Properties

Label 650.2.m.b.101.3
Level $650$
Weight $2$
Character 650.101
Analytic conductor $5.190$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(101,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.3
Root \(-1.27597 - 0.609843i\) of defining polynomial
Character \(\chi\) \(=\) 650.101
Dual form 650.2.m.b.251.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.609843 - 1.05628i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.05628 - 0.609843i) q^{6} +(-3.07606 - 1.77597i) q^{7} -1.00000i q^{8} +(0.756182 - 1.30975i) q^{9} +(4.22982 - 2.44209i) q^{11} -1.21969 q^{12} +(-0.0197847 + 3.60550i) q^{13} -3.55193 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-1.57606 + 2.72982i) q^{17} -1.51236i q^{18} +(-6.90396 - 3.98601i) q^{19} +4.33225i q^{21} +(2.44209 - 4.22982i) q^{22} +(-2.45174 - 4.24653i) q^{23} +(-1.05628 + 0.609843i) q^{24} +(1.78561 + 3.13234i) q^{26} -5.50367 q^{27} +(-3.07606 + 1.77597i) q^{28} +(-2.02943 - 3.51508i) q^{29} +5.02473i q^{31} +(-0.866025 - 0.500000i) q^{32} +(-5.15906 - 2.97859i) q^{33} +3.15213i q^{34} +(-0.756182 - 1.30975i) q^{36} +(1.82953 - 1.05628i) q^{37} -7.97201 q^{38} +(3.82048 - 2.17789i) q^{39} +(5.49674 - 3.17354i) q^{41} +(2.16612 + 3.75184i) q^{42} +(0.922305 - 1.59748i) q^{43} -4.88418i q^{44} +(-4.24653 - 2.45174i) q^{46} -6.08359i q^{47} +(-0.609843 + 1.05628i) q^{48} +(2.80812 + 4.86380i) q^{49} +3.84461 q^{51} +(3.11256 + 1.81988i) q^{52} +8.08903 q^{53} +(-4.76632 + 2.75184i) q^{54} +(-1.77597 + 3.07606i) q^{56} +9.72336i q^{57} +(-3.51508 - 2.02943i) q^{58} +(10.5964 + 6.11786i) q^{59} +(-2.09277 + 3.62479i) q^{61} +(2.51236 + 4.35154i) q^{62} +(-4.65213 + 2.68591i) q^{63} -1.00000 q^{64} -5.95717 q^{66} +(13.5630 - 7.83062i) q^{67} +(1.57606 + 2.72982i) q^{68} +(-2.99035 + 5.17944i) q^{69} +(6.33768 + 3.65906i) q^{71} +(-1.30975 - 0.756182i) q^{72} -5.54324i q^{73} +(1.05628 - 1.82953i) q^{74} +(-6.90396 + 3.98601i) q^{76} -17.3483 q^{77} +(2.21969 - 3.79635i) q^{78} -2.01506 q^{79} +(1.08783 + 1.88418i) q^{81} +(3.17354 - 5.49674i) q^{82} +6.23572i q^{83} +(3.75184 + 2.16612i) q^{84} -1.84461i q^{86} +(-2.47527 + 4.28730i) q^{87} +(-2.44209 - 4.22982i) q^{88} +(-5.30564 + 3.06321i) q^{89} +(6.46410 - 11.0556i) q^{91} -4.90348 q^{92} +(5.30752 - 3.06430i) q^{93} +(-3.04180 - 5.26855i) q^{94} +1.21969i q^{96} +(1.97163 + 1.13832i) q^{97} +(4.86380 + 2.80812i) q^{98} -7.38666i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 4 q^{4} - 6 q^{7} + 2 q^{9} + 12 q^{11} - 4 q^{12} + 10 q^{13} - 4 q^{16} + 6 q^{17} + 6 q^{19} - 6 q^{22} + 6 q^{26} + 4 q^{27} - 6 q^{28} - 12 q^{29} - 24 q^{33} - 2 q^{36} + 6 q^{37}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.609843 1.05628i −0.352093 0.609843i 0.634523 0.772904i \(-0.281197\pi\)
