Properties

Label 650.2.m.b.101.2
Level $650$
Weight $2$
Character 650.101
Analytic conductor $5.190$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(101,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.2
Root \(1.20036 - 0.747754i\) of defining polynomial
Character \(\chi\) \(=\) 650.101
Dual form 650.2.m.b.251.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.747754 + 1.29515i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.29515 - 0.747754i) q^{6} +(-1.21306 - 0.700360i) q^{7} +1.00000i q^{8} +(0.381728 - 0.661173i) q^{9} +(1.99700 - 1.15297i) q^{11} +1.49551 q^{12} +(2.08209 + 2.94362i) q^{13} +1.40072 q^{14} +(-0.500000 - 0.866025i) q^{16} +(0.286941 - 0.496996i) q^{17} +0.763457i q^{18} +(2.38802 + 1.37872i) q^{19} -2.09479i q^{21} +(-1.15297 + 1.99700i) q^{22} +(3.72756 + 6.45632i) q^{23} +(-1.29515 + 0.747754i) q^{24} +(-3.27495 - 1.50821i) q^{26} +5.62828 q^{27} +(-1.21306 + 0.700360i) q^{28} +(2.65668 + 4.60151i) q^{29} -3.52691i q^{31} +(0.866025 + 0.500000i) q^{32} +(2.98652 + 1.72427i) q^{33} +0.573882i q^{34} +(-0.381728 - 0.661173i) q^{36} +(-2.24326 + 1.29515i) q^{37} -2.75745 q^{38} +(-2.25553 + 4.89772i) q^{39} +(-1.21564 + 0.701848i) q^{41} +(1.04739 + 1.81414i) q^{42} +(-0.570878 + 0.988789i) q^{43} -2.30593i q^{44} +(-6.45632 - 3.72756i) q^{46} -4.78645i q^{47} +(0.747754 - 1.29515i) q^{48} +(-2.51899 - 4.36302i) q^{49} +0.858244 q^{51} +(3.59030 - 0.331331i) q^{52} +0.889650 q^{53} +(-4.87423 + 2.81414i) q^{54} +(0.700360 - 1.21306i) q^{56} +4.12379i q^{57} +(-4.60151 - 2.65668i) q^{58} +(2.04411 + 1.18016i) q^{59} +(-4.67238 + 8.09281i) q^{61} +(1.76346 + 3.05440i) q^{62} +(-0.926118 + 0.534695i) q^{63} -1.00000 q^{64} -3.44854 q^{66} +(-3.87454 + 2.23697i) q^{67} +(-0.286941 - 0.496996i) q^{68} +(-5.57459 + 9.65548i) q^{69} +(7.77089 + 4.48652i) q^{71} +(0.661173 + 0.381728i) q^{72} -9.79246i q^{73} +(1.29515 - 2.24326i) q^{74} +(2.38802 - 1.37872i) q^{76} -3.22997 q^{77} +(-0.495508 - 5.36931i) q^{78} +15.9990 q^{79} +(3.06338 + 5.30593i) q^{81} +(0.701848 - 1.21564i) q^{82} +8.36033i q^{83} +(-1.81414 - 1.04739i) q^{84} -1.14176i q^{86} +(-3.97309 + 6.88159i) q^{87} +(1.15297 + 1.99700i) q^{88} +(-1.93556 + 1.11749i) q^{89} +(-0.464102 - 5.02900i) q^{91} +7.45512 q^{92} +(4.56787 - 2.63726i) q^{93} +(2.39322 + 4.14519i) q^{94} +1.49551i q^{96} +(-13.9636 - 8.06189i) q^{97} +(4.36302 + 2.51899i) q^{98} -1.76048i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 4 q^{4} - 6 q^{7} + 2 q^{9} + 12 q^{11} - 4 q^{12} + 10 q^{13} - 4 q^{16} + 6 q^{17} + 6 q^{19} - 6 q^{22} + 6 q^{26} + 4 q^{27} - 6 q^{28} - 12 q^{29} - 24 q^{33} - 2 q^{36} + 6 q^{37}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0.747754 + 1.29515i 0.431716 + 0.747754i 0.997021 0.0771279i \(-0.0245750\pi\)
−0.565305 + 0.824882i \(0.691242\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −1.29515 0.747754i −0.528742 0.305269i
\(7\) −1.21306 0.700360i −0.458493 0.264711i 0.252917 0.967488i \(-0.418610\pi\)
−0.711410 + 0.702777i \(0.751943\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.381728 0.661173i 0.127243 0.220391i
\(10\) 0 0
\(11\) 1.99700 1.15297i 0.602117 0.347632i −0.167757 0.985828i \(-0.553652\pi\)
0.769874 + 0.638196i \(0.220319\pi\)
\(12\) 1.49551 0.431716
\(13\) 2.08209 + 2.94362i 0.577467 + 0.816414i
\(14\) 1.40072 0.374358
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.286941 0.496996i 0.0695934 0.120539i −0.829129 0.559057i \(-0.811163\pi\)
0.898722 + 0.438518i \(0.144496\pi\)
\(18\) 0.763457i 0.179949i
\(19\) 2.38802 + 1.37872i 0.547850 + 0.316301i 0.748254 0.663412i \(-0.230892\pi\)
−0.200405 + 0.979713i \(0.564226\pi\)
\(20\) 0 0
\(21\) 2.09479i 0.457120i
\(22\) −1.15297 + 1.99700i −0.245813 + 0.425761i
\(23\) 3.72756 + 6.45632i 0.777250 + 1.34624i 0.933521 + 0.358522i \(0.116719\pi\)
−0.156272 + 0.987714i \(0.549948\pi\)
\(24\) −1.29515 + 0.747754i −0.264371 + 0.152635i
\(25\) 0 0
\(26\) −3.27495 1.50821i −0.642271 0.295784i
\(27\) 5.62828 1.08316
\(28\) −1.21306 + 0.700360i −0.229247 + 0.132356i
\(29\) 2.65668 + 4.60151i 0.493333 + 0.854478i 0.999970 0.00768111i \(-0.00244500\pi\)
−0.506637 + 0.862159i \(0.669112\pi\)
\(30\) 0 0
\(31\) 3.52691i 0.633452i −0.948517 0.316726i \(-0.897416\pi\)
0.948517 0.316726i \(-0.102584\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 2.98652 + 1.72427i 0.519887 + 0.300157i
\(34\) 0.573882i 0.0984199i
\(35\) 0 0
\(36\) −0.381728 0.661173i −0.0636214 0.110196i
\(37\) −2.24326 + 1.29515i −0.368790 + 0.212921i −0.672930 0.739706i \(-0.734964\pi\)
0.304140 + 0.952627i \(0.401631\pi\)
\(38\) −2.75745 −0.447317
\(39\) −2.25553 + 4.89772i −0.361175 + 0.784262i
\(40\) 0 0
\(41\) −1.21564 + 0.701848i −0.189851 + 0.109610i −0.591913 0.806002i \(-0.701627\pi\)
0.402062 + 0.915612i \(0.368294\pi\)
\(42\) 1.04739 + 1.81414i 0.161616 + 0.279928i
\(43\) −0.570878 + 0.988789i −0.0870580 + 0.150789i −0.906266 0.422707i \(-0.861080\pi\)
0.819208 + 0.573496i \(0.194413\pi\)
\(44\) 2.30593i 0.347632i
\(45\) 0 0
\(46\) −6.45632 3.72756i −0.951933 0.549599i
\(47\) 4.78645i 0.698175i −0.937090 0.349088i \(-0.886492\pi\)
0.937090 0.349088i \(-0.113508\pi\)
\(48\) 0.747754 1.29515i 0.107929 0.186938i
\(49\) −2.51899 4.36302i −0.359856 0.623289i
\(50\) 0 0
\(51\) 0.858244 0.120178
\(52\) 3.59030 0.331331i 0.497884 0.0459473i
\(53\) 0.889650 0.122203 0.0611014 0.998132i \(-0.480539\pi\)
0.0611014 + 0.998132i \(0.480539\pi\)
\(54\) −4.87423 + 2.81414i −0.663299 + 0.382956i
\(55\) 0 0
\(56\) 0.700360 1.21306i 0.0935895 0.162102i
\(57\) 4.12379i 0.546209i
\(58\) −4.60151 2.65668i −0.604207 0.348839i
\(59\) 2.04411 + 1.18016i 0.266120 + 0.153644i 0.627123 0.778920i \(-0.284232\pi\)
−0.361003 + 0.932565i \(0.617566\pi\)
\(60\) 0 0
\(61\) −4.67238 + 8.09281i −0.598237 + 1.03618i 0.394844 + 0.918748i \(0.370799\pi\)
−0.993081 + 0.117429i \(0.962535\pi\)
\(62\) 1.76346 + 3.05440i 0.223959 + 0.387909i
\(63\) −0.926118 + 0.534695i −0.116680 + 0.0673652i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −3.44854 −0.424486
\(67\) −3.87454 + 2.23697i −0.473351 + 0.273289i −0.717641 0.696413i \(-0.754778\pi\)
0.244291 + 0.969702i \(0.421445\pi\)
\(68\) −0.286941 0.496996i −0.0347967 0.0602696i
\(69\) −5.57459 + 9.65548i −0.671102 + 1.16238i
\(70\) 0 0
\(71\) 7.77089 + 4.48652i 0.922234 + 0.532452i 0.884347 0.466830i \(-0.154604\pi\)
0.0378872 + 0.999282i \(0.487937\pi\)
