Properties

Label 650.2.d.d.51.1
Level $650$
Weight $2$
Character 650.51
Analytic conductor $5.190$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(51,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.51");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.126157824.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.1
Root \(-2.88202i\) of defining polynomial
Character \(\chi\) \(=\) 650.51
Dual form 650.2.d.d.51.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -2.88202 q^{3} -1.00000 q^{4} +2.88202i q^{6} -1.88202i q^{7} +1.00000i q^{8} +5.30604 q^{9} +6.18806i q^{11} +2.88202 q^{12} +(3.59403 + 0.287989i) q^{13} -1.88202 q^{14} +1.00000 q^{16} -3.00000 q^{17} -5.30604i q^{18} -4.88202i q^{19} +5.42402i q^{21} +6.18806 q^{22} -0.575978 q^{23} -2.88202i q^{24} +(0.287989 - 3.59403i) q^{26} -6.64606 q^{27} +1.88202i q^{28} +5.07008 q^{29} -7.30604i q^{31} -1.00000i q^{32} -17.8341i q^{33} +3.00000i q^{34} -5.30604 q^{36} -9.18806i q^{37} -4.88202 q^{38} +(-10.3581 - 0.829990i) q^{39} -5.45800i q^{41} +5.42402 q^{42} -4.00000 q^{43} -6.18806i q^{44} +0.575978i q^{46} +2.45800i q^{47} -2.88202 q^{48} +3.45800 q^{49} +8.64606 q^{51} +(-3.59403 - 0.287989i) q^{52} +11.0701 q^{53} +6.64606i q^{54} +1.88202 q^{56} +14.0701i q^{57} -5.07008i q^{58} -8.83412i q^{59} +3.64606 q^{61} -7.30604 q^{62} -9.98608i q^{63} -1.00000 q^{64} -17.8341 q^{66} +3.57598i q^{67} +3.00000 q^{68} +1.65998 q^{69} +5.30604i q^{72} +11.8341i q^{73} -9.18806 q^{74} +4.88202i q^{76} +11.6461 q^{77} +(-0.829990 + 10.3581i) q^{78} -11.1881 q^{79} +3.23596 q^{81} -5.45800 q^{82} +0.188063i q^{83} -5.42402i q^{84} +4.00000i q^{86} -14.6121 q^{87} -6.18806 q^{88} -11.4580i q^{89} +(0.542001 - 6.76404i) q^{91} +0.575978 q^{92} +21.0562i q^{93} +2.45800 q^{94} +2.88202i q^{96} -15.7640i q^{97} -3.45800i q^{98} +32.8341i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 18 q^{9} + 6 q^{13} + 6 q^{14} + 6 q^{16} - 18 q^{17} + 6 q^{22} + 12 q^{27} - 18 q^{29} - 18 q^{36} - 12 q^{38} - 12 q^{39} + 36 q^{42} - 24 q^{43} - 6 q^{52} + 18 q^{53} - 6 q^{56} - 30 q^{61}+ \cdots - 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −2.88202 −1.66394 −0.831968 0.554824i \(-0.812786\pi\)
−0.831968 + 0.554824i \(0.812786\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.88202i 1.17658i
\(7\) 1.88202i 0.711337i −0.934612 0.355668i \(-0.884253\pi\)
0.934612 0.355668i \(-0.115747\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 5.30604 1.76868
\(10\) 0 0
\(11\) 6.18806i 1.86577i 0.360173 + 0.932886i \(0.382718\pi\)
−0.360173 + 0.932886i \(0.617282\pi\)
\(12\) 2.88202 0.831968
\(13\) 3.59403 + 0.287989i 0.996805 + 0.0798738i
\(14\) −1.88202 −0.502991
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 5.30604i 1.25065i
\(19\) 4.88202i 1.12001i −0.828488 0.560006i \(-0.810799\pi\)
0.828488 0.560006i \(-0.189201\pi\)
\(20\) 0 0
\(21\) 5.42402i 1.18362i
\(22\) 6.18806 1.31930
\(23\) −0.575978 −0.120100 −0.0600499 0.998195i \(-0.519126\pi\)
−0.0600499 + 0.998195i \(0.519126\pi\)
\(24\) 2.88202i 0.588290i
\(25\) 0 0
\(26\) 0.287989 3.59403i 0.0564793 0.704848i
\(27\) −6.64606 −1.27904
\(28\) 1.88202i 0.355668i
\(29\) 5.07008 0.941491 0.470745 0.882269i \(-0.343985\pi\)
0.470745 + 0.882269i \(0.343985\pi\)
\(30\) 0 0
\(31\) 7.30604i 1.31220i −0.754672 0.656102i \(-0.772204\pi\)
0.754672 0.656102i \(-0.227796\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 17.8341i 3.10452i
\(34\) 3.00000i 0.514496i
\(35\) 0 0
\(36\) −5.30604 −0.884340
\(37\) 9.18806i 1.51051i −0.655432 0.755254i \(-0.727513\pi\)
0.655432 0.755254i \(-0.272487\pi\)
\(38\) −4.88202 −0.791968
\(39\) −10.3581 0.829990i −1.65862 0.132905i
\(40\) 0 0
\(41\) 5.45800i 0.852396i −0.904630 0.426198i \(-0.859853\pi\)
0.904630 0.426198i \(-0.140147\pi\)
\(42\) 5.42402 0.836945
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 6.18806i 0.932886i
\(45\) 0 0
\(46\) 0.575978i 0.0849233i
\(47\) 2.45800i 0.358536i 0.983800 + 0.179268i \(0.0573729\pi\)
−0.983800 + 0.179268i \(0.942627\pi\)
\(48\) −2.88202 −0.415984
\(49\) 3.45800 0.494000
\(50\) 0 0
\(51\) 8.64606 1.21069
\(52\) −3.59403 0.287989i −0.498402 0.0399369i
\(53\) 11.0701 1.52059 0.760296 0.649576i \(-0.225054\pi\)
0.760296 + 0.649576i \(0.225054\pi\)
\(54\) 6.64606i 0.904414i
\(55\) 0 0
\(56\) 1.88202 0.251496
\(57\) 14.0701i 1.86363i
\(58\) 5.07008i 0.665735i
\(59\) 8.83412i 1.15011i −0.818116 0.575053i \(-0.804982\pi\)
0.818116 0.575053i \(-0.195018\pi\)
\(60\) 0 0
\(61\) 3.64606 0.466830 0.233415 0.972377i \(-0.425010\pi\)
0.233415 + 0.972377i \(0.425010\pi\)
\(62\) −7.30604 −0.927868
\(63\) 9.98608i 1.25813i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −17.8341 −2.19523
\(67\) 3.57598i 0.436875i 0.975851 + 0.218438i \(0.0700960\pi\)
−0.975851 + 0.218438i \(0.929904\pi\)
\(68\) 3.00000 0.363803
\(69\) 1.65998 0.199838
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 5.30604i 0.625323i
\(73\) 11.8341i 1.38508i 0.721380 + 0.692540i \(0.243508\pi\)