−0.986616 + 0.163061i \(0.947863\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −1.05628 0.609843i −0.431224 0.248968i
\(7\) −3.07606 1.77597i −1.16264 0.671252i −0.210707 0.977549i \(-0.567577\pi\)
−0.951936 + 0.306297i \(0.900910\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.756182 1.30975i 0.252061 0.436582i
\(10\) 0 0
\(11\) 4.22982 2.44209i 1.27534 0.736318i 0.299352 0.954143i \(-0.403230\pi\)
0.975988 + 0.217825i \(0.0698962\pi\)
\(12\) −1.21969 −0.352093
\(13\) −0.0197847 + 3.60550i −0.00548729 + 0.999985i
\(14\) −3.55193 −0.949294
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.57606 + 2.72982i −0.382252 + 0.662080i −0.991384 0.130989i \(-0.958185\pi\)
0.609132 + 0.793069i \(0.291518\pi\)
\(18\) 1.51236i 0.356468i
\(19\) −6.90396 3.98601i −1.58388 0.914452i −0.994286 0.106751i \(-0.965955\pi\)
−0.589592 0.807701i \(-0.700712\pi\)
\(20\) 0 0
\(21\) 4.33225i 0.945374i
\(22\) 2.44209 4.22982i 0.520655 0.901801i
\(23\) −2.45174 4.24653i −0.511223 0.885464i −0.999915 0.0130076i \(-0.995859\pi\)
0.488693 0.872456i \(-0.337474\pi\)
\(24\) −1.05628 + 0.609843i −0.215612 + 0.124484i
\(25\) 0 0
\(26\) 1.78561 + 3.13234i 0.350188 + 0.614303i
\(27\) −5.50367 −1.05918
\(28\) −3.07606 + 1.77597i −0.581322 + 0.335626i
\(29\) −2.02943 3.51508i −0.376856 0.652734i 0.613747 0.789503i \(-0.289662\pi\)
−0.990603 + 0.136769i \(0.956328\pi\)
\(30\) 0 0
\(31\) 5.02473i 0.902468i 0.892406 + 0.451234i \(0.149016\pi\)
−0.892406 + 0.451234i \(0.850984\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −5.15906 2.97859i −0.898077 0.518505i
\(34\) 3.15213i 0.540586i
\(35\) 0 0
\(36\) −0.756182 1.30975i −0.126030 0.218291i
\(37\) 1.82953 1.05628i 0.300773 0.173651i −0.342017 0.939694i \(-0.611110\pi\)
0.642790 + 0.766042i \(0.277777\pi\)
\(38\) −7.97201 −1.29323
\(39\) 3.82048 2.17789i 0.611766 0.348742i
\(40\) 0 0
\(41\) 5.49674 3.17354i 0.858446 0.495624i −0.00504526 0.999987i \(-0.501606\pi\)
0.863492 + 0.504363i \(0.168273\pi\)
\(42\) 2.16612 + 3.75184i 0.334240 + 0.578921i
\(43\) 0.922305 1.59748i 0.140650 0.243613i −0.787091 0.616836i \(-0.788414\pi\)
0.927742 + 0.373223i \(0.121747\pi\)
\(44\) 4.88418i 0.736318i
\(45\) 0 0
\(46\) −4.24653 2.45174i −0.626117 0.361489i
\(47\) 6.08359i 0.887383i −0.896180 0.443692i \(-0.853669\pi\)
0.896180 0.443692i \(-0.146331\pi\)
\(48\) −0.609843 + 1.05628i −0.0880233 + 0.152461i
\(49\) 2.80812 + 4.86380i 0.401159 + 0.694828i
\(50\) 0 0
\(51\) 3.84461 0.538353
\(52\) 3.11256 + 1.81988i 0.431634 + 0.252372i
\(53\) 8.08903 1.11111 0.555557 0.831479i \(-0.312505\pi\)
0.555557 + 0.831479i \(0.312505\pi\)
\(54\) −4.76632 + 2.75184i −0.648614 + 0.374477i
\(55\) 0 0
\(56\) −1.77597 + 3.07606i −0.237324 + 0.411056i
\(57\) 9.72336i 1.28789i
\(58\) −3.51508 2.02943i −0.461553 0.266478i