\(72\) 0.661173 + 0.381728i 0.0779200 + 0.0449871i
\(73\) 9.79246i 1.14612i −0.819513 0.573060i \(-0.805756\pi\)
0.819513 0.573060i \(-0.194244\pi\)
\(74\) 1.29515 2.24326i 0.150558 0.260774i
\(75\) 0 0
\(76\) 2.38802 1.37872i 0.273925 0.158151i
\(77\) −3.22997 −0.368089
\(78\) −0.495508 5.36931i −0.0561052 0.607955i
\(79\) 15.9990 1.80003 0.900015 0.435859i \(-0.143555\pi\)
0.900015 + 0.435859i \(0.143555\pi\)
\(80\) 0 0
\(81\) 3.06338 + 5.30593i 0.340376 + 0.589548i
\(82\) 0.701848 1.21564i 0.0775062 0.134245i
\(83\) 8.36033i 0.917665i 0.888523 + 0.458833i \(0.151732\pi\)
−0.888523 + 0.458833i \(0.848268\pi\)
\(84\) −1.81414 1.04739i −0.197939 0.114280i
\(85\) 0 0
\(86\) 1.14176i 0.123119i
\(87\) −3.97309 + 6.88159i −0.425960 + 0.737784i
\(88\) 1.15297 + 1.99700i 0.122907 + 0.212881i
\(89\) −1.93556 + 1.11749i −0.205169 + 0.118454i −0.599064 0.800701i \(-0.704461\pi\)
0.393896 + 0.919155i \(0.371127\pi\)
\(90\) 0 0
\(91\) −0.464102 5.02900i −0.0486511 0.527182i
\(92\) 7.45512 0.777250
\(93\) 4.56787 2.63726i 0.473666 0.273471i
\(94\) 2.39322 + 4.14519i 0.246842 + 0.427543i
\(95\) 0 0
\(96\) 1.49551i 0.152635i
\(97\) −13.9636 8.06189i −1.41779 0.818561i −0.421685 0.906742i \(-0.638561\pi\)
−0.996104 + 0.0881811i \(0.971895\pi\)
\(98\) 4.36302 + 2.51899i 0.440732 + 0.254457i
\(99\) 1.76048i 0.176935i
\(100\) 0 0
\(101\) 6.21486 + 10.7645i 0.618402 + 1.07110i 0.989777 + 0.142620i \(0.0455528\pi\)
−0.371376 + 0.928483i \(0.621114\pi\)
\(102\) −0.743261 + 0.429122i −0.0735939 + 0.0424894i
\(103\) −16.3014 −1.60622 −0.803112 0.595828i \(-0.796824\pi\)
−0.803112 + 0.595828i \(0.796824\pi\)
\(104\) −2.94362 + 2.08209i −0.288646 + 0.204166i
\(105\) 0 0
\(106\) −0.770460 + 0.444825i −0.0748337 + 0.0432052i
\(107\) 5.22756 + 9.05440i 0.505367 + 0.875322i 0.999981 + 0.00620858i \(0.00197627\pi\)
−0.494614 + 0.869113i \(0.664690\pi\)
\(108\) 2.81414 4.87423i 0.270791 0.469023i
\(109\) 14.7574i 1.41351i −0.707460 0.706754i \(-0.750159\pi\)
0.707460 0.706754i \(-0.249841\pi\)
\(110\) 0 0
\(111\) −3.35481 1.93690i −0.318425 0.183843i
\(112\) 1.40072i 0.132356i
\(113\) 8.95254 15.5063i 0.842184 1.45871i −0.0458604 0.998948i \(-0.514603\pi\)
0.888044 0.459758i \(-0.152064\pi\)
\(114\) −2.06189 3.57130i −0.193114 0.334483i
\(115\) 0 0
\(116\) 5.31336 0.493333
\(117\) 2.74104 0.252957i 0.253409 0.0233859i
\(118\) −2.36033 −0.217286
\(119\) −0.696152 + 0.401924i −0.0638162 + 0.0368443i
\(120\) 0 0
\(121\) −2.84134 + 4.92134i −0.258303 + 0.447395i
\(122\) 9.34477i 0.846035i
\(123\) −1.81799 1.04962i −0.163923 0.0946410i
\(124\) −3.05440 1.76346i −0.274293 0.158363i
\(125\) 0 0
\(126\) 0.534695 0.926118i 0.0476344 0.0825052i
\(127\) −6.49951 11.2575i −0.576738 0.998939i −0.995850 0.0910051i \(-0.970992\pi\)
0.419112 0.907934i \(-0.362341\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −1.70750 −0.150337
\(130\) 0 0
\(131\) 14.0834 1.23047 0.615236 0.788343i \(-0.289061\pi\)
0.615236 + 0.788343i \(0.289061\pi\)
\(132\) 2.98652 1.72427i 0.259943 0.150078i
\(133\) −1.93121 3.34495i −0.167457 0.290044i
\(134\) 2.23697 3.87454i 0.193245 0.334710i
\(135\) 0 0
\(136\) 0.496996 + 0.286941i 0.0426171 + 0.0246050i
\(137\) −16.2022 9.35432i −1.38424 0.799194i −0.391585 0.920142i \(-0.628073\pi\)
−0.992659 + 0.120948i \(0.961406\pi\)
\(138\) 11.1492i 0.949082i
\(139\) 8.44854 14.6333i 0.716596 1.24118i −0.245745 0.969335i \(-0.579033\pi\)
0.962341 0.271846i \(-0.0876341\pi\)
\(140\) 0 0
\(141\) 6.19916 3.57908i 0.522063 0.301413i
\(142\) −8.97305 −0.753001
\(143\) 7.55182 + 3.47782i 0.631515 + 0.290830i
\(144\) −0.763457 −0.0636214
\(145\) 0 0
\(146\) 4.89623 + 8.48052i 0.405215 + 0.701852i
\(147\) 3.76717 6.52493i 0.310711 0.538167i
\(148\) 2.59030i 0.212921i
\(149\) −19.1281 11.0436i −1.56703 0.904728i −0.996512 0.0834460i \(-0.973407\pi\)
−0.570522 0.821282i \(-0.693259\pi\)
\(150\) 0 0
\(151\) 7.38516i 0.600996i 0.953783 + 0.300498i \(0.0971528\pi\)
−0.953783 + 0.300498i \(0.902847\pi\)
\(152\) −1.37872 + 2.38802i −0.111829 + 0.193694i
\(153\) −0.219067 0.379435i −0.0177105 0.0306755i
\(154\) 2.79723 1.61498i 0.225407 0.130139i
\(155\) 0 0
\(156\) 3.11378 + 4.40221i 0.249302 + 0.352459i
\(157\) 13.4521 1.07359 0.536797 0.843712i \(-0.319634\pi\)
0.536797 + 0.843712i \(0.319634\pi\)
\(158\) −13.8556 + 7.99951i −1.10229 + 0.636407i
\(159\) 0.665240 + 1.15223i 0.0527569 + 0.0913777i
\(160\) 0 0
\(161\) 10.4425i 0.822987i
\(162\) −5.30593 3.06338i −0.416873 0.240682i
\(163\) −13.0574 7.53869i −1.02273 0.590476i −0.107840 0.994168i \(-0.534393\pi\)
−0.914895 + 0.403692i \(0.867727\pi\)
\(164\) 1.40370i 0.109610i
\(165\) 0 0
\(166\) −4.18016 7.24026i −0.324444 0.561953i
\(167\) 20.1827 11.6525i 1.56178 0.901695i 0.564705 0.825293i \(-0.308990\pi\)
0.997077 0.0764028i \(-0.0243435\pi\)
\(168\) 2.09479 0.161616
\(169\) −4.32982 + 12.2578i −0.333063 + 0.942905i
\(170\) 0 0
\(171\) 1.82315 1.05260i 0.139420 0.0804941i
\(172\) 0.570878 + 0.988789i 0.0435290 + 0.0753945i
\(173\) 6.81114 11.7972i 0.517841 0.896927i −0.481944 0.876202i \(-0.660069\pi\)
0.999785 0.0207251i \(-0.00659746\pi\)
\(174\) 7.94617i 0.602398i
\(175\) 0 0
\(176\) −1.99700 1.15297i −0.150529 0.0869081i
\(177\) 3.52989i 0.265323i
\(178\) 1.11749 1.93556i 0.0837597 0.145076i
\(179\) −6.22155 10.7760i −0.465021 0.805439i 0.534182 0.845370i \(-0.320620\pi\)
−0.999202 + 0.0399304i \(0.987286\pi\)
\(180\) 0 0
\(181\) −13.5029 −1.00367 −0.501833 0.864965i \(-0.667341\pi\)
−0.501833 + 0.864965i \(0.667341\pi\)
\(182\) 2.91642 + 4.12319i 0.216180 + 0.305631i
\(183\) −13.9752 −1.03307
\(184\) −6.45632 + 3.72756i −0.475966 + 0.274799i
\(185\) 0 0
\(186\) −2.63726 + 4.56787i −0.193374 + 0.334933i
\(187\) 1.32333i 0.0967716i
\(188\) −4.14519 2.39322i −0.302319 0.174544i
\(189\) −6.82743 3.94182i −0.496623 0.286725i
\(190\) 0 0
\(191\) −8.32684 + 14.4225i −0.602509 + 1.04358i 0.389931 + 0.920844i \(0.372499\pi\)
−0.992440 + 0.122732i \(0.960834\pi\)
\(192\) −0.747754 1.29515i −0.0539645 0.0934692i
\(193\) −12.8883 + 7.44104i −0.927718 + 0.535618i −0.886089 0.463515i \(-0.846588\pi\)
−0.0416286 + 0.999133i \(0.513255\pi\)
\(194\) 16.1238 1.15762
\(195\) 0 0
\(196\) −5.03798 −0.359856
\(197\) 0.680544 0.392912i 0.0484867 0.0279938i −0.475561 0.879683i \(-0.657755\pi\)
0.524047 + 0.851689i \(0.324421\pi\)
\(198\) 0.880240 + 1.52462i 0.0625559 + 0.108350i
\(199\) 0.0713036 0.123501i 0.00505458 0.00875479i −0.863487 0.504371i \(-0.831724\pi\)