−0.721380 + 0.692540i \(0.756492\pi\)
\(74\) −9.18806 −1.06809
\(75\) 0 0
\(76\) 4.88202i 0.560006i
\(77\) 11.6461 1.32719
\(78\) −0.829990 + 10.3581i −0.0939779 + 1.17282i
\(79\) −11.1881 −1.25876 −0.629378 0.777100i \(-0.716690\pi\)
−0.629378 + 0.777100i \(0.716690\pi\)
\(80\) 0 0
\(81\) 3.23596 0.359551
\(82\) −5.45800 −0.602735
\(83\) 0.188063i 0.0206426i 0.999947 + 0.0103213i \(0.00328543\pi\)
−0.999947 + 0.0103213i \(0.996715\pi\)
\(84\) 5.42402i 0.591809i
\(85\) 0 0
\(86\) 4.00000i 0.431331i
\(87\) −14.6121 −1.56658
\(88\) −6.18806 −0.659650
\(89\) 11.4580i 1.21455i −0.794493 0.607273i \(-0.792264\pi\)
0.794493 0.607273i \(-0.207736\pi\)
\(90\) 0 0
\(91\) 0.542001 6.76404i 0.0568172 0.709064i
\(92\) 0.575978 0.0600499
\(93\) 21.0562i 2.18342i
\(94\) 2.45800 0.253523
\(95\) 0 0
\(96\) 2.88202i 0.294145i
\(97\) 15.7640i 1.60060i −0.599603 0.800298i \(-0.704675\pi\)
0.599603 0.800298i \(-0.295325\pi\)
\(98\) 3.45800i 0.349311i
\(99\) 32.8341i 3.29995i
\(100\) 0 0
\(101\) 10.4941 1.04420 0.522101 0.852884i \(-0.325148\pi\)
0.522101 + 0.852884i \(0.325148\pi\)
\(102\) 8.64606i 0.856088i
\(103\) 17.1881 1.69359 0.846795 0.531919i \(-0.178529\pi\)
0.846795 + 0.531919i \(0.178529\pi\)
\(104\) −0.287989 + 3.59403i −0.0282397 + 0.352424i
\(105\) 0 0
\(106\) 11.0701i 1.07522i
\(107\) −1.49411 −0.144441 −0.0722203 0.997389i \(-0.523008\pi\)
−0.0722203 + 0.997389i \(0.523008\pi\)
\(108\) 6.64606 0.639518
\(109\) 12.9521i 1.24059i 0.784370 + 0.620293i \(0.212986\pi\)
−0.784370 + 0.620293i \(0.787014\pi\)
\(110\) 0 0
\(111\) 26.4802i 2.51339i
\(112\) 1.88202i 0.177834i
\(113\) 9.22204 0.867537 0.433768 0.901024i \(-0.357184\pi\)
0.433768 + 0.901024i \(0.357184\pi\)
\(114\) 14.0701 1.31778
\(115\) 0 0
\(116\) −5.07008 −0.470745
\(117\) 19.0701 + 1.52808i 1.76303 + 0.141271i
\(118\) −8.83412 −0.813247
\(119\) 5.64606i 0.517574i
\(120\) 0 0
\(121\) −27.2921 −2.48110
\(122\) 3.64606i 0.330099i
\(123\) 15.7301i 1.41833i
\(124\) 7.30604i 0.656102i
\(125\) 0 0
\(126\) −9.98608 −0.889631
\(127\) 4.37613 0.388318 0.194159 0.980970i \(-0.437802\pi\)
0.194159 + 0.980970i \(0.437802\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 11.5281 1.01499
\(130\) 0 0
\(131\) 22.1402 1.93440 0.967198 0.254025i \(-0.0817545\pi\)
0.967198 + 0.254025i \(0.0817545\pi\)
\(132\) 17.8341i 1.55226i
\(133\) −9.18806 −0.796706
\(134\) 3.57598 0.308917
\(135\) 0 0
\(136\) 3.00000i 0.257248i
\(137\) 5.83412i 0.498443i −0.968447 0.249221i \(-0.919825\pi\)
0.968447 0.249221i \(-0.0801747\pi\)
\(138\) 1.65998i 0.141307i
\(139\) 4.26994 0.362171 0.181086 0.983467i \(-0.442039\pi\)
0.181086 + 0.983467i \(0.442039\pi\)
\(140\) 0 0
\(141\) 7.08400i 0.596581i
\(142\) 0 0
\(143\) −1.78209 + 22.2401i −0.149026 + 1.85981i
\(144\) 5.30604 0.442170
\(145\) 0 0
\(146\) 11.8341 0.979399
\(147\) −9.96602 −0.821984
\(148\) 9.18806i 0.755254i
\(149\) 16.9160i 1.38581i −0.721028 0.692906i \(-0.756330\pi\)
0.721028 0.692906i \(-0.243670\pi\)
\(150\) 0 0
\(151\) 17.4462i 1.41975i −0.704326 0.709876i \(-0.748751\pi\)
0.704326 0.709876i \(-0.251249\pi\)
\(152\) 4.88202 0.395984
\(153\) −15.9181 −1.28690
\(154\) 11.6461i 0.938466i
\(155\) 0 0
\(156\) 10.3581 + 0.829990i 0.829310 + 0.0664524i
\(157\) 2.73006 0.217883 0.108941 0.994048i \(-0.465254\pi\)
0.108941 + 0.994048i \(0.465254\pi\)
\(158\) 11.1881i 0.890074i
\(159\) −31.9042 −2.53017
\(160\) 0 0
\(161\) 1.08400i 0.0854314i
\(162\) 3.23596i 0.254241i
\(163\) 15.7980i 1.23740i −0.785629 0.618698i \(-0.787660\pi\)
0.785629 0.618698i \(-0.212340\pi\)
\(164\) 5.45800i 0.426198i
\(165\) 0 0
\(166\) 0.188063 0.0145965
\(167\) 15.5642i 1.20439i 0.798348 + 0.602197i \(0.205708\pi\)
−0.798348 + 0.602197i \(0.794292\pi\)
\(168\) −5.42402 −0.418472
\(169\) 12.8341 + 2.07008i 0.987240 + 0.159237i
\(170\) 0 0
\(171\) 25.9042i 1.98094i
\(172\) 4.00000 0.304997
\(173\) −5.64606 −0.429262 −0.214631 0.976695i \(-0.568855\pi\)
−0.214631 + 0.976695i \(0.568855\pi\)
\(174\) 14.6121i 1.10774i
\(175\) 0 0
\(176\) 6.18806i 0.466443i
\(177\) 25.4601i 1.91370i
\(178\) −11.4580 −0.858813
\(179\) 13.4941 1.00860 0.504298 0.863529i \(-0.331751\pi\)
0.504298 + 0.863529i \(0.331751\pi\)
\(180\) 0 0
\(181\) 2.73006 0.202924 0.101462 0.994839i \(-0.467648\pi\)
0.101462 + 0.994839i \(0.467648\pi\)
\(182\) −6.76404 0.542001i −0.501384 0.0401758i
\(183\) −10.5080 −0.776776
\(184\) 0.575978i 0.0424617i
\(185\) 0 0
\(186\) 21.0562 1.54391
\(187\) 18.5642i 1.35755i
\(188\) 2.45800i 0.179268i
\(189\) 12.5080i 0.909825i
\(190\) 0 0
\(191\) −4.84804 −0.350792 −0.175396 0.984498i \(-0.556121\pi\)
−0.175396 + 0.984498i \(0.556121\pi\)
\(192\) 2.88202 0.207992
\(193\) 10.6822i 0.768919i −0.923142 0.384460i \(-0.874388\pi\)
0.923142 0.384460i \(-0.125612\pi\)
\(194\) −15.7640 −1.13179
\(195\) 0 0
\(196\) −3.45800 −0.247000
\(197\) 15.5642i 1.10890i 0.832216 + 0.554451i \(0.187072\pi\)
−0.832216 + 0.554451i \(0.812928\pi\)
\(198\) 32.8341 2.33342
\(199\) −0.272066 −0.0192862 −0.00964311 0.999954i \(-0.503070\pi\)
