5.2 odd 4 325.6.b.g.274.4 12
5.3 odd 4 325.6.b.g.274.9 12
5.4 even 2 325.6.a.g.1.5 6
13.12 even 2 845.6.a.h.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.2 6 1.1 even 1 trivial
325.6.a.g.1.5 6 5.4 even 2
325.6.b.g.274.4 12 5.2 odd 4
325.6.b.g.274.9 12 5.3 odd 4
585.6.a.m.1.5 6 3.2 odd 2
845.6.a.h.1.5 6 13.12 even 2
1040.6.a.q.1.5 6 4.3 odd 2