0.868542 + 0.495616i \(0.165058\pi\)
\(200\) 0 0
\(201\) −5.79441 3.34540i −0.408706 0.235967i
\(202\) −10.7645 6.21486i −0.757384 0.437276i
\(203\) 7.44253i 0.522363i
\(204\) 0.429122 0.743261i 0.0300446 0.0520387i
\(205\) 0 0
\(206\) 14.1174 8.15070i 0.983608 0.567886i
\(207\) 5.69166 0.395598
\(208\) 1.50821 3.27495i 0.104575 0.227077i
\(209\) 6.35849 0.439826
\(210\) 0 0
\(211\) −7.84697 13.5913i −0.540207 0.935667i −0.998892 0.0470674i \(-0.985012\pi\)
0.458684 0.888599i \(-0.348321\pi\)
\(212\) 0.444825 0.770460i 0.0305507 0.0529154i
\(213\) 13.4193i 0.919472i
\(214\) −9.05440 5.22756i −0.618946 0.357349i
\(215\) 0 0
\(216\) 5.62828i 0.382956i
\(217\) −2.47011 + 4.27835i −0.167682 + 0.290434i
\(218\) 7.37872 + 12.7803i 0.499750 + 0.865593i
\(219\) 12.6827 7.32235i 0.857016 0.494798i
\(220\) 0 0
\(221\) 2.06040 0.190145i 0.138598 0.0127905i
\(222\) 3.87381 0.259993
\(223\) 7.55955 4.36451i 0.506225 0.292269i −0.225055 0.974346i \(-0.572256\pi\)
0.731281 + 0.682077i \(0.238923\pi\)
\(224\) −0.700360 1.21306i −0.0467948 0.0810509i
\(225\) 0 0
\(226\) 17.9051i 1.19103i
\(227\) 2.75373 + 1.58987i 0.182772 + 0.105523i 0.588594 0.808429i \(-0.299682\pi\)
−0.405823 + 0.913952i \(0.633015\pi\)
\(228\) 3.57130 + 2.06189i 0.236515 + 0.136552i
\(229\) 17.5485i 1.15964i 0.814746 + 0.579818i \(0.196876\pi\)
−0.814746 + 0.579818i \(0.803124\pi\)
\(230\) 0 0
\(231\) −2.41522 4.18328i −0.158910 0.275240i
\(232\) −4.60151 + 2.65668i −0.302104 + 0.174420i
\(233\) −12.6417 −0.828183 −0.414091 0.910235i \(-0.635901\pi\)
−0.414091 + 0.910235i \(0.635901\pi\)
\(234\) −2.24733 + 1.58958i −0.146912 + 0.103914i
\(235\) 0 0
\(236\) 2.04411 1.18016i 0.133060 0.0768222i
\(237\) 11.9633 + 20.7211i 0.777101 + 1.34598i
\(238\) 0.401924 0.696152i 0.0260528 0.0451249i
\(239\) 21.4485i 1.38739i −0.720269 0.693695i \(-0.755981\pi\)
0.720269 0.693695i \(-0.244019\pi\)
\(240\) 0 0
\(241\) −16.2431 9.37795i −1.04631 0.604087i −0.124695 0.992195i \(-0.539795\pi\)
−0.921614 + 0.388108i \(0.873129\pi\)
\(242\) 5.68268i 0.365296i
\(243\) 3.86111 6.68763i 0.247690 0.429012i
\(244\) 4.67238 + 8.09281i 0.299119 + 0.518089i
\(245\) 0 0
\(246\) 2.09924 0.133843
\(247\) 0.913628 + 9.90006i 0.0581327 + 0.629925i
\(248\) 3.52691 0.223959
\(249\) −10.8279 + 6.25147i −0.686188 + 0.396171i
\(250\) 0 0
\(251\) −1.66938 + 2.89145i −0.105370 + 0.182507i −0.913889 0.405963i \(-0.866936\pi\)
0.808519 + 0.588470i \(0.200269\pi\)
\(252\) 1.06939i 0.0673652i
\(253\) 14.8878 + 8.59550i 0.935990 + 0.540394i
\(254\) 11.2575 + 6.49951i 0.706357 + 0.407815i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.01708 1.76163i −0.0634435 0.109887i 0.832559 0.553936i \(-0.186875\pi\)
−0.896003 + 0.444049i \(0.853542\pi\)
\(258\) 1.47874 0.853752i 0.0920625 0.0531523i
\(259\) 3.62828 0.225450
\(260\) 0 0
\(261\) 4.05652 0.251092
\(262\) −12.1966 + 7.04170i −0.753507 + 0.435038i
\(263\) 0.286941 + 0.496996i 0.0176935 + 0.0306461i 0.874737 0.484599i \(-0.161034\pi\)
−0.857043 + 0.515245i \(0.827701\pi\)
\(264\) −1.72427 + 2.98652i −0.106121 + 0.183808i
\(265\) 0 0
\(266\) 3.34495 + 1.93121i 0.205092 + 0.118410i
\(267\) −2.89464 1.67122i −0.177149 0.102277i
\(268\) 4.47394i 0.273289i
\(269\) −14.7498 + 25.5474i −0.899309 + 1.55765i −0.0709307 + 0.997481i \(0.522597\pi\)
−0.828379 + 0.560168i \(0.810736\pi\)
\(270\) 0 0
\(271\) 4.70362 2.71564i 0.285725 0.164963i −0.350288 0.936642i \(-0.613916\pi\)
0.636012 + 0.771679i \(0.280583\pi\)
\(272\) −0.573882 −0.0347967
\(273\) 6.16626 4.36153i 0.373199 0.263972i
\(274\) 18.7086 1.13023
\(275\) 0 0
\(276\) 5.57459 + 9.65548i 0.335551 + 0.581191i
\(277\) −3.24326 + 5.61749i −0.194869 + 0.337522i −0.946857 0.321653i \(-0.895761\pi\)
0.751989 + 0.659176i \(0.229095\pi\)
\(278\) 16.8971i 1.01342i
\(279\) −2.33190 1.34632i −0.139607 0.0806023i
\(280\) 0 0
\(281\) 7.33791i 0.437743i −0.975754 0.218871i \(-0.929762\pi\)
0.975754 0.218871i \(-0.0702375\pi\)
\(282\) −3.57908 + 6.19916i −0.213131 + 0.369154i
\(283\) −2.21055 3.82878i −0.131403 0.227597i 0.792814 0.609463i \(-0.208615\pi\)
−0.924218 + 0.381866i \(0.875282\pi\)
\(284\) 7.77089 4.48652i 0.461117 0.266226i
\(285\) 0 0
\(286\) −8.27898 + 0.764026i −0.489546 + 0.0451778i
\(287\) 1.96619 0.116060
\(288\) 0.661173 0.381728i 0.0389600 0.0224936i
\(289\) 8.33533 + 14.4372i 0.490314 + 0.849248i
\(290\) 0 0
\(291\) 24.1132i 1.41354i
\(292\) −8.48052 4.89623i −0.496285 0.286530i
\(293\) 10.5915 + 6.11498i 0.618760 + 0.357241i 0.776386 0.630258i \(-0.217051\pi\)
−0.157626 + 0.987499i \(0.550384\pi\)
\(294\) 7.53434i 0.439412i
\(295\) 0 0
\(296\) −1.29515 2.24326i −0.0752789 0.130387i
\(297\) 11.2397 6.48922i 0.652191 0.376542i
\(298\) 22.0872 1.27948
\(299\) −11.2439 + 24.4152i −0.650249 + 1.41196i
\(300\) 0 0
\(301\) 1.38502 0.799640i 0.0798311 0.0460905i
\(302\) −3.69258 6.39573i −0.212484 0.368033i
\(303\) −9.29437 + 16.0983i −0.533948 + 0.924824i
\(304\) 2.75745i 0.158151i
\(305\) 0 0
\(306\) 0.379435 + 0.219067i 0.0216909 + 0.0125232i
\(307\) 5.90606i 0.337077i 0.985695 + 0.168538i \(0.0539047\pi\)
−0.985695 + 0.168538i \(0.946095\pi\)
\(308\) −1.61498 + 2.79723i −0.0920222 + 0.159387i
\(309\) −12.1894 21.1127i −0.693433 1.20106i
\(310\) 0 0
\(311\) 4.24250 0.240570 0.120285 0.992739i \(-0.461619\pi\)
0.120285 + 0.992739i \(0.461619\pi\)
\(312\) −4.89772 2.25553i −0.277279 0.127695i
\(313\) −11.9542 −0.675690 −0.337845 0.941202i \(-0.609698\pi\)
−0.337845 + 0.941202i \(0.609698\pi\)
\(314\) −11.6498 + 6.72604i −0.657439 + 0.379573i
\(315\) 0 0
\(316\) 7.99951 13.8556i 0.450007 0.779436i
\(317\) 19.3758i 1.08825i 0.839004 + 0.544125i \(0.183138\pi\)
−0.839004 + 0.544125i \(0.816862\pi\)
\(318\) −1.15223 0.665240i −0.0646138 0.0373048i
\(319\) 10.6108 + 6.12613i 0.594089 + 0.342997i
\(320\) 0 0
\(321\) −7.81785 + 13.5409i −0.436350 + 0.755780i
\(322\) 5.22127 + 9.04350i 0.290970 + 0.503974i
\(323\) 1.37044 0.791225i 0.0762534 0.0440249i
\(324\) 6.12676 0.340376
\(325\) 0 0
\(326\) 15.0774 0.835059
\(327\) 19.1131 11.0349i 1.05696 0.610234i
\(328\) −0.701848 1.21564i −0.0387531 0.0671223i
\(329\) −3.35224 + 5.80624i −0.184815 + 0.320109i
\(330\) 0 0
\(331\) −10.0141 5.78167i −0.550427 0.317789i 0.198867 0.980026i \(-0.436274\pi\)
−0.749294 + 0.662237i \(0.769607\pi\)
\(332\) 7.24026 + 4.18016i 0.397361 + 0.229416i
\(333\) 1.97758i 0.108371i
\(334\) −11.6525 + 20.1827i −0.637595 + 1.10435i
\(335\) 0 0