−0.00964311 + 0.999954i \(0.503070\pi\)
\(200\) 0 0
\(201\) 10.3060i 0.726932i
\(202\) 10.4941i 0.738363i
\(203\) 9.54200i 0.669717i
\(204\) −8.64606 −0.605345
\(205\) 0 0
\(206\) 17.1881i 1.19755i
\(207\) −3.05616 −0.212418
\(208\) 3.59403 + 0.287989i 0.249201 + 0.0199684i
\(209\) 30.2103 2.08969
\(210\) 0 0
\(211\) −17.0222 −1.17186 −0.585928 0.810363i \(-0.699270\pi\)
−0.585928 + 0.810363i \(0.699270\pi\)
\(212\) −11.0701 −0.760296
\(213\) 0 0
\(214\) 1.49411i 0.102135i
\(215\) 0 0
\(216\) 6.64606i 0.452207i
\(217\) −13.7501 −0.933419
\(218\) 12.9521 0.877227
\(219\) 34.1062i 2.30468i
\(220\) 0 0
\(221\) −10.7821 0.863967i −0.725282 0.0581167i
\(222\) 26.4802 1.77723
\(223\) 1.65998i 0.111161i −0.998454 0.0555803i \(-0.982299\pi\)
0.998454 0.0555803i \(-0.0177009\pi\)
\(224\) −1.88202 −0.125748
\(225\) 0 0
\(226\) 9.22204i 0.613441i
\(227\) 8.45800i 0.561377i −0.959799 0.280689i \(-0.909437\pi\)
0.959799 0.280689i \(-0.0905628\pi\)
\(228\) 14.0701i 0.931814i
\(229\) 9.38792i 0.620371i 0.950676 + 0.310185i \(0.100391\pi\)
−0.950676 + 0.310185i \(0.899609\pi\)
\(230\) 0 0
\(231\) −33.5642 −2.20836
\(232\) 5.07008i 0.332867i
\(233\) −20.9882 −1.37498 −0.687492 0.726192i \(-0.741288\pi\)
−0.687492 + 0.726192i \(0.741288\pi\)
\(234\) 1.52808 19.0701i 0.0998939 1.24665i
\(235\) 0 0
\(236\) 8.83412i 0.575053i
\(237\) 32.2442 2.09449
\(238\) 5.64606 0.365980
\(239\) 14.4580i 0.935210i 0.883937 + 0.467605i \(0.154883\pi\)
−0.883937 + 0.467605i \(0.845117\pi\)
\(240\) 0 0
\(241\) 9.92992i 0.639642i 0.947478 + 0.319821i \(0.103623\pi\)
−0.947478 + 0.319821i \(0.896377\pi\)
\(242\) 27.2921i 1.75440i
\(243\) 10.6121 0.680766
\(244\) −3.64606 −0.233415
\(245\) 0 0
\(246\) 15.7301 1.00291
\(247\) 1.40597 17.5461i 0.0894596 1.11643i
\(248\) 7.30604 0.463934
\(249\) 0.542001i 0.0343479i
\(250\) 0 0
\(251\) −14.6461 −0.924451 −0.462226 0.886762i \(-0.652949\pi\)
−0.462226 + 0.886762i \(0.652949\pi\)
\(252\) 9.98608i 0.629064i
\(253\) 3.56419i 0.224079i
\(254\) 4.37613i 0.274583i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −23.0701 −1.43907 −0.719536 0.694455i \(-0.755646\pi\)
−0.719536 + 0.694455i \(0.755646\pi\)
\(258\) 11.5281i 0.717707i
\(259\) −17.2921 −1.07448
\(260\) 0 0
\(261\) 26.9021 1.66520
\(262\) 22.1402i 1.36782i
\(263\) 9.56419 0.589753 0.294877 0.955535i \(-0.404721\pi\)
0.294877 + 0.955535i \(0.404721\pi\)
\(264\) 17.8341 1.09761
\(265\) 0 0
\(266\) 9.18806i 0.563356i
\(267\) 33.0222i 2.02093i
\(268\) 3.57598i 0.218438i
\(269\) 5.07008 0.309128 0.154564 0.987983i \(-0.450603\pi\)
0.154564 + 0.987983i \(0.450603\pi\)
\(270\) 0 0
\(271\) 0.730064i 0.0443482i −0.999754 0.0221741i \(-0.992941\pi\)
0.999754 0.0221741i \(-0.00705882\pi\)
\(272\) −3.00000 −0.181902
\(273\) −1.56206 + 19.4941i −0.0945401 + 1.17984i
\(274\) −5.83412 −0.352452
\(275\) 0 0
\(276\) −1.65998 −0.0999191
\(277\) 5.56419 0.334320 0.167160 0.985930i \(-0.446540\pi\)
0.167160 + 0.985930i \(0.446540\pi\)
\(278\) 4.26994i 0.256094i
\(279\) 38.7662i 2.32087i
\(280\) 0 0
\(281\) 23.2921i 1.38949i 0.719255 + 0.694746i \(0.244483\pi\)
−0.719255 + 0.694746i \(0.755517\pi\)
\(282\) −7.08400 −0.421846
\(283\) 14.1062 0.838526 0.419263 0.907865i \(-0.362289\pi\)
0.419263 + 0.907865i \(0.362289\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 22.2401 + 1.78209i 1.31508 + 0.105377i
\(287\) −10.2721 −0.606341
\(288\) 5.30604i 0.312662i
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 45.4323i 2.66329i
\(292\) 11.8341i 0.692540i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 9.96602i 0.581230i
\(295\) 0 0
\(296\) 9.18806 0.534045
\(297\) 41.1262i 2.38639i
\(298\) −16.9160 −0.979917
\(299\) −2.07008 0.165875i −0.119716 0.00959282i
\(300\) 0 0
\(301\) 7.52808i 0.433911i
\(302\) −17.4462 −1.00392
\(303\) −30.2442 −1.73749
\(304\) 4.88202i 0.280003i
\(305\) 0 0
\(306\) 15.9181i 0.909979i
\(307\) 9.42189i 0.537736i 0.963177 + 0.268868i \(0.0866495\pi\)
−0.963177 + 0.268868i \(0.913350\pi\)
\(308\) −11.6461 −0.663596
\(309\) −49.5364 −2.81802
\(310\) 0 0
\(311\) −31.7044 −1.79779 −0.898895 0.438165i \(-0.855629\pi\)
−0.898895 + 0.438165i \(0.855629\pi\)
\(312\) 0.829990 10.3581i 0.0469890 0.586410i
\(313\) −15.3740 −0.868990 −0.434495 0.900674i \(-0.643073\pi\)
−0.434495 + 0.900674i \(0.643073\pi\)
\(314\) 2.73006i 0.154066i
\(315\) 0 0
\(316\) 11.1881 0.629378
\(317\) 3.18806i 0.179059i 0.995984 + 0.0895297i \(0.0285364\pi\)
−0.995984 + 0.0895297i \(0.971464\pi\)
\(318\) 31.9042i 1.78910i
\(319\) 31.3740i 1.75661i
\(320\) 0 0
\(321\) 4.30604 0.240340
\(322\) 1.08400 0.0604091
\(323\) 14.6461i 0.814929i
\(324\) −3.23596 −0.179775
\(325\) 0 0
\(326\) −15.7980 −0.874971
\(327\) 37.3282i 2.06426i
\(328\) 5.45800 0.301368
\(329\) 4.62600 0.255040
\(330\) 0 0
\(331\) 9.02219i 0.495904i 0.968772 + 0.247952i \(0.0797576\pi\)
−0.968772 + 0.247952i \(0.920242\pi\)
\(332\) 0.188063i 0.0103213i
\(333\) 48.7523i 2.67161i
\(334\) 15.5642 0.851635
