Properties

Label 650.2.c.c
Level 650650
Weight 22
Character orbit 650.c
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(649,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q2+βq3+q4+βq6+q8q9+βq12+(β+3)q13+q16+3βq17q18+βq24+(β+3)q26+2βq276q29+7q98+O(q100) q + q^{2} + \beta q^{3} + q^{4} + \beta q^{6} + q^{8} - q^{9} + \beta q^{12} + (\beta + 3) q^{13} + q^{16} + 3 \beta q^{17} - q^{18} + \beta q^{24} + (\beta + 3) q^{26} + 2 \beta q^{27} - 6 q^{29}+ \cdots - 7 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+2q4+2q82q9+6q13+2q162q18+6q2612q29+2q322q3612q378q39+24q4714q4924q51+6q5212q58+14q98+O(q100) 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 2 q^{9} + 6 q^{13} + 2 q^{16} - 2 q^{18} + 6 q^{26} - 12 q^{29} + 2 q^{32} - 2 q^{36} - 12 q^{37} - 8 q^{39} + 24 q^{47} - 14 q^{49} - 24 q^{51} + 6 q^{52} - 12 q^{58}+ \cdots - 14 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
649.1
1.00000i
1.00000i
1.00000 2.00000i 1.00000 0 2.00000i 0 1.00000 −1.00000 0
649.2 1.00000 2.00000i 1.00000 0 2.00000i 0 1.00000 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.c.c 2
5.b even 2 1 650.2.c.b 2
5.c odd 4 1 130.2.d.a 2
5.c odd 4 1 650.2.d.a 2
13.b even 2 1 650.2.c.b 2
15.e even 4 1 1170.2.b.a 2
20.e even 4 1 1040.2.k.a 2
65.d even 2 1 inner 650.2.c.c 2
65.f even 4 1 1690.2.a.d 1
65.f even 4 1 8450.2.a.b 1
65.h odd 4 1 130.2.d.a 2
65.h odd 4 1 650.2.d.a 2
65.k even 4 1 1690.2.a.i 1
65.k even 4 1 8450.2.a.o 1
65.o even 12 2 1690.2.e.b 2
65.q odd 12 2 1690.2.l.b 4
65.r odd 12 2 1690.2.l.b 4
65.t even 12 2 1690.2.e.f 2
195.s even 4 1 1170.2.b.a 2
260.p even 4 1 1040.2.k.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.d.a 2 5.c odd 4 1
130.2.d.a 2 65.h odd 4 1
650.2.c.b 2 5.b even 2 1
650.2.c.b 2 13.b even 2 1
650.2.c.c 2 1.a even 1 1 trivial
650.2.c.c 2 65.d even 2 1 inner
650.2.d.a 2 5.c odd 4 1
650.2.d.a 2 65.h odd 4 1
1040.2.k.a 2 20.e even 4 1
1040.2.k.a 2 260.p even 4 1
1170.2.b.a 2 15.e even 4 1
1170.2.b.a 2 195.s even 4 1
1690.2.a.d 1 65.f even 4 1
1690.2.a.i 1 65.k even 4 1
1690.2.e.b 2 65.o even 12 2
1690.2.e.f 2 65.t even 12 2
1690.2.l.b 4 65.q odd 12 2
1690.2.l.b 4 65.r odd 12 2
8450.2.a.b 1 65.f even 4 1
8450.2.a.o 1 65.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]):

T32+4 T_{3}^{2} + 4 Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display
T37+6 T_{37} + 6 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)2 (T - 1)^{2} Copy content Toggle raw display
33 T2+4 T^{2} + 4 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T26T+13 T^{2} - 6T + 13 Copy content Toggle raw display
1717 T2+36 T^{2} + 36 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3131 T2+36 T^{2} + 36 Copy content Toggle raw display
3737 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+100 T^{2} + 100 Copy content Toggle raw display
4747 (T12)2 (T - 12)^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+144 T^{2} + 144 Copy content Toggle raw display
6161 (T10)2 (T - 10)^{2} Copy content Toggle raw display
6767 (T12)2 (T - 12)^{2} Copy content Toggle raw display
7171 T2+36 T^{2} + 36 Copy content Toggle raw display
7373 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7979 (T8)2 (T - 8)^{2} Copy content Toggle raw display
8383 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8989 T2+144 T^{2} + 144 Copy content Toggle raw display
9797 (T+18)2 (T + 18)^{2} Copy content Toggle raw display
show more
show less