\(336\) −1.81414 + 1.04739i −0.0989694 + 0.0571400i
\(337\) −19.6758 −1.07181 −0.535905 0.844278i \(-0.680029\pi\)
−0.535905 + 0.844278i \(0.680029\pi\)
\(338\) −2.37915 12.7804i −0.129409 0.695164i
\(339\) 26.7772 1.45434
\(340\) 0 0
\(341\) −4.06641 7.04323i −0.220209 0.381412i
\(342\) −1.05260 + 1.82315i −0.0569179 + 0.0985847i
\(343\) 16.8618i 0.910454i
\(344\) −0.988789 0.570878i −0.0533119 0.0307797i
\(345\) 0 0
\(346\) 13.6223i 0.732338i
\(347\) −5.14845 + 8.91737i −0.276383 + 0.478710i −0.970483 0.241169i \(-0.922469\pi\)
0.694100 + 0.719879i \(0.255803\pi\)
\(348\) 3.97309 + 6.88159i 0.212980 + 0.368892i
\(349\) 15.0780 8.70528i 0.807106 0.465983i −0.0388439 0.999245i \(-0.512368\pi\)
0.845950 + 0.533262i \(0.179034\pi\)
\(350\) 0 0
\(351\) 11.7186 + 16.5675i 0.625491 + 0.884309i
\(352\) 2.30593 0.122907
\(353\) 23.6182 13.6360i 1.25707 0.725771i 0.284567 0.958656i \(-0.408150\pi\)
0.972504 + 0.232885i \(0.0748167\pi\)
\(354\) −1.76495 3.05697i −0.0938058 0.162476i
\(355\) 0 0
\(356\) 2.23499i 0.118454i
\(357\) −1.04110 0.601080i −0.0551009 0.0318125i
\(358\) 10.7760 + 6.22155i 0.569532 + 0.328819i
\(359\) 27.8199i 1.46828i 0.678999 + 0.734139i \(0.262414\pi\)
−0.678999 + 0.734139i \(0.737586\pi\)
\(360\) 0 0
\(361\) −5.69824 9.86964i −0.299907 0.519455i
\(362\) 11.6939 6.75147i 0.614617 0.354849i
\(363\) −8.49848 −0.446055
\(364\) −4.58729 2.11258i −0.240439 0.110729i
\(365\) 0 0
\(366\) 12.1029 6.98759i 0.632626 0.365247i
\(367\) 3.28351 + 5.68721i 0.171398 + 0.296870i 0.938909 0.344166i \(-0.111838\pi\)
−0.767511 + 0.641036i \(0.778505\pi\)
\(368\) 3.72756 6.45632i 0.194312 0.336559i
\(369\) 1.07166i 0.0557885i
\(370\) 0 0
\(371\) −1.07920 0.623076i −0.0560292 0.0323485i
\(372\) 5.27453i 0.273471i
\(373\) −1.48052 + 2.56433i −0.0766582 + 0.132776i −0.901806 0.432141i \(-0.857758\pi\)
0.825148 + 0.564917i \(0.191092\pi\)
\(374\) 0.661666 + 1.14604i 0.0342139 + 0.0592603i
\(375\) 0 0
\(376\) 4.78645 0.246842
\(377\) −8.01365 + 17.4010i −0.412724 + 0.896197i
\(378\) 7.88364 0.405491
\(379\) 9.25913 5.34576i 0.475610 0.274593i −0.242975 0.970032i \(-0.578123\pi\)
0.718585 + 0.695439i \(0.244790\pi\)
\(380\) 0 0
\(381\) 9.72006 16.8356i 0.497974 0.862516i
\(382\) 16.6537i 0.852076i
\(383\) 12.7454 + 7.35856i 0.651259 + 0.376005i 0.788938 0.614472i \(-0.210631\pi\)
−0.137679 + 0.990477i \(0.543964\pi\)
\(384\) 1.29515 + 0.747754i 0.0660927 + 0.0381587i
\(385\) 0 0
\(386\) 7.44104 12.8883i 0.378739 0.655995i
\(387\) 0.435841 + 0.754898i 0.0221550 + 0.0383736i
\(388\) −13.9636 + 8.06189i −0.708895 + 0.409281i
\(389\) −12.2344 −0.620310 −0.310155 0.950686i \(-0.600381\pi\)
−0.310155 + 0.950686i \(0.600381\pi\)
\(390\) 0 0
\(391\) 4.27835 0.216366
\(392\) 4.36302 2.51899i 0.220366 0.127228i
\(393\) 10.5309 + 18.2401i 0.531214 + 0.920090i
\(394\) −0.392912 + 0.680544i −0.0197946 + 0.0342853i
\(395\) 0 0
\(396\) −1.52462 0.880240i −0.0766151 0.0442337i
\(397\) −20.1731 11.6469i −1.01246 0.584542i −0.100547 0.994932i \(-0.532059\pi\)
−0.911910 + 0.410390i \(0.865392\pi\)
\(398\) 0.142607i 0.00714825i
\(399\) 2.88814 5.00240i 0.144588 0.250433i
\(400\) 0 0
\(401\) −25.8098 + 14.9013i −1.28888 + 0.744136i −0.978455 0.206461i \(-0.933805\pi\)
−0.310427 + 0.950597i \(0.600472\pi\)
\(402\) 6.69081 0.333707
\(403\) 10.3819 7.34335i 0.517159 0.365798i
\(404\) 12.4297 0.618402
\(405\) 0 0
\(406\) 3.72127 + 6.44542i 0.184683 + 0.319881i
\(407\) −2.98652 + 5.17281i −0.148036 + 0.256407i
\(408\) 0.858244i 0.0424894i
\(409\) 21.5604 + 12.4479i 1.06609 + 0.615509i 0.927112 0.374786i \(-0.122284\pi\)
0.138982 + 0.990295i \(0.455617\pi\)
\(410\) 0 0
\(411\) 27.9789i 1.38010i
\(412\) −8.15070 + 14.1174i −0.401556 + 0.695516i
\(413\) −1.65308 2.86322i −0.0813428 0.140890i
\(414\) −4.92912 + 2.84583i −0.242253 + 0.139865i
\(415\) 0 0
\(416\) 0.331331 + 3.59030i 0.0162448 + 0.176029i
\(417\) 25.2697 1.23746
\(418\) −5.50662 + 3.17925i −0.269337 + 0.155502i
\(419\) −1.06582 1.84605i −0.0520685 0.0901853i 0.838816 0.544414i \(-0.183248\pi\)
−0.890885 + 0.454229i \(0.849915\pi\)
\(420\) 0 0
\(421\) 8.63429i 0.420809i −0.977614 0.210405i \(-0.932522\pi\)
0.977614 0.210405i \(-0.0674782\pi\)
\(422\) 13.5913 + 7.84697i 0.661616 + 0.381984i
\(423\) −3.16467 1.82712i −0.153872 0.0888378i
\(424\) 0.889650i 0.0432052i
\(425\) 0 0
\(426\) −6.70963 11.6214i −0.325083 0.563060i
\(427\) 11.3358 6.54470i 0.548576 0.316720i
\(428\) 10.4551 0.505367
\(429\) 1.14261 + 12.3813i 0.0551656 + 0.597774i
\(430\) 0 0
\(431\) −24.8608 + 14.3534i −1.19750 + 0.691379i −0.959998 0.280007i \(-0.909663\pi\)
−0.237506 + 0.971386i \(0.576330\pi\)
\(432\) −2.81414 4.87423i −0.135395 0.234512i
\(433\) −11.5604 + 20.0232i −0.555558 + 0.962254i 0.442302 + 0.896866i \(0.354162\pi\)
−0.997860 + 0.0653880i \(0.979172\pi\)
\(434\) 4.94022i 0.237138i
\(435\) 0 0
\(436\) −12.7803 7.37872i −0.612067 0.353377i
\(437\) 20.5571i 0.983380i
\(438\) −7.32235 + 12.6827i −0.349875 + 0.606002i
\(439\) −12.1304 21.0104i −0.578951 1.00277i −0.995600 0.0937047i \(-0.970129\pi\)
0.416649 0.909067i \(-0.363204\pi\)
\(440\) 0 0
\(441\) −3.84628 −0.183156
\(442\) −1.68929 + 1.19487i −0.0803514 + 0.0568343i
\(443\) −26.8788 −1.27705 −0.638526 0.769600i \(-0.720455\pi\)
−0.638526 + 0.769600i \(0.720455\pi\)
\(444\) −3.35481 + 1.93690i −0.159212 + 0.0919214i
\(445\) 0 0
\(446\) −4.36451 + 7.55955i −0.206666 + 0.357955i
\(447\) 33.0316i 1.56234i
\(448\) 1.21306 + 0.700360i 0.0573117 + 0.0330889i
\(449\) −31.5658 18.2245i −1.48968 0.860068i −0.489751 0.871862i \(-0.662912\pi\)
−0.999930 + 0.0117943i \(0.996246\pi\)
\(450\) 0 0
\(451\) −1.61842 + 2.80318i −0.0762082 + 0.131996i
\(452\) −8.95254 15.5063i −0.421092 0.729353i
\(453\) −9.56487 + 5.52228i −0.449397 + 0.259459i
\(454\) −3.17974 −0.149233
\(455\) 0 0
\(456\) −4.12379 −0.193114
\(457\) −20.4028 + 11.7796i −0.954405 + 0.551026i −0.894446 0.447175i \(-0.852430\pi\)
−0.0599582 + 0.998201i \(0.519097\pi\)
\(458\) −8.77424 15.1974i −0.409993 0.710129i
\(459\) 1.61498 2.79723i 0.0753809 0.130564i
\(460\) 0 0
\(461\) −30.8930 17.8361i −1.43883 0.830708i −0.441061 0.897477i \(-0.645398\pi\)
−0.997768 + 0.0667687i \(0.978731\pi\)
\(462\) 4.18328 + 2.41522i 0.194624 + 0.112366i
\(463\) 2.90726i 0.135112i 0.997715 + 0.0675558i \(0.0215201\pi\)
−0.997715 + 0.0675558i \(0.978480\pi\)
\(464\) 2.65668 4.60151i 0.123333 0.213620i
\(465\) 0 0
\(466\) 10.9480 6.32083i 0.507156 0.292807i