\(335\) 0 0
\(336\) 5.42402i 0.295905i
\(337\) −16.2921 −0.887489 −0.443744 0.896153i \(-0.646350\pi\)
−0.443744 + 0.896153i \(0.646350\pi\)
\(338\) 2.07008 12.8341i 0.112598 0.698084i
\(339\) −26.5781 −1.44352
\(340\) 0 0
\(341\) 45.2103 2.44827
\(342\) −25.9042 −1.40074
\(343\) 19.6822i 1.06274i
\(344\) 4.00000i 0.215666i
\(345\) 0 0
\(346\) 5.64606i 0.303534i
\(347\) 12.3421 0.662561 0.331281 0.943532i \(-0.392519\pi\)
0.331281 + 0.943532i \(0.392519\pi\)
\(348\) 14.6121 0.783290
\(349\) 18.7523i 1.00379i 0.864930 + 0.501893i \(0.167363\pi\)
−0.864930 + 0.501893i \(0.832637\pi\)
\(350\) 0 0
\(351\) −23.8862 1.91399i −1.27495 0.102161i
\(352\) 6.18806 0.329825
\(353\) 0.707877i 0.0376765i 0.999823 + 0.0188382i \(0.00599675\pi\)
−0.999823 + 0.0188382i \(0.994003\pi\)
\(354\) 25.4601 1.35319
\(355\) 0 0
\(356\) 11.4580i 0.607273i
\(357\) 16.2721i 0.861209i
\(358\) 13.4941i 0.713186i
\(359\) 0.0221876i 0.00117101i −1.00000 0.000585507i \(-0.999814\pi\)
1.00000 0.000585507i \(-0.000186373\pi\)
\(360\) 0 0
\(361\) −4.83412 −0.254428
\(362\) 2.73006i 0.143489i
\(363\) 78.6565 4.12839
\(364\) −0.542001 + 6.76404i −0.0284086 + 0.354532i
\(365\) 0 0
\(366\) 10.5080i 0.549263i
\(367\) 15.8363 0.826646 0.413323 0.910585i \(-0.364368\pi\)
0.413323 + 0.910585i \(0.364368\pi\)
\(368\) −0.575978 −0.0300249
\(369\) 28.9604i 1.50762i
\(370\) 0 0
\(371\) 20.8341i 1.08165i
\(372\) 21.0562i 1.09171i
\(373\) 4.35394 0.225438 0.112719 0.993627i \(-0.464044\pi\)
0.112719 + 0.993627i \(0.464044\pi\)
\(374\) −18.5642 −0.959931
\(375\) 0 0
\(376\) −2.45800 −0.126762
\(377\) 18.2220 + 1.46013i 0.938483 + 0.0752004i
\(378\) 12.5080 0.643343
\(379\) 2.42402i 0.124514i 0.998060 + 0.0622568i \(0.0198298\pi\)
−0.998060 + 0.0622568i \(0.980170\pi\)
\(380\) 0 0
\(381\) −12.6121 −0.646137
\(382\) 4.84804i 0.248047i
\(383\) 7.46013i 0.381195i −0.981668 0.190597i \(-0.938958\pi\)
0.981668 0.190597i \(-0.0610425\pi\)
\(384\) 2.88202i 0.147072i
\(385\) 0 0
\(386\) −10.6822 −0.543708
\(387\) −21.2242 −1.07889
\(388\) 15.7640i 0.800298i
\(389\) 6.57598 0.333415 0.166708 0.986006i \(-0.446686\pi\)
0.166708 + 0.986006i \(0.446686\pi\)
\(390\) 0 0
\(391\) 1.72793 0.0873854
\(392\) 3.45800i 0.174655i
\(393\) −63.8084 −3.21871
\(394\) 15.5642 0.784113
\(395\) 0 0
\(396\) 32.8341i 1.64998i
\(397\) 6.95210i 0.348916i −0.984665 0.174458i \(-0.944183\pi\)
0.984665 0.174458i \(-0.0558173\pi\)
\(398\) 0.272066i 0.0136374i
\(399\) 26.4802 1.32567
\(400\) 0 0
\(401\) 6.91813i 0.345475i 0.984968 + 0.172737i \(0.0552612\pi\)
−0.984968 + 0.172737i \(0.944739\pi\)
\(402\) −10.3060 −0.514019
\(403\) 2.10406 26.2581i 0.104811 1.30801i
\(404\) −10.4941 −0.522101
\(405\) 0 0
\(406\) −9.54200 −0.473562
\(407\) 56.8563 2.81826
\(408\) 8.64606i 0.428044i
\(409\) 15.9299i 0.787684i −0.919178 0.393842i \(-0.871146\pi\)
0.919178 0.393842i \(-0.128854\pi\)
\(410\) 0 0
\(411\) 16.8141i 0.829377i
\(412\) −17.1881 −0.846795
\(413\) −16.6260 −0.818112
\(414\) 3.05616i 0.150202i
\(415\) 0 0
\(416\) 0.287989 3.59403i 0.0141198 0.176212i
\(417\) −12.3060 −0.602629
\(418\) 30.2103i 1.47763i
\(419\) −22.9500 −1.12118 −0.560590 0.828094i \(-0.689426\pi\)
−0.560590 + 0.828094i \(0.689426\pi\)
\(420\) 0 0
\(421\) 24.7523i 1.20635i −0.797609 0.603175i \(-0.793902\pi\)
0.797609 0.603175i \(-0.206098\pi\)
\(422\) 17.0222i 0.828627i
\(423\) 13.0422i 0.634136i
\(424\) 11.0701i 0.537611i
\(425\) 0 0
\(426\) 0 0
\(427\) 6.86196i 0.332074i
\(428\) 1.49411 0.0722203
\(429\) 5.13603 64.0964i 0.247970 3.09460i
\(430\) 0 0
\(431\) 32.1041i 1.54640i 0.634163 + 0.773199i \(0.281345\pi\)
−0.634163 + 0.773199i \(0.718655\pi\)
\(432\) −6.64606 −0.319759
\(433\) 16.2103 0.779015 0.389507 0.921023i \(-0.372645\pi\)
0.389507 + 0.921023i \(0.372645\pi\)
\(434\) 13.7501i 0.660027i
\(435\) 0 0
\(436\) 12.9521i 0.620293i
\(437\) 2.81194i 0.134513i
\(438\) −34.1062 −1.62966
\(439\) 22.1041 1.05497 0.527485 0.849565i \(-0.323135\pi\)
0.527485 + 0.849565i \(0.323135\pi\)
\(440\) 0 0
\(441\) 18.3483 0.873728
\(442\) −0.863967 + 10.7821i −0.0410947 + 0.512852i
\(443\) 2.64606 0.125718 0.0628591 0.998022i \(-0.479978\pi\)
0.0628591 + 0.998022i \(0.479978\pi\)
\(444\) 26.4802i 1.25669i
\(445\) 0 0
\(446\) −1.65998 −0.0786024
\(447\) 48.7523i 2.30590i
\(448\) 1.88202i 0.0889171i
\(449\) 35.1262i 1.65771i 0.559463 + 0.828855i \(0.311007\pi\)
−0.559463 + 0.828855i \(0.688993\pi\)
\(450\) 0 0
\(451\) 33.7744 1.59038
\(452\) −9.22204 −0.433768
\(453\) 50.2803i 2.36238i
\(454\) −8.45800 −0.396954
\(455\) 0 0
\(456\) −14.0701 −0.658892
\(457\) 18.9181i 0.884953i 0.896780 + 0.442476i \(0.145900\pi\)
−0.896780 + 0.442476i \(0.854100\pi\)
\(458\) 9.38792 0.438668
\(459\) 19.9382 0.930635
\(460\) 0 0
\(461\) 8.81194i 0.410413i −0.978719 0.205206i \(-0.934213\pi\)
0.978719 0.205206i \(-0.0657866\pi\)
\(462\) 33.5642i 1.56155i
\(463\) 28.5621i 1.32739i −0.748003 0.663696i \(-0.768987\pi\)
0.748003 0.663696i \(-0.231013\pi\)
\(464\) 5.07008 0.235373
\(465\) 0 0
\(466\) 20.9882i 0.972260i
\(467\) 22.1402 1.02452 0.512262 0.858829i \(-0.328808\pi\)
0.512262 + 0.858829i \(0.328808\pi\)
\(468\) −19.0701 1.52808i −0.881515 0.0706356i
\(469\) 6.73006 0.310765
\(470\) 0 0
\(471\) −7.86810 −0.362543
\(472\) 8.83412 0.406624
\(473\) 24.7523i 1.13811i
\(474\) 32.2442i 1.48103i
\(475\) 0 0
\(476\) 5.64606i 0.258787i
\(477\) 58.7383 2.68944
\(478\) 14.4580 0.661293
\(479\) 19.7501i 0.902406i −0.892421 0.451203i \(-0.850995\pi\)
0.892421 0.451203i \(-0.149005\pi\)
\(480\) 0 0
\(481\) 2.64606 33.0222i 0.120650 1.50568i
\(482\) 9.92992 0.452295
\(483\) 3.12412i 0.142152i
\(484\) 27.2921 1.24055
\(485\) 0 0
\(486\) 10.6121i 0.481374i
\(487\) 3.78623i 0.171570i 0.996314 + 0.0857852i \(0.0273399\pi\)
−0.996314 + 0.0857852i \(0.972660\pi\)
\(488\) 3.64606i 0.165049i
\(489\) 45.5302i 2.05895i
\(490\) 0 0
\(491\) 18.4441 0.832370 0.416185 0.909280i \(-0.363367\pi\)
0.416185 + 0.909280i \(0.363367\pi\)
\(492\) 15.7301i 0.709166i
\(493\) −15.2103 −0.685035
\(494\) −17.5461 1.40597i −0.789438 0.0632575i
\(495\) 0 0
\(496\) 7.30604i 0.328051i
\(497\) 0 0
\(498\) −0.542001 −0.0242877
\(499\) 9.98608i 0.447038i 0.974700 + 0.223519i \(0.0717545\pi\)
−0.974700 + 0.223519i \(0.928245\pi\)
\(500\) 0 0
\(501\) 44.8563i 2.00403i
\(502\) 14.6461i 0.653686i
\(503\) 2.30391 0.102726 0.0513632 0.998680i \(-0.483643\pi\)
0.0513632 + 0.998680i \(0.483643\pi\)
\(504\) 9.98608 0.444815
\(505\) 0 0
\(506\) −3.56419 −0.158448
\(507\) −36.9882 5.96602i −1.64270 0.264960i
\(508\) −4.37613 −0.194159
\(509\) 19.0201i 0.843049i −0.906817 0.421525i \(-0.861495\pi\)
0.906817 0.421525i \(-0.138505\pi\)
\(510\) 0 0
\(511\) 22.2721 0.985258
\(512\) 1.00000i 0.0441942i
\(513\) 32.4462i 1.43254i
\(514\) 23.0701i 1.01758i
\(515\) 0 0
\(516\) −11.5281 −0.507496
\(517\) −15.2103 −0.668946
\(518\) 17.2921i 0.759772i
\(519\) 16.2721 0.714264
\(520\) 0 0
\(521\) −21.2220 −0.929754 −0.464877 0.885375i \(-0.653902\pi\)
−0.464877 + 0.885375i \(0.653902\pi\)
\(522\) 26.9021i 1.17747i
\(523\) 28.3143 1.23810 0.619049 0.785352i \(-0.287518\pi\)
0.619049 + 0.785352i \(0.287518\pi\)
\(524\) −22.1402 −0.967198
\(525\) 0 0
\(526\) 9.56419i 0.417018i
\(527\) 21.9181i 0.954769i
\(528\) 17.8341i 0.776131i
\(529\) −22.6682 −0.985576
\(530\) 0 0
\(531\) 46.8742i 2.03417i
\(532\) 9.18806 0.398353
\(533\) 1.57184 19.6162i 0.0680841 0.849673i
\(534\) 33.0222 1.42901
\(535\) 0 0
\(536\) −3.57598 −0.154459
\(537\) −38.8903 −1.67824
\(538\) 5.07008i 0.218587i
\(539\) 21.3983i 0.921691i
\(540\) 0 0
\(541\) 24.6204i 1.05851i 0.848462 + 0.529256i \(0.177529\pi\)
−0.848462 + 0.529256i \(0.822471\pi\)
\(542\) −0.730064 −0.0313589
\(543\) −7.86810 −0.337653
\(544\) 3.00000i 0.128624i
\(545\) 0 0
\(546\) 19.4941 + 1.56206i 0.834271 + 0.0668500i
\(547\) −17.9382 −0.766981 −0.383491 0.923545i \(-0.625278\pi\)
−0.383491 + 0.923545i \(0.625278\pi\)
\(548\) 5.83412i 0.249221i
\(549\) 19.3462 0.825674
\(550\) 0 0
\(551\) 24.7523i 1.05448i
\(552\) 1.65998i 0.0706535i
\(553\) 21.0562i 0.895399i
\(554\) 5.56419i 0.236400i
\(555\) 0 0
\(556\) −4.26994 −0.181086
\(557\) 26.4802i 1.12200i 0.827815 + 0.561001i \(0.189584\pi\)
−0.827815 + 0.561001i \(0.810416\pi\)
\(558\) −38.7662 −1.64110
\(559\) −14.3761 1.15196i −0.608045 0.0487226i
\(560\) 0 0
\(561\) 53.5024i 2.25887i
\(562\) 23.2921 0.982519
\(563\) −14.2803 −0.601844 −0.300922 0.953649i \(-0.597294\pi\)
−0.300922 + 0.953649i \(0.597294\pi\)
\(564\) 7.08400i 0.298290i
\(565\) 0 0
\(566\) 14.1062i 0.592927i
\(567\) 6.09014i 0.255762i
\(568\) 0 0
\(569\) −4.85983 −0.203735 −0.101867 0.994798i \(-0.532482\pi\)
−0.101867 + 0.994798i \(0.532482\pi\)
\(570\) 0 0
\(571\) −6.53987 −0.273685 −0.136843 0.990593i \(-0.543695\pi\)
−0.136843 + 0.990593i \(0.543695\pi\)
\(572\) 1.78209 22.2401i 0.0745131 0.929905i
\(573\) 13.9722 0.583695
\(574\) 10.2721i 0.428748i
\(575\) 0 0
\(576\) −5.30604 −0.221085
\(577\) 43.7383i 1.82085i −0.413673 0.910425i \(-0.635754\pi\)
0.413673 0.910425i \(-0.364246\pi\)
\(578\) 8.00000i 0.332756i
\(579\) 30.7862i 1.27943i
\(580\) 0 0
\(581\) 0.353938 0.0146838
\(582\) 45.4323 1.88323
\(583\) 68.5024i 2.83708i
\(584\) −11.8341 −0.489700
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 13.2721i 0.547797i −0.961759 0.273898i \(-0.911687\pi\)
0.961759 0.273898i \(-0.0883132\pi\)
\(588\) 9.96602 0.410992
\(589\) −35.6682 −1.46968
\(590\) 0 0
\(591\) 44.8563i 1.84514i
\(592\) 9.18806i 0.377627i
\(593\) 25.6704i 1.05416i 0.849817 + 0.527078i \(0.176712\pi\)
−0.849817 + 0.527078i \(0.823288\pi\)
\(594\) −41.1262 −1.68743
\(595\) 0 0
\(596\) 16.9160i 0.692906i
\(597\) 0.784099 0.0320910
\(598\) −0.165875 + 2.07008i −0.00678315 + 0.0846520i
\(599\) 16.8480 0.688392 0.344196 0.938898i \(-0.388151\pi\)
0.344196 + 0.938898i \(0.388151\pi\)
\(600\) 0 0
\(601\) −16.2921 −0.664570 −0.332285 0.943179i \(-0.607820\pi\)
−0.332285 + 0.943179i \(0.607820\pi\)
\(602\) 7.52808 0.306822
\(603\) 18.9743i 0.772693i
\(604\) 17.4462i 0.709876i
\(605\) 0 0