\(467\) 27.6192 1.27806 0.639031 0.769181i \(-0.279335\pi\)
0.639031 + 0.769181i \(0.279335\pi\)
\(468\) 1.15145 2.50028i 0.0532258 0.115576i
\(469\) 6.26673 0.289371
\(470\) 0 0
\(471\) 10.0588 + 17.4224i 0.463487 + 0.802784i
\(472\) −1.18016 + 2.04411i −0.0543215 + 0.0940876i
\(473\) 2.63281i 0.121057i
\(474\) −20.7211 11.9633i −0.951751 0.549494i
\(475\) 0 0
\(476\) 0.803848i 0.0368443i
\(477\) 0.339605 0.588213i 0.0155494 0.0269324i
\(478\) 10.7243 + 18.5750i 0.490517 + 0.849600i
\(479\) 3.35481 1.93690i 0.153285 0.0884994i −0.421395 0.906877i \(-0.638460\pi\)
0.574681 + 0.818378i \(0.305126\pi\)
\(480\) 0 0
\(481\) −8.48309 3.90670i −0.386796 0.178130i
\(482\) 18.7559 0.854308
\(483\) 13.5246 7.80844i 0.615392 0.355296i
\(484\) 2.84134 + 4.92134i 0.129152 + 0.223697i
\(485\) 0 0
\(486\) 7.72221i 0.350287i
\(487\) −3.11137 1.79635i −0.140990 0.0814004i 0.427846 0.903852i \(-0.359273\pi\)
−0.568836 + 0.822451i \(0.692606\pi\)
\(488\) −8.09281 4.67238i −0.366344 0.211509i
\(489\) 22.5483i 1.01967i
\(490\) 0 0
\(491\) −3.00669 5.20774i −0.135690 0.235022i 0.790171 0.612887i \(-0.209992\pi\)
−0.925861 + 0.377865i \(0.876658\pi\)
\(492\) −1.81799 + 1.04962i −0.0819615 + 0.0473205i
\(493\) 3.04924 0.137331
\(494\) −5.74125 8.11689i −0.258311 0.365196i
\(495\) 0 0
\(496\) −3.05440 + 1.76346i −0.137146 + 0.0791815i
\(497\) −6.28436 10.8848i −0.281892 0.488252i
\(498\) 6.25147 10.8279i 0.280135 0.485208i
\(499\) 44.0098i 1.97015i −0.172134 0.985074i \(-0.555066\pi\)
0.172134 0.985074i \(-0.444934\pi\)
\(500\) 0 0
\(501\) 30.1833 + 17.4264i 1.34849 + 0.778552i
\(502\) 3.33876i 0.149016i
\(503\) −5.37617 + 9.31181i −0.239712 + 0.415193i −0.960632 0.277826i \(-0.910386\pi\)
0.720920 + 0.693018i \(0.243720\pi\)
\(504\) −0.534695 0.926118i −0.0238172 0.0412526i
\(505\) 0 0
\(506\) −17.1910 −0.764233
\(507\) −19.1132 + 3.55804i −0.848849 + 0.158018i
\(508\) −12.9990 −0.576738
\(509\) 6.28436 3.62828i 0.278549 0.160821i −0.354217 0.935163i \(-0.615253\pi\)
0.632767 + 0.774343i \(0.281919\pi\)
\(510\) 0 0
\(511\) −6.85824 + 11.8788i −0.303391 + 0.525488i
\(512\) 1.00000i 0.0441942i
\(513\) 13.4404 + 7.75985i 0.593410 + 0.342606i
\(514\) 1.76163 + 1.01708i 0.0777022 + 0.0448614i
\(515\) 0 0
\(516\) −0.853752 + 1.47874i −0.0375843 + 0.0650980i
\(517\) −5.51861 9.55852i −0.242708 0.420383i
\(518\) −3.14218 + 1.81414i −0.138060 + 0.0797087i
\(519\) 20.3722 0.894241
\(520\) 0 0
\(521\) 42.5711 1.86507 0.932537 0.361074i \(-0.117590\pi\)
0.932537 + 0.361074i \(0.117590\pi\)
\(522\) −3.51305 + 2.02826i −0.153762 + 0.0887746i
\(523\) −18.7535 32.4820i −0.820033 1.42034i −0.905657 0.424011i \(-0.860622\pi\)
0.0856245 0.996327i \(-0.472711\pi\)
\(524\) 7.04170 12.1966i 0.307618 0.532810i
\(525\) 0 0
\(526\) −0.496996 0.286941i −0.0216701 0.0125112i
\(527\) −1.75286 1.01202i −0.0763559 0.0440841i
\(528\) 3.44854i 0.150078i
\(529\) −16.2894 + 28.2140i −0.708234 + 1.22670i
\(530\) 0 0
\(531\) 1.56059 0.901005i 0.0677237 0.0391003i
\(532\) −3.86241 −0.167457
\(533\) −4.59704 2.11707i −0.199120 0.0917003i
\(534\) 3.34244 0.144642
\(535\) 0 0
\(536\) −2.23697 3.87454i −0.0966223 0.167355i
\(537\) 9.30438 16.1157i 0.401513 0.695442i
\(538\) 29.4995i 1.27182i
\(539\) −10.0608 5.80862i −0.433351 0.250195i
\(540\) 0 0
\(541\) 33.0878i 1.42256i 0.702911 + 0.711278i \(0.251883\pi\)
−0.702911 + 0.711278i \(0.748117\pi\)
\(542\) −2.71564 + 4.70362i −0.116647 + 0.202038i
\(543\) −10.0969 17.4883i −0.433298 0.750495i
\(544\) 0.496996 0.286941i 0.0213085 0.0123025i
\(545\) 0 0
\(546\) −3.15937 + 6.86033i −0.135209 + 0.293595i
\(547\) −12.6690 −0.541685 −0.270843 0.962624i \(-0.587302\pi\)
−0.270843 + 0.962624i \(0.587302\pi\)
\(548\) −16.2022 + 9.35432i −0.692122 + 0.399597i
\(549\) 3.56716 + 6.17851i 0.152243 + 0.263692i
\(550\) 0 0
\(551\) 14.6513i 0.624167i
\(552\) −9.65548 5.57459i −0.410964 0.237270i
\(553\) −19.4078 11.2051i −0.825301 0.476488i
\(554\) 6.48652i 0.275586i
\(555\) 0 0
\(556\) −8.44854 14.6333i −0.358298 0.620590i
\(557\) 6.16319 3.55832i 0.261143 0.150771i −0.363713 0.931511i \(-0.618491\pi\)
0.624856 + 0.780740i \(0.285158\pi\)
\(558\) 2.69265 0.113989
\(559\) −4.09924 + 0.378299i −0.173379 + 0.0160003i
\(560\) 0 0
\(561\) 1.71391 0.989527i 0.0723614 0.0417779i
\(562\) 3.66895 + 6.35481i 0.154765 + 0.268062i
\(563\) 13.9005 24.0764i 0.585838 1.01470i −0.408933 0.912565i \(-0.634099\pi\)
0.994770 0.102136i \(-0.0325678\pi\)
\(564\) 7.15817i 0.301413i
\(565\) 0 0
\(566\) 3.82878 + 2.21055i 0.160936 + 0.0929163i
\(567\) 8.58188i 0.360405i
\(568\) −4.48652 + 7.77089i −0.188250 + 0.326059i
\(569\) −1.58838 2.75116i −0.0665884 0.115334i 0.830809 0.556558i \(-0.187878\pi\)
−0.897397 + 0.441223i \(0.854545\pi\)
\(570\) 0 0
\(571\) 32.6833 1.36775 0.683877 0.729598i \(-0.260293\pi\)
0.683877 + 0.729598i \(0.260293\pi\)
\(572\) 6.78779 4.80116i 0.283812 0.200746i
\(573\) −24.9057 −1.04045
\(574\) −1.70277 + 0.983093i −0.0710721 + 0.0410335i
\(575\) 0 0
\(576\) −0.381728 + 0.661173i −0.0159054 + 0.0275489i
\(577\) 22.2259i 0.925278i −0.886547 0.462639i \(-0.846903\pi\)
0.886547 0.462639i \(-0.153097\pi\)
\(578\) −14.4372 8.33533i −0.600509 0.346704i
\(579\) −19.2745 11.1281i −0.801021 0.462470i
\(580\) 0 0
\(581\) 5.85524 10.1416i 0.242916 0.420743i
\(582\) 12.0566 + 20.8827i 0.499763 + 0.865615i
\(583\) 1.77663 1.02574i 0.0735804 0.0424817i
\(584\) 9.79246 0.405215
\(585\) 0 0
\(586\) −12.2300 −0.505215
\(587\) −24.9872 + 14.4264i −1.03133 + 0.595440i −0.917366 0.398045i \(-0.869689\pi\)
−0.113966 + 0.993485i \(0.536355\pi\)
\(588\) −3.76717 6.52493i −0.155356 0.269084i
\(589\) 4.86264 8.42234i 0.200362 0.347037i
\(590\) 0 0
\(591\) 1.01776 + 0.587603i 0.0418650 + 0.0241708i
\(592\) 2.24326 + 1.29515i 0.0921975 + 0.0532302i
\(593\) 26.8623i 1.10310i 0.834141 + 0.551551i \(0.185964\pi\)
−0.834141 + 0.551551i \(0.814036\pi\)
\(594\) −6.48922 + 11.2397i −0.266256 + 0.461168i
\(595\) 0 0
\(596\) −19.1281 + 11.0436i −0.783517 + 0.452364i
\(597\) 0.213270 0.00872857
\(598\) −2.47011 26.7661i −0.101010 1.09455i
\(599\) −10.1107 −0.413111 −0.206556 0.978435i \(-0.566225\pi\)
−0.206556 + 0.978435i \(0.566225\pi\)
\(600\) 0 0
\(601\) 5.47305 + 9.47959i 0.223250 + 0.386681i 0.955793 0.294040i \(-0.0950000\pi\)
−0.732543 + 0.680721i \(0.761667\pi\)
\(602\) −0.799640 + 1.38502i −0.0325909 + 0.0564491i
\(603\) 3.41566i 0.139096i
\(604\) 6.39573 + 3.69258i 0.260239 + 0.150249i
\(605\) 0 0
\(606\) 18.5887i 0.755116i