\(606\) 30.2442i 1.22859i
\(607\) −31.5642 −1.28115 −0.640575 0.767895i \(-0.721304\pi\)
−0.640575 + 0.767895i \(0.721304\pi\)
\(608\) −4.88202 −0.197992
\(609\) 27.5002i 1.11437i
\(610\) 0 0
\(611\) −0.707877 + 8.83412i −0.0286376 + 0.357390i
\(612\) 15.9181 0.643452
\(613\) 27.8320i 1.12412i −0.827095 0.562062i \(-0.810008\pi\)
0.827095 0.562062i \(-0.189992\pi\)
\(614\) 9.42189 0.380237
\(615\) 0 0
\(616\) 11.6461i 0.469233i
\(617\) 1.08400i 0.0436403i 0.999762 + 0.0218202i \(0.00694612\pi\)
−0.999762 + 0.0218202i \(0.993054\pi\)
\(618\) 49.5364i 1.99264i
\(619\) 27.0562i 1.08748i −0.839254 0.543740i \(-0.817008\pi\)
0.839254 0.543740i \(-0.182992\pi\)
\(620\) 0 0
\(621\) 3.82799 0.153612
\(622\) 31.7044i 1.27123i
\(623\) −21.5642 −0.863951
\(624\) −10.3581 0.829990i −0.414655 0.0332262i
\(625\) 0 0
\(626\) 15.3740i 0.614468i
\(627\) −87.0666 −3.47710
\(628\) −2.73006 −0.108941
\(629\) 27.5642i 1.09906i
\(630\) 0 0
\(631\) 23.4240i 0.932496i 0.884654 + 0.466248i \(0.154394\pi\)
−0.884654 + 0.466248i \(0.845606\pi\)
\(632\) 11.1881i 0.445037i
\(633\) 49.0583 1.94989
\(634\) 3.18806 0.126614
\(635\) 0 0
\(636\) 31.9042 1.26508
\(637\) 12.4282 + 0.995866i 0.492421 + 0.0394576i
\(638\) 31.3740 1.24211
\(639\) 0 0
\(640\) 0 0
\(641\) −6.22204 −0.245756 −0.122878 0.992422i \(-0.539212\pi\)
−0.122878 + 0.992422i \(0.539212\pi\)
\(642\) 4.30604i 0.169946i
\(643\) 37.8363i 1.49212i 0.665881 + 0.746058i \(0.268056\pi\)
−0.665881 + 0.746058i \(0.731944\pi\)
\(644\) 1.08400i 0.0427157i
\(645\) 0 0
\(646\) 14.6461 0.576242
\(647\) 38.8563 1.52760 0.763800 0.645453i \(-0.223332\pi\)
0.763800 + 0.645453i \(0.223332\pi\)
\(648\) 3.23596i 0.127120i
\(649\) 54.6661 2.14583
\(650\) 0 0
\(651\) 39.6281 1.55315
\(652\) 15.7980i 0.618698i
\(653\) −25.3740 −0.992961 −0.496481 0.868048i \(-0.665375\pi\)
−0.496481 + 0.868048i \(0.665375\pi\)
\(654\) −37.3282 −1.45965
\(655\) 0 0
\(656\) 5.45800i 0.213099i
\(657\) 62.7924i 2.44976i
\(658\) 4.62600i 0.180340i
\(659\) 16.5059 0.642978 0.321489 0.946913i \(-0.395817\pi\)
0.321489 + 0.946913i \(0.395817\pi\)
\(660\) 0 0
\(661\) 8.81194i 0.342745i 0.985206 + 0.171372i \(0.0548201\pi\)
−0.985206 + 0.171372i \(0.945180\pi\)
\(662\) 9.02219 0.350657
\(663\) 31.0742 + 2.48997i 1.20682 + 0.0967025i
\(664\) −0.188063 −0.00729826
\(665\) 0 0
\(666\) −48.7523 −1.88911
\(667\) −2.92026 −0.113073
\(668\) 15.5642i 0.602197i
\(669\) 4.78410i 0.184964i
\(670\) 0 0
\(671\) 22.5621i 0.870999i
\(672\) 5.42402 0.209236
\(673\) 4.08187 0.157345 0.0786723 0.996901i \(-0.474932\pi\)
0.0786723 + 0.996901i \(0.474932\pi\)
\(674\) 16.2921i 0.627549i
\(675\) 0 0
\(676\) −12.8341 2.07008i −0.493620 0.0796186i
\(677\) −24.4441 −0.939462 −0.469731 0.882810i \(-0.655649\pi\)
−0.469731 + 0.882810i \(0.655649\pi\)
\(678\) 26.5781i 1.02073i
\(679\) −29.6682 −1.13856
\(680\) 0 0
\(681\) 24.3761i 0.934095i
\(682\) 45.2103i 1.73119i
\(683\) 23.4802i 0.898444i 0.893420 + 0.449222i \(0.148299\pi\)
−0.893420 + 0.449222i \(0.851701\pi\)
\(684\) 25.9042i 0.990472i
\(685\) 0 0
\(686\) −19.6822 −0.751469
\(687\) 27.0562i 1.03226i
\(688\) −4.00000 −0.152499
\(689\) 39.7862 + 3.18806i 1.51573 + 0.121456i
\(690\) 0 0
\(691\) 11.4358i 0.435039i −0.976056 0.217519i \(-0.930203\pi\)
0.976056 0.217519i \(-0.0697965\pi\)
\(692\) 5.64606 0.214631
\(693\) 61.7945 2.34738
\(694\) 12.3421i 0.468502i
\(695\) 0 0
\(696\) 14.6121i 0.553870i
\(697\) 16.3740i 0.620209i
\(698\) 18.7523 0.709783
\(699\) 60.4885 2.28788
\(700\) 0 0
\(701\) −9.23383 −0.348757 −0.174378 0.984679i \(-0.555792\pi\)
−0.174378 + 0.984679i \(0.555792\pi\)
\(702\) −1.91399 + 23.8862i −0.0722390 + 0.901525i
\(703\) −44.8563 −1.69179
\(704\) 6.18806i 0.233221i
\(705\) 0 0
\(706\) 0.707877 0.0266413
\(707\) 19.7501i 0.742780i
\(708\) 25.4601i 0.956850i
\(709\) 18.1999i 0.683510i 0.939789 + 0.341755i \(0.111021\pi\)
−0.939789 + 0.341755i \(0.888979\pi\)
\(710\) 0 0
\(711\) −59.3643 −2.22634
\(712\) 11.4580 0.429407
\(713\) 4.20812i 0.157595i
\(714\) −16.2721 −0.608967
\(715\) 0 0
\(716\) −13.4941 −0.504298
\(717\) 41.6682i 1.55613i
\(718\) −0.0221876 −0.000828033
\(719\) −16.8480 −0.628326 −0.314163 0.949369i \(-0.601724\pi\)
−0.314163 + 0.949369i \(0.601724\pi\)
\(720\) 0 0
\(721\) 32.3483i 1.20471i
\(722\) 4.83412i 0.179907i
\(723\) 28.6182i 1.06432i
\(724\) −2.73006 −0.101462
\(725\) 0 0
\(726\) 78.6565i 2.91922i
\(727\) 35.0201 1.29882 0.649411 0.760438i \(-0.275015\pi\)
0.649411 + 0.760438i \(0.275015\pi\)
\(728\) 6.76404 + 0.542001i 0.250692 + 0.0200879i
\(729\) −40.2921 −1.49230
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 10.5080 0.388388
\(733\) 18.1083i 0.668846i 0.942423 + 0.334423i \(0.108541\pi\)
−0.942423 + 0.334423i \(0.891459\pi\)
\(734\) 15.8363i 0.584527i
\(735\) 0 0
\(736\) 0.575978i 0.0212308i
\(737\) −22.1284 −0.815109
\(738\) −28.9604 −1.06605
\(739\) 15.9181i 0.585558i 0.956180 + 0.292779i \(0.0945800\pi\)
−0.956180 + 0.292779i \(0.905420\pi\)
\(740\) 0 0
\(741\) −4.05203 + 50.5683i −0.148855 + 1.85767i
\(742\) −20.8341 −0.764845
\(743\) 43.8584i 1.60901i −0.593946 0.804505i \(-0.702431\pi\)
0.593946 0.804505i \(-0.297569\pi\)
\(744\) −21.0562 −0.771956
\(745\) 0 0
\(746\) 4.35394i 0.159409i
\(747\) 0.997870i 0.0365102i
\(748\) 18.5642i 0.678774i
\(749\) 2.81194i 0.102746i
\(750\) 0 0
\(751\) 39.7723 1.45131 0.725656 0.688058i \(-0.241536\pi\)
0.725656 + 0.688058i \(0.241536\pi\)
\(752\) 2.45800i 0.0896340i
\(753\) 42.2103 1.53823
\(754\) 1.46013 18.2220i 0.0531747 0.663608i
\(755\) 0 0
\(756\) 12.5080i 0.454912i
\(757\) −42.2943 −1.53721 −0.768605 0.639723i \(-0.779049\pi\)
−0.768605 + 0.639723i \(0.779049\pi\)
\(758\) 2.42402 0.0880444
\(759\) 10.2721i 0.372852i
\(760\) 0 0
\(761\) 3.99787i 0.144923i −0.997371 0.0724613i \(-0.976915\pi\)
0.997371 0.0724613i \(-0.0230854\pi\)
\(762\) 12.6121i 0.456888i
\(763\) 24.3761 0.882475
\(764\) 4.84804 0.175396
\(765\) 0 0
\(766\) −7.46013 −0.269545
\(767\) 2.54413 31.7501i 0.0918633 1.14643i
\(768\) −2.88202 −0.103996
\(769\) 39.9063i 1.43906i −0.694462 0.719530i \(-0.744357\pi\)
0.694462 0.719530i \(-0.255643\pi\)
\(770\) 0 0
\(771\) 66.4885 2.39452
\(772\) 10.6822i 0.384460i
\(773\) 15.1881i 0.546277i 0.961975 + 0.273138i \(0.0880617\pi\)
−0.961975 + 0.273138i \(0.911938\pi\)
\(774\) 21.2242i 0.762887i
\(775\) 0 0
\(776\) 15.7640 0.565896
\(777\) 49.8363 1.78787
\(778\) 6.57598i 0.235760i
\(779\) −26.6461 −0.954694
\(780\) 0 0
\(781\) 0 0
\(782\) 1.72793i 0.0617908i
\(783\) −33.6961 −1.20420
\(784\) 3.45800 0.123500
\(785\) 0 0
\(786\) 63.8084i 2.27597i
\(787\) 7.68217i 0.273840i −0.990582 0.136920i \(-0.956280\pi\)
0.990582 0.136920i \(-0.0437203\pi\)
\(788\) 15.5642i 0.554451i
\(789\) −27.5642 −0.981311
\(790\) 0 0
\(791\) 17.3561i 0.617111i
\(792\) −32.8341 −1.16671
\(793\) 13.1041 + 1.05003i 0.465339 + 0.0372875i
\(794\) −6.95210 −0.246721
\(795\) 0 0
\(796\) 0.272066 0.00964311
\(797\) −33.0784 −1.17170 −0.585848 0.810421i \(-0.699238\pi\)
−0.585848 + 0.810421i \(0.699238\pi\)
\(798\) 26.4802i 0.937388i
\(799\) 7.37400i 0.260873i
\(800\) 0 0
\(801\) 60.7966i 2.14814i
\(802\) 6.91813 0.244288
\(803\) −73.2303 −2.58424
\(804\) 10.3060i 0.363466i
\(805\) 0 0
\(806\) −26.2581 2.10406i −0.924904 0.0741124i
\(807\) −14.6121 −0.514370
\(808\) 10.4941i 0.369181i
\(809\) 23.2921 0.818907 0.409454 0.912331i \(-0.365719\pi\)
0.409454 + 0.912331i \(0.365719\pi\)
\(810\) 0 0
\(811\) 2.14983i 0.0754906i −0.999287 0.0377453i \(-0.987982\pi\)
0.999287 0.0377453i \(-0.0120176\pi\)
\(812\) 9.54200i 0.334859i
\(813\) 2.10406i 0.0737926i
\(814\) 56.8563i 1.99281i
\(815\) 0 0
\(816\) 8.64606 0.302673
\(817\) 19.5281i 0.683201i
\(818\) −15.9299 −0.556976
\(819\) 2.87588 35.8903i 0.100491 1.25411i
\(820\) 0 0
\(821\) 26.8563i 0.937292i −0.883386 0.468646i \(-0.844742\pi\)
0.883386 0.468646i \(-0.155258\pi\)
\(822\) 16.8141 0.586458
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 17.1881i 0.598775i
\(825\) 0 0
\(826\) 16.6260i 0.578493i
\(827\) 32.0243i 1.11359i 0.830648 + 0.556797i \(0.187970\pi\)
−0.830648 + 0.556797i \(0.812030\pi\)
\(828\) 3.05616 0.106209
\(829\) −19.2699 −0.669273 −0.334636 0.942347i \(-0.608613\pi\)
−0.334636 + 0.942347i \(0.608613\pi\)
\(830\) 0 0
\(831\) −16.0361 −0.556286
\(832\) −3.59403 0.287989i −0.124601 0.00998422i
\(833\) −10.3740 −0.359438
\(834\) 12.3060i 0.426123i
\(835\) 0 0
\(836\) −30.2103 −1.04484
\(837\) 48.5564i 1.67835i
\(838\) 22.9500i 0.792794i
\(839\) 14.8119i 0.511365i −0.966761 0.255682i \(-0.917700\pi\)
0.966761 0.255682i \(-0.0823001\pi\)
\(840\) 0 0
\(841\) −3.29425 −0.113595
\(842\) −24.7523 −0.853019
\(843\) 67.1284i 2.31202i
\(844\) 17.0222 0.585928
\(845\) 0 0
\(846\) 13.0422 0.448402
\(847\) 51.3643i 1.76490i
\(848\) 11.0701 0.380148
\(849\) −40.6543 −1.39525
\(850\) 0 0
\(851\) 5.29212i 0.181412i
\(852\) 0 0
\(853\) 36.5524i 1.25153i −0.780012 0.625765i \(-0.784787\pi\)
0.780012 0.625765i \(-0.215213\pi\)
\(854\) −6.86196 −0.234812
\(855\) 0 0
\(856\) 1.49411i 0.0510675i
\(857\) −27.9299 −0.954068 −0.477034 0.878885i \(-0.658288\pi\)
−0.477034 + 0.878885i \(0.658288\pi\)
\(858\) −64.0964 5.13603i −2.18822 0.175341i
\(859\) −46.6461 −1.59154 −0.795772 0.605597i \(-0.792934\pi\)
−0.795772 + 0.605597i \(0.792934\pi\)
\(860\) 0 0
\(861\) 29.6043 1.00891
\(862\) 32.1041 1.09347
\(863\) 37.1062i 1.26311i 0.775331 + 0.631555i \(0.217583\pi\)
−0.775331 + 0.631555i \(0.782417\pi\)
\(864\) 6.64606i 0.226104i
\(865\) 0 0
\(866\) 16.2103i 0.550847i
\(867\) 23.0562 0.783028
\(868\) 13.7501 0.466710
\(869\) 69.2324i 2.34855i
\(870\) 0 0
\(871\) −1.02984 + 12.8522i −0.0348949 + 0.435479i
\(872\) −12.9521 −0.438614
\(873\) 83.6447i 2.83094i
\(874\) 2.81194 0.0951152
\(875\) 0 0
\(876\) 34.1062i 1.15234i
\(877\) 46.8924i 1.58344i 0.610881 + 0.791722i \(0.290815\pi\)
−0.610881 + 0.791722i \(0.709185\pi\)
\(878\) 22.1041i 0.745976i
\(879\) 17.2921i 0.583249i
\(880\) 0 0
\(881\) 30.2220 1.01821 0.509103 0.860705i \(-0.329977\pi\)