\(607\) 13.1827 22.8331i 0.535068 0.926765i −0.464092 0.885787i \(-0.653619\pi\)
0.999160 0.0409783i \(-0.0130475\pi\)
\(608\) 1.37872 + 2.38802i 0.0559147 + 0.0968470i
\(609\) 9.63918 5.56518i 0.390599 0.225513i
\(610\) 0 0
\(611\) 14.0895 9.96581i 0.570000 0.403173i
\(612\) −0.438134 −0.0177105
\(613\) 42.1452 24.3325i 1.70223 0.982781i 0.758728 0.651408i \(-0.225821\pi\)
0.943500 0.331373i \(-0.107512\pi\)
\(614\) −2.95303 5.11480i −0.119175 0.206417i
\(615\) 0 0
\(616\) 3.22997i 0.130139i
\(617\) 1.86056 + 1.07419i 0.0749032 + 0.0432454i 0.536984 0.843593i \(-0.319564\pi\)
−0.462081 + 0.886838i \(0.652897\pi\)
\(618\) 21.1127 + 12.1894i 0.849278 + 0.490331i
\(619\) 35.4125i 1.42335i 0.702509 + 0.711675i \(0.252063\pi\)
−0.702509 + 0.711675i \(0.747937\pi\)
\(620\) 0 0
\(621\) 20.9797 + 36.3380i 0.841888 + 1.45819i
\(622\) −3.67411 + 2.12125i −0.147318 + 0.0850543i
\(623\) 3.13059 0.125425
\(624\) 5.36931 0.495508i 0.214945 0.0198362i
\(625\) 0 0
\(626\) 10.3526 5.97709i 0.413774 0.238892i
\(627\) 4.75459 + 8.23518i 0.189880 + 0.328882i
\(628\) 6.72604 11.6498i 0.268398 0.464880i
\(629\) 1.48652i 0.0592716i
\(630\) 0 0
\(631\) 30.7743 + 17.7676i 1.22511 + 0.707315i 0.966002 0.258534i \(-0.0832394\pi\)
0.259104 + 0.965849i \(0.416573\pi\)
\(632\) 15.9990i 0.636407i
\(633\) 11.7352 20.3260i 0.466432 0.807884i
\(634\) −9.68788 16.7799i −0.384755 0.666415i
\(635\) 0 0
\(636\) 1.33048 0.0527569
\(637\) 7.59832 16.4992i 0.301056 0.653720i
\(638\) −12.2523 −0.485071
\(639\) 5.93274 3.42527i 0.234695 0.135501i
\(640\) 0 0
\(641\) 11.2929 19.5598i 0.446041 0.772566i −0.552083 0.833789i \(-0.686167\pi\)
0.998124 + 0.0612235i \(0.0195002\pi\)
\(642\) 15.6357i 0.617092i
\(643\) 37.9229 + 21.8948i 1.49553 + 0.863447i 0.999987 0.00513351i \(-0.00163405\pi\)
0.495548 + 0.868581i \(0.334967\pi\)
\(644\) −9.04350 5.22127i −0.356364 0.205747i
\(645\) 0 0
\(646\) −0.791225 + 1.37044i −0.0311303 + 0.0539193i
\(647\) −16.0638 27.8234i −0.631534 1.09385i −0.987238 0.159251i \(-0.949092\pi\)
0.355704 0.934599i \(-0.384241\pi\)
\(648\) −5.30593 + 3.06338i −0.208437 + 0.120341i
\(649\) 5.44276 0.213647
\(650\) 0 0
\(651\) −7.38814 −0.289564
\(652\) −13.0574 + 7.53869i −0.511367 + 0.295238i
\(653\) −20.2073 35.0001i −0.790773 1.36966i −0.925489 0.378774i \(-0.876346\pi\)
0.134717 0.990884i \(-0.456988\pi\)
\(654\) −11.0349 + 19.1131i −0.431500 + 0.747380i
\(655\) 0 0
\(656\) 1.21564 + 0.701848i 0.0474627 + 0.0274026i
\(657\) −6.47451 3.73806i −0.252595 0.145836i
\(658\) 6.70447i 0.261368i
\(659\) 1.00360 1.73829i 0.0390947 0.0677140i −0.845816 0.533475i \(-0.820886\pi\)
0.884911 + 0.465761i \(0.154219\pi\)
\(660\) 0 0
\(661\) 10.7058 6.18097i 0.416406 0.240412i −0.277133 0.960832i \(-0.589384\pi\)
0.693538 + 0.720420i \(0.256051\pi\)
\(662\) 11.5633 0.449422
\(663\) 1.78694 + 2.52635i 0.0693990 + 0.0981152i
\(664\) −8.36033 −0.324444
\(665\) 0 0
\(666\) −0.988789 1.71263i −0.0383148 0.0663632i
\(667\) −19.8059 + 34.3048i −0.766886 + 1.32829i
\(668\) 23.3049i 0.901695i
\(669\) 11.3054 + 6.52716i 0.437091 + 0.252355i
\(670\) 0 0
\(671\) 21.5484i 0.831867i
\(672\) 1.04739 1.81414i 0.0404041 0.0699819i
\(673\) −2.29638 3.97744i −0.0885189 0.153319i 0.818366 0.574697i \(-0.194880\pi\)
−0.906885 + 0.421378i \(0.861547\pi\)
\(674\) 17.0398 9.83791i 0.656347 0.378942i
\(675\) 0 0
\(676\) 8.45062 + 9.87861i 0.325024 + 0.379947i
\(677\) −0.320925 −0.0123341 −0.00616707 0.999981i \(-0.501963\pi\)
−0.00616707 + 0.999981i \(0.501963\pi\)
\(678\) −23.1897 + 13.3886i −0.890596 + 0.514186i
\(679\) 11.2925 + 19.5591i 0.433365 + 0.750610i
\(680\) 0 0
\(681\) 4.75532i 0.182224i
\(682\) 7.04323 + 4.06641i 0.269699 + 0.155711i
\(683\) 9.90665 + 5.71961i 0.379068 + 0.218855i 0.677413 0.735603i \(-0.263101\pi\)
−0.298345 + 0.954458i \(0.596435\pi\)
\(684\) 2.10519i 0.0804941i
\(685\) 0 0
\(686\) −8.43092 14.6028i −0.321894 0.557537i
\(687\) −22.7279 + 13.1219i −0.867123 + 0.500633i
\(688\) 1.14176 0.0435290
\(689\) 1.85233 + 2.61879i 0.0705682 + 0.0997681i
\(690\) 0 0
\(691\) −19.0613 + 11.0050i −0.725124 + 0.418651i −0.816636 0.577153i \(-0.804164\pi\)
0.0915115 + 0.995804i \(0.470830\pi\)
\(692\) −6.81114 11.7972i −0.258921 0.448463i
\(693\) −1.23297 + 2.13557i −0.0468366 + 0.0811235i
\(694\) 10.2969i 0.390865i
\(695\) 0 0
\(696\) −6.88159 3.97309i −0.260846 0.150599i
\(697\) 0.805556i 0.0305126i
\(698\) −8.70528 + 15.0780i −0.329500 + 0.570710i
\(699\) −9.45285 16.3728i −0.357540 0.619277i
\(700\) 0 0
\(701\) 6.84486 0.258527 0.129263 0.991610i \(-0.458739\pi\)
0.129263 + 0.991610i \(0.458739\pi\)
\(702\) −18.4323 8.48861i −0.695684 0.320382i
\(703\) −7.14261 −0.269389
\(704\) −1.99700 + 1.15297i −0.0752646 + 0.0434541i
\(705\) 0 0
\(706\) −13.6360 + 23.6182i −0.513197 + 0.888884i
\(707\) 17.4106i 0.654791i
\(708\) 3.05697 + 1.76495i 0.114888 + 0.0663307i
\(709\) −30.9654 17.8779i −1.16293 0.671418i −0.210925 0.977502i \(-0.567648\pi\)
−0.952004 + 0.306084i \(0.900981\pi\)
\(710\) 0 0
\(711\) 6.10728 10.5781i 0.229041 0.396710i
\(712\) −1.11749 1.93556i −0.0418798 0.0725380i
\(713\) 22.7709 13.1468i 0.852776 0.492351i
\(714\) 1.20216 0.0449897
\(715\) 0 0
\(716\) −12.4431 −0.465021
\(717\) 27.7790 16.0382i 1.03743 0.598959i
\(718\) −13.9099 24.0927i −0.519115 0.899133i
\(719\) −22.1412 + 38.3497i −0.825728 + 1.43020i 0.0756332 + 0.997136i \(0.475902\pi\)
−0.901361 + 0.433068i \(0.857431\pi\)
\(720\) 0 0
\(721\) 19.7746 + 11.4168i 0.736443 + 0.425186i
\(722\) 9.86964 + 5.69824i 0.367310 + 0.212066i
\(723\) 28.0496i 1.04318i
\(724\) −6.75147 + 11.6939i −0.250916 + 0.434600i
\(725\) 0 0
\(726\) 7.35990 4.24924i 0.273152 0.157704i
\(727\) 6.29553 0.233488 0.116744 0.993162i \(-0.462754\pi\)
0.116744 + 0.993162i \(0.462754\pi\)
\(728\) 5.02900 0.464102i 0.186387 0.0172008i
\(729\) 29.9289 1.10848
\(730\) 0 0
\(731\) 0.327616 + 0.567448i 0.0121173 + 0.0209878i
\(732\) −6.98759 + 12.1029i −0.258269 + 0.447334i
\(733\) 0.470338i 0.0173723i −0.999962 0.00868616i \(-0.997235\pi\)
0.999962 0.00868616i \(-0.00276492\pi\)
\(734\) −5.68721 3.28351i −0.209919 0.121197i
\(735\) 0 0
\(736\) 7.45512i 0.274799i
\(737\) −5.15830 + 8.93444i −0.190008 + 0.329104i
\(738\) −0.535831 0.928087i −0.0197242 0.0341633i
\(739\) −15.2283 + 8.79208i −0.560183 + 0.323422i −0.753219 0.657770i \(-0.771500\pi\)
0.193036 + 0.981192i \(0.438167\pi\)
\(740\) 0 0
\(741\) −12.1389 + 8.58609i −0.445932 + 0.315418i