0.509103 + 0.860705i \(0.329977\pi\)
\(882\) 18.3483i 0.617819i
\(883\) −3.93818 −0.132530 −0.0662652 0.997802i \(-0.521108\pi\)
−0.0662652 + 0.997802i \(0.521108\pi\)
\(884\) 10.7821 + 0.863967i 0.362641 + 0.0290584i
\(885\) 0 0
\(886\) 2.64606i 0.0888962i
\(887\) −4.16375 −0.139805 −0.0699024 0.997554i \(-0.522269\pi\)
−0.0699024 + 0.997554i \(0.522269\pi\)
\(888\) −26.4802 −0.888617
\(889\) 8.23596i 0.276225i
\(890\) 0 0
\(891\) 20.0243i 0.670840i
\(892\) 1.65998i 0.0555803i
\(893\) 12.0000 0.401565
\(894\) 48.7523 1.63052
\(895\) 0 0
\(896\) 1.88202 0.0628739
\(897\) 5.96602 + 0.478056i 0.199200 + 0.0159618i
\(898\) 35.1262 1.17218
\(899\) 37.0422i 1.23543i
\(900\) 0 0
\(901\) −33.2103 −1.10639
\(902\) 33.7744i 1.12457i
\(903\) 21.6961i 0.722001i
\(904\) 9.22204i 0.306720i
\(905\) 0 0
\(906\) 50.2803 1.67045
\(907\) 27.6682 0.918709 0.459355 0.888253i \(-0.348081\pi\)
0.459355 + 0.888253i \(0.348081\pi\)
\(908\) 8.45800i 0.280689i
\(909\) 55.6822 1.84686
\(910\) 0 0
\(911\) −48.5524 −1.60861 −0.804306 0.594215i \(-0.797463\pi\)
−0.804306 + 0.594215i \(0.797463\pi\)
\(912\) 14.0701i 0.465907i
\(913\) −1.16375 −0.0385144
\(914\) 18.9181 0.625756
\(915\) 0 0
\(916\) 9.38792i 0.310185i
\(917\) 41.6682i 1.37601i
\(918\) 19.9382i 0.658058i
\(919\) −8.26781 −0.272730 −0.136365 0.990659i \(-0.543542\pi\)
−0.136365 + 0.990659i \(0.543542\pi\)
\(920\) 0 0
\(921\) 27.1541i 0.894758i
\(922\) −8.81194 −0.290206
\(923\) 0 0
\(924\) 33.5642 1.10418
\(925\) 0 0
\(926\) −28.5621 −0.938607
\(927\) 91.2006 2.99542
\(928\) 5.07008i 0.166434i
\(929\) 24.0000i 0.787414i 0.919236 + 0.393707i \(0.128808\pi\)
−0.919236 + 0.393707i \(0.871192\pi\)
\(930\) 0 0
\(931\) 16.8820i 0.553286i
\(932\) 20.9882 0.687492
\(933\) 91.3726 2.99140
\(934\) 22.1402i 0.724448i
\(935\) 0 0
\(936\) −1.52808 + 19.0701i −0.0499469 + 0.623325i
\(937\) 46.8764 1.53138 0.765692 0.643207i \(-0.222397\pi\)
0.765692 + 0.643207i \(0.222397\pi\)
\(938\) 6.73006i 0.219744i
\(939\) 44.3082 1.44594
\(940\) 0 0
\(941\) 10.2721i 0.334860i 0.985884 + 0.167430i \(0.0535468\pi\)
−0.985884 + 0.167430i \(0.946453\pi\)
\(942\) 7.86810i 0.256357i
\(943\) 3.14369i 0.102373i
\(944\) 8.83412i 0.287526i
\(945\) 0 0
\(946\) −24.7523 −0.804765
\(947\) 38.1262i 1.23894i 0.785022 + 0.619468i \(0.212652\pi\)
−0.785022 + 0.619468i \(0.787348\pi\)
\(948\) −32.2442 −1.04724
\(949\) −3.40810 + 42.5322i −0.110632 + 1.38065i
\(950\) 0 0
\(951\) 9.18806i 0.297943i
\(952\) −5.64606 −0.182990
\(953\) 44.2921 1.43476 0.717381 0.696681i \(-0.245341\pi\)
0.717381 + 0.696681i \(0.245341\pi\)
\(954\) 58.7383i 1.90172i
\(955\) 0 0
\(956\) 14.4580i 0.467605i
\(957\) 90.4205i 2.92288i
\(958\) −19.7501 −0.638097
\(959\) −10.9799 −0.354561
\(960\) 0 0
\(961\) −22.3783 −0.721879
\(962\) −33.0222 2.64606i −1.06468 0.0853125i
\(963\) −7.92779 −0.255469
\(964\) 9.92992i 0.319821i
\(965\) 0 0
\(966\) −3.12412 −0.100517
\(967\) 44.1262i 1.41900i −0.704703 0.709502i \(-0.748920\pi\)
0.704703 0.709502i \(-0.251080\pi\)
\(968\) 27.2921i 0.877202i
\(969\) 42.2103i 1.35599i
\(970\) 0 0
\(971\) −0.809807 −0.0259879 −0.0129940 0.999916i \(-0.504136\pi\)
−0.0129940 + 0.999916i \(0.504136\pi\)
\(972\) −10.6121 −0.340383
\(973\) 8.03611i 0.257626i
\(974\) 3.78623 0.121319
\(975\) 0 0
\(976\) 3.64606 0.116708
\(977\) 62.0465i 1.98504i −0.122068 0.992522i \(-0.538952\pi\)
0.122068 0.992522i \(-0.461048\pi\)
\(978\) 45.5302 1.45590
\(979\) 70.9028 2.26606
\(980\) 0 0
\(981\) 68.7244i 2.19420i
\(982\) 18.4441i 0.588574i
\(983\) 2.72580i 0.0869397i 0.999055 + 0.0434698i \(0.0138412\pi\)
−0.999055 + 0.0434698i \(0.986159\pi\)
\(984\) −15.7301 −0.501456
\(985\) 0 0
\(986\) 15.2103i 0.484393i
\(987\) −13.3322 −0.424370
\(988\) −1.40597 + 17.5461i −0.0447298 + 0.558217i
\(989\) 2.30391 0.0732602
\(990\) 0 0
\(991\) 25.2921 0.803431 0.401715 0.915765i \(-0.368414\pi\)
0.401715 + 0.915765i \(0.368414\pi\)
\(992\) −7.30604 −0.231967
\(993\) 26.0021i 0.825153i
\(994\) 0 0
\(995\) 0 0
\(996\) 0.542001i 0.0171740i
\(997\) −2.29425 −0.0726597 −0.0363299 0.999340i \(-0.511567\pi\)
−0.0363299 + 0.999340i \(0.511567\pi\)
\(998\) 9.98608 0.316104
\(999\) 61.0644i 1.93199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.d.d.51.1 yes 6
5.2 odd 4 650.2.c.f.649.5 6
5.3 odd 4 650.2.c.e.649.2 6
5.4 even 2 650.2.d.c.51.6 yes 6
13.5 odd 4 8450.2.a.bq.1.1 3
13.8 odd 4 8450.2.a.ce.1.1 3
13.12 even 2 inner 650.2.d.d.51.4 yes 6
65.12 odd 4 650.2.c.e.649.5 6
65.34 odd 4 8450.2.a.br.1.3 3
65.38 odd 4 650.2.c.f.649.2 6
65.44 odd 4 8450.2.a.cd.1.3 3
65.64 even 2 650.2.d.c.51.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.c.e.649.2 6 5.3 odd 4
650.2.c.e.649.5 6 65.12 odd 4
650.2.c.f.649.2 6 65.38 odd 4
650.2.c.f.649.5 6 5.2 odd 4
650.2.d.c.51.3 6 65.64 even 2
650.2.d.c.51.6 yes 6 5.4 even 2
650.2.d.d.51.1 yes 6 1.1 even 1 trivial
650.2.d.d.51.4 yes 6 13.12 even 2 inner
8450.2.a.bq.1.1 3 13.5 odd 4
8450.2.a.br.1.3 3 65.34 odd 4
8450.2.a.cd.1.3 3 65.44 odd 4
8450.2.a.ce.1.1 3 13.8 odd 4