\(742\) 1.24615 0.0457477
\(743\) 15.8531 9.15278i 0.581593 0.335783i −0.180173 0.983635i \(-0.557666\pi\)
0.761766 + 0.647852i \(0.224332\pi\)
\(744\) 2.63726 + 4.56787i 0.0966868 + 0.167466i
\(745\) 0 0
\(746\) 2.96103i 0.108411i
\(747\) 5.52762 + 3.19138i 0.202245 + 0.116766i
\(748\) −1.14604 0.661666i −0.0419034 0.0241929i
\(749\) 14.6447i 0.535105i
\(750\) 0 0
\(751\) 11.1507 + 19.3136i 0.406895 + 0.704762i 0.994540 0.104356i \(-0.0332782\pi\)
−0.587645 + 0.809119i \(0.699945\pi\)
\(752\) −4.14519 + 2.39322i −0.151159 + 0.0872719i
\(753\) −4.99314 −0.181960
\(754\) −1.76048 19.0765i −0.0641129 0.694726i
\(755\) 0 0
\(756\) −6.82743 + 3.94182i −0.248311 + 0.143363i
\(757\) −2.25766 3.91038i −0.0820560 0.142125i 0.822077 0.569376i \(-0.192815\pi\)
−0.904133 + 0.427251i \(0.859482\pi\)
\(758\) −5.34576 + 9.25913i −0.194167 + 0.336307i
\(759\) 25.7093i 0.933187i
\(760\) 0 0
\(761\) −11.3639 6.56094i −0.411941 0.237834i 0.279683 0.960093i \(-0.409771\pi\)
−0.691623 + 0.722258i \(0.743104\pi\)
\(762\) 19.4401i 0.704241i
\(763\) −10.3355 + 17.9017i −0.374171 + 0.648084i
\(764\) 8.32684 + 14.4225i 0.301254 + 0.521788i
\(765\) 0 0
\(766\) −14.7171 −0.531751
\(767\) 0.782050 + 8.47428i 0.0282382 + 0.305988i
\(768\) −1.49551 −0.0539645
\(769\) 28.6082 16.5169i 1.03164 0.595616i 0.114184 0.993460i \(-0.463575\pi\)
0.917453 + 0.397843i \(0.130241\pi\)
\(770\) 0 0
\(771\) 1.52105 2.63453i 0.0547792 0.0948803i
\(772\) 14.8821i 0.535618i
\(773\) −14.1781 8.18575i −0.509952 0.294421i 0.222862 0.974850i \(-0.428460\pi\)
−0.732814 + 0.680429i \(0.761793\pi\)
\(774\) −0.754898 0.435841i −0.0271342 0.0156660i
\(775\) 0 0
\(776\) 8.06189 13.9636i 0.289405 0.501264i
\(777\) 2.71306 + 4.69916i 0.0973305 + 0.168581i
\(778\) 10.5953 6.11721i 0.379861 0.219313i
\(779\) −3.87062 −0.138679
\(780\) 0 0
\(781\) 20.6912 0.740391
\(782\) −3.70516 + 2.13918i −0.132496 + 0.0764968i
\(783\) 14.9525 + 25.8986i 0.534360 + 0.925539i
\(784\) −2.51899 + 4.36302i −0.0899640 + 0.155822i
\(785\) 0 0
\(786\) −18.2401 10.5309i −0.650602 0.375625i
\(787\) 40.4488 + 23.3531i 1.44185 + 0.832450i 0.997973 0.0636403i \(-0.0202710\pi\)
0.443872 + 0.896090i \(0.353604\pi\)
\(788\) 0.785824i 0.0279938i
\(789\) −0.429122 + 0.743261i −0.0152772 + 0.0264608i
\(790\) 0 0
\(791\) −21.7199 + 12.5400i −0.772271 + 0.445871i
\(792\) 1.76048 0.0625559
\(793\) −33.5505 + 3.09621i −1.19141 + 0.109950i
\(794\) 23.2938 0.826667
\(795\) 0 0
\(796\) −0.0713036 0.123501i −0.00252729 0.00437739i
\(797\) −4.12750 + 7.14904i −0.146204 + 0.253232i −0.929821 0.368011i \(-0.880039\pi\)
0.783618 + 0.621243i \(0.213372\pi\)
\(798\) 5.77627i 0.204478i
\(799\) −2.37885 1.37343i −0.0841575 0.0485884i
\(800\) 0 0
\(801\) 1.70632i 0.0602897i
\(802\) 14.9013 25.8098i 0.526184 0.911377i
\(803\) −11.2904 19.5555i −0.398429 0.690098i
\(804\) −5.79441 + 3.34540i −0.204353 + 0.117983i
\(805\) 0 0
\(806\) −5.31932 + 11.5505i −0.187365 + 0.406848i
\(807\) −44.1168 −1.55298
\(808\) −10.7645 + 6.21486i −0.378692 + 0.218638i
\(809\) 13.0395 + 22.5850i 0.458443 + 0.794046i 0.998879 0.0473387i \(-0.0150740\pi\)
−0.540436 + 0.841385i \(0.681741\pi\)
\(810\) 0 0
\(811\) 37.2793i 1.30905i −0.756039 0.654526i \(-0.772868\pi\)
0.756039 0.654526i \(-0.227132\pi\)
\(812\) −6.44542 3.72127i −0.226190 0.130591i
\(813\) 7.03430 + 4.06126i 0.246704 + 0.142434i
\(814\) 5.97305i 0.209355i
\(815\) 0 0
\(816\) −0.429122 0.743261i −0.0150223 0.0260194i
\(817\) −2.72654 + 1.57417i −0.0953894 + 0.0550731i
\(818\) −24.8958 −0.870462
\(819\) −3.50220 1.61286i −0.122377 0.0563579i
\(820\) 0 0
\(821\) −24.4587 + 14.1212i −0.853614 + 0.492835i −0.861869 0.507131i \(-0.830706\pi\)
0.00825433 + 0.999966i \(0.497373\pi\)
\(822\) 13.9895 + 24.2305i 0.487938 + 0.845134i
\(823\) −15.5619 + 26.9539i −0.542453 + 0.939555i 0.456310 + 0.889821i \(0.349171\pi\)
−0.998762 + 0.0497345i \(0.984162\pi\)
\(824\) 16.3014i 0.567886i
\(825\) 0 0
\(826\) 2.86322 + 1.65308i 0.0996241 + 0.0575180i
\(827\) 15.4978i 0.538911i 0.963013 + 0.269455i \(0.0868437\pi\)
−0.963013 + 0.269455i \(0.913156\pi\)
\(828\) 2.84583 4.92912i 0.0988994 0.171299i
\(829\) −3.70674 6.42026i −0.128740 0.222985i 0.794448 0.607332i \(-0.207760\pi\)
−0.923189 + 0.384347i \(0.874427\pi\)
\(830\) 0 0
\(831\) −9.70064 −0.336512
\(832\) −2.08209 2.94362i −0.0721834 0.102052i
\(833\) −2.89121 −0.100174
\(834\) −21.8842 + 12.6349i −0.757788 + 0.437509i
\(835\) 0 0
\(836\) 3.17925 5.50662i 0.109957 0.190450i
\(837\) 19.8505i 0.686132i
\(838\) 1.84605 + 1.06582i 0.0637706 + 0.0368180i
\(839\) −8.38778 4.84269i −0.289578 0.167188i 0.348173 0.937430i \(-0.386802\pi\)
−0.637752 + 0.770242i \(0.720135\pi\)
\(840\) 0 0
\(841\) 0.384096 0.665273i 0.0132447 0.0229404i
\(842\) 4.31714 + 7.47751i 0.148779 + 0.257692i
\(843\) 9.50367 5.48695i 0.327324 0.188981i
\(844\) −15.6939 −0.540207
\(845\) 0 0
\(846\) 3.65425 0.125636
\(847\) 6.89342 3.97992i 0.236861 0.136752i
\(848\) −0.444825 0.770460i −0.0152754 0.0264577i
\(849\) 3.30589 5.72597i 0.113458 0.196515i
\(850\) 0 0
\(851\) −16.7238 9.65548i −0.573284 0.330985i
\(852\) 11.6214 + 6.70963i 0.398143 + 0.229868i
\(853\) 28.6312i 0.980313i 0.871635 + 0.490156i \(0.163060\pi\)
−0.871635 + 0.490156i \(0.836940\pi\)
\(854\) −6.54470 + 11.3358i −0.223955 + 0.387902i
\(855\) 0 0
\(856\) −9.05440 + 5.22756i −0.309473 + 0.178674i
\(857\) 13.2207 0.451610 0.225805 0.974172i \(-0.427499\pi\)
0.225805 + 0.974172i \(0.427499\pi\)
\(858\) −7.18016 10.1512i −0.245127 0.346556i
\(859\) −15.9161 −0.543049 −0.271524 0.962432i \(-0.587528\pi\)
−0.271524 + 0.962432i \(0.587528\pi\)
\(860\) 0 0
\(861\) 1.47022 + 2.54650i 0.0501051 + 0.0867845i
\(862\) 14.3534 24.8608i 0.488879 0.846763i
\(863\) 52.3436i 1.78180i 0.454201 + 0.890899i \(0.349925\pi\)
−0.454201 + 0.890899i \(0.650075\pi\)
\(864\) 4.87423 + 2.81414i 0.165825 + 0.0957390i
\(865\) 0 0
\(866\) 23.1208i 0.785677i
\(867\) −12.4655 + 21.5910i −0.423352 + 0.733268i
\(868\) 2.47011 + 4.27835i 0.0838410 + 0.145217i
\(869\) 31.9500 18.4463i 1.08383 0.625749i
\(870\) 0 0
\(871\) −14.6519 6.74762i −0.496462 0.228635i
\(872\) 14.7574 0.499750
\(873\) −10.6606 + 6.15491i −0.360807 + 0.208312i
\(874\) −10.2786 17.8030i −0.347677 0.602195i
\(875\) 0 0
\(876\) 14.6447i 0.494798i
\(877\) 23.9478 + 13.8263i 0.808660 + 0.466880i 0.846490 0.532404i \(-0.178711\pi\)
−0.0378301 + 0.999284i \(0.512045\pi\)
\(878\) 21.0104 + 12.1304i 0.709067 + 0.409380i
\(879\) 18.2900i 0.616907i
\(880\) 0 0
\(881\) −15.6436 27.0956i −0.527047 0.912873i −0.999503 0.0315183i \(-0.989966\pi\)
0.472456 0.881354i \(-0.343368\pi\)
\(882\) 3.33098 1.92314i 0.112160 0.0647555i
\(883\) 27.1744 0.914490 0.457245 0.889341i \(-0.348836\pi\)
0.457245 + 0.889341i \(0.348836\pi\)
\(884\) 0.865532 1.87944i 0.0291110 0.0632122i
\(885\) 0 0
\(886\) 23.2777 13.4394i 0.782031 0.451506i
\(887\) −10.0613 17.4266i −0.337824 0.585128i 0.646199 0.763169i \(-0.276358\pi\)
−0.984023 + 0.178041i \(0.943024\pi\)
\(888\) 1.93690 3.35481i 0.0649982 0.112580i
\(889\) 18.2080i 0.610676i
\(890\) 0 0
\(891\) 12.2351 + 7.06395i 0.409892 + 0.236651i
\(892\) 8.72902i 0.292269i
\(893\) 6.59919 11.4301i 0.220834 0.382495i
\(894\) 16.5158 + 28.6062i 0.552371 + 0.956735i
\(895\) 0 0
\(896\) −1.40072 −0.0467948
\(897\) −40.0289 + 3.69407i −1.33652 + 0.123341i
\(898\) 36.4490 1.21632
\(899\) 16.2291 9.36988i 0.541271 0.312503i
\(900\) 0 0
\(901\) 0.255277 0.442153i 0.00850451 0.0147302i
\(902\) 3.23683i 0.107775i
\(903\) 2.07130 + 1.19587i 0.0689287 + 0.0397960i
\(904\) 15.5063 + 8.95254i 0.515730 + 0.297757i
\(905\) 0 0
\(906\) 5.52228 9.56487i 0.183465 0.317772i
\(907\) −12.6396 21.8924i −0.419690 0.726924i 0.576218 0.817296i \(-0.304528\pi\)
−0.995908 + 0.0903720i \(0.971194\pi\)
\(908\) 2.75373 1.58987i 0.0913859 0.0527617i
\(909\) 9.48955 0.314749
\(910\) 0 0
\(911\) −13.3655 −0.442820 −0.221410 0.975181i \(-0.571066\pi\)
−0.221410 + 0.975181i \(0.571066\pi\)
\(912\) 3.57130 2.06189i 0.118258 0.0682761i
\(913\) 9.63918 + 16.6955i 0.319010 + 0.552542i
\(914\) 11.7796 20.4028i 0.389634 0.674866i
\(915\) 0 0
\(916\) 15.1974 + 8.77424i 0.502137 + 0.289909i
\(917\) −17.0840 9.86345i −0.564163 0.325720i
\(918\) 3.22997i 0.106605i
\(919\) 0.454547 0.787299i 0.0149941 0.0259706i −0.858431 0.512929i \(-0.828560\pi\)
0.873425 + 0.486958i \(0.161894\pi\)
\(920\) 0 0
\(921\) −7.64922 + 4.41628i −0.252051 + 0.145521i
\(922\) 35.6721 1.17480
\(923\) 2.97305 + 32.2159i 0.0978590 + 1.06040i
\(924\) −4.83044 −0.158910
\(925\) 0 0
\(926\) −1.45363 2.51776i −0.0477692 0.0827387i
\(927\) −6.22271 + 10.7780i −0.204381 + 0.353997i
\(928\) 5.31336i 0.174420i
\(929\) −5.65093 3.26256i −0.185401 0.107041i 0.404427 0.914570i \(-0.367471\pi\)
−0.589828 + 0.807529i \(0.700804\pi\)
\(930\) 0 0
\(931\) 13.8920i 0.455291i
\(932\) −6.32083 + 10.9480i −0.207046 + 0.358614i
\(933\) 3.17234 + 5.49466i 0.103858 + 0.179887i
\(934\) −23.9189 + 13.8096i −0.782650 + 0.451863i
\(935\) 0 0
\(936\) 0.252957 + 2.74104i 0.00826815 + 0.0895935i
\(937\) 49.3573 1.61243 0.806216 0.591621i \(-0.201512\pi\)
0.806216 + 0.591621i \(0.201512\pi\)
\(938\) −5.42715 + 3.13337i −0.177203 + 0.102308i
\(939\) −8.93878 15.4824i −0.291706 0.505250i
\(940\) 0 0
\(941\) 4.46988i 0.145714i −0.997342 0.0728570i \(-0.976788\pi\)
0.997342 0.0728570i \(-0.0232117\pi\)
\(942\) −17.4224 10.0588i −0.567654 0.327735i
\(943\) −9.06272 5.23236i −0.295123 0.170389i
\(944\) 2.36033i 0.0768222i
\(945\) 0 0
\(946\) −1.31641 2.28008i −0.0428000 0.0741318i
\(947\) −13.6026 + 7.85347i −0.442025 + 0.255203i −0.704456 0.709747i \(-0.748809\pi\)
0.262431 + 0.964951i \(0.415476\pi\)
\(948\) 23.9266 0.777101
\(949\) 28.8253 20.3888i 0.935708 0.661847i
\(950\) 0 0
\(951\) −25.0945 + 14.4883i −0.813744 + 0.469815i
\(952\) −0.401924 0.696152i −0.0130264 0.0225624i
\(953\) −6.80495 + 11.7865i −0.220434 + 0.381803i −0.954940 0.296800i \(-0.904081\pi\)
0.734506 + 0.678602i \(0.237414\pi\)
\(954\) 0.679210i 0.0219902i
\(955\) 0 0
\(956\) −18.5750 10.7243i −0.600758 0.346848i
\(957\) 18.3233i 0.592309i
\(958\) −1.93690 + 3.35481i −0.0625785 + 0.108389i
\(959\) 13.1028 + 22.6947i 0.423111 + 0.732850i
\(960\) 0 0
\(961\) 18.5609 0.598738
\(962\) 9.29992 0.858244i 0.299842 0.0276709i
\(963\) 7.98203 0.257217
\(964\) −16.2431 + 9.37795i −0.523154 + 0.302043i
\(965\) 0 0
\(966\) −7.80844 + 13.5246i −0.251233 + 0.435148i
\(967\) 8.67779i 0.279059i 0.990218 + 0.139529i \(0.0445590\pi\)
−0.990218 + 0.139529i \(0.955441\pi\)
\(968\) −4.92134 2.84134i −0.158178 0.0913241i
\(969\) 2.04951 + 1.18328i 0.0658396 + 0.0380125i
\(970\) 0 0
\(971\) 24.8891 43.1092i 0.798730 1.38344i −0.121714 0.992565i \(-0.538839\pi\)
0.920444 0.390875i \(-0.127828\pi\)
\(972\) −3.86111 6.68763i −0.123845 0.214506i
\(973\) −20.4972 + 11.8340i −0.657109 + 0.379382i
\(974\) 3.59270 0.115118
\(975\) 0 0
\(976\) 9.34477 0.299119
\(977\) 30.3399 17.5167i 0.970658 0.560410i 0.0712213 0.997461i \(-0.477310\pi\)
0.899437 + 0.437051i \(0.143977\pi\)
\(978\) 11.2742 + 19.5274i 0.360508 + 0.624419i
\(979\) −2.57686 + 4.46326i −0.0823570 + 0.142646i
\(980\) 0 0
\(981\) −9.75723 5.63334i −0.311524 0.179859i
\(982\) 5.20774 + 3.00669i 0.166186 + 0.0959474i
\(983\) 31.1547i 0.993681i 0.867842 + 0.496841i \(0.165507\pi\)
−0.867842 + 0.496841i \(0.834493\pi\)
\(984\) 1.04962 1.81799i 0.0334607 0.0579556i
\(985\) 0 0
\(986\) −2.64072 + 1.52462i −0.0840977 + 0.0485538i
\(987\) −10.0266 −0.319150
\(988\) 9.03051 + 4.15880i 0.287299 + 0.132309i
\(989\) −8.51192 −0.270663
\(990\) 0 0
\(991\) −18.6073 32.2288i −0.591081 1.02378i −0.994087 0.108586i \(-0.965368\pi\)
0.403006 0.915197i \(-0.367965\pi\)
\(992\) 1.76346 3.05440i 0.0559898 0.0969772i
\(993\) 17.2931i 0.548779i
\(994\) 10.8848 + 6.28436i 0.345246 + 0.199328i
\(995\) 0 0
\(996\) 12.5029i 0.396171i
\(997\) 22.0961 38.2716i 0.699791 1.21207i −0.268747 0.963211i \(-0.586610\pi\)
0.968539 0.248863i \(-0.0800570\pi\)
\(998\) 22.0049 + 38.1136i 0.696552 + 1.20646i
\(999\) −12.6257 + 7.28945i −0.399459 + 0.230628i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.m.b.101.2 8
5.2 odd 4 650.2.n.c.49.4 8
5.3 odd 4 650.2.n.f.49.1 8
5.4 even 2 650.2.m.d.101.3 yes 8
13.2 odd 12 8450.2.a.ck.1.1 4
13.4 even 6 inner 650.2.m.b.251.2 yes 8
13.11 odd 12 8450.2.a.co.1.1 4
65.4 even 6 650.2.m.d.251.3 yes 8
65.17 odd 12 650.2.n.f.199.1 8
65.24 odd 12 8450.2.a.ch.1.4 4
65.43 odd 12 650.2.n.c.199.4 8
65.54 odd 12 8450.2.a.cl.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.m.b.101.2 8 1.1 even 1 trivial
650.2.m.b.251.2 yes 8 13.4 even 6 inner
650.2.m.d.101.3 yes 8 5.4 even 2
650.2.m.d.251.3 yes 8 65.4 even 6
650.2.n.c.49.4 8 5.2 odd 4
650.2.n.c.199.4 8 65.43 odd 12
650.2.n.f.49.1 8 5.3 odd 4
650.2.n.f.199.1 8 65.17 odd 12
8450.2.a.ch.1.4 4 65.24 odd 12
8450.2.a.ck.1.1 4 13.2 odd 12
8450.2.a.cl.1.4 4 65.54 odd 12
8450.2.a.co.1.1 4 13.11 odd 12