\(59\) 10.5964 + 6.11786i 1.37954 + 0.796478i 0.992104 0.125419i \(-0.0400275\pi\)
0.387436 + 0.921897i \(0.373361\pi\)
\(60\) 0 0
\(61\) −2.09277 + 3.62479i −0.267952 + 0.464107i −0.968333 0.249663i \(-0.919680\pi\)
0.700381 + 0.713770i \(0.253014\pi\)
\(62\) 2.51236 + 4.35154i 0.319071 + 0.552646i
\(63\) −4.65213 + 2.68591i −0.586113 + 0.338393i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −5.95717 −0.733277
\(67\) 13.5630 7.83062i 1.65699 0.956662i 0.682893 0.730518i \(-0.260721\pi\)
0.974094 0.226144i \(-0.0726120\pi\)
\(68\) 1.57606 + 2.72982i 0.191126 + 0.331040i
\(69\) −2.99035 + 5.17944i −0.359996 + 0.623532i
\(70\) 0 0
\(71\) 6.33768 + 3.65906i 0.752144 + 0.434251i 0.826468 0.562984i \(-0.190347\pi\)
−0.0743240 + 0.997234i \(0.523680\pi\)
\(72\) −1.30975 0.756182i −0.154355 0.0891169i
\(73\) 5.54324i 0.648787i −0.945922 0.324394i \(-0.894840\pi\)
0.945922 0.324394i \(-0.105160\pi\)
\(74\) 1.05628 1.82953i 0.122790 0.212679i
\(75\) 0 0
\(76\) −6.90396 + 3.98601i −0.791939 + 0.457226i
\(77\) −17.3483 −1.97702
\(78\) 2.21969 3.79635i 0.251330 0.429852i
\(79\) −2.01506 −0.226712 −0.113356 0.993554i \(-0.536160\pi\)
−0.113356 + 0.993554i \(0.536160\pi\)
\(80\) 0 0
\(81\) 1.08783 + 1.88418i 0.120870 + 0.209353i
\(82\) 3.17354 5.49674i 0.350459 0.607013i
\(83\) 6.23572i 0.684459i 0.939616 + 0.342230i \(0.111182\pi\)
−0.939616 + 0.342230i \(0.888818\pi\)
\(84\) 3.75184 + 2.16612i 0.409359 + 0.236343i
\(85\) 0 0
\(86\) 1.84461i 0.198909i
\(87\) −2.47527 + 4.28730i −0.265377 + 0.459646i
\(88\) −2.44209 4.22982i −0.260328 0.450901i
\(89\) −5.30564 + 3.06321i −0.562396 + 0.324700i −0.754107 0.656752i \(-0.771930\pi\)
0.191710 + 0.981452i \(0.438597\pi\)
\(90\) 0 0
\(91\) 6.46410 11.0556i 0.677622 1.15894i
\(92\) −4.90348 −0.511223
\(93\) 5.30752 3.06430i 0.550364 0.317753i
\(94\) −3.04180 5.26855i −0.313737 0.543409i
\(95\) 0 0
\(96\) 1.21969i 0.124484i
\(97\) 1.97163 + 1.13832i 0.200189 + 0.115579i 0.596743 0.802432i \(-0.296461\pi\)
−0.396555 + 0.918011i \(0.629794\pi\)
\(98\) 4.86380 + 2.80812i 0.491318 + 0.283662i
\(99\) 7.38666i 0.742387i
\(100\) 0 0
\(101\) −4.30377 7.45435i −0.428241 0.741735i 0.568476 0.822700i \(-0.307533\pi\)
−0.996717 + 0.0809647i \(0.974200\pi\)
\(102\) 3.32953 1.92231i 0.329673 0.190337i
\(103\) 8.39726 0.827407 0.413703 0.910412i \(-0.364235\pi\)
0.413703 + 0.910412i \(0.364235\pi\)
\(104\) 3.60550 + 0.0197847i 0.353548 + 0.00194005i
\(105\) 0 0
\(106\) 7.00530 4.04451i 0.680415 0.392838i
\(107\) −0.951738 1.64846i −0.0920080 0.159362i 0.816348 0.577560i \(-0.195995\pi\)
−0.908356 + 0.418198i \(0.862662\pi\)
\(108\) −2.75184 + 4.76632i −0.264795 + 0.458639i
\(109\) 19.9720i 1.91297i 0.291779 + 0.956486i \(0.405753\pi\)
−0.291779 + 0.956486i \(0.594247\pi\)
\(110\) 0 0
\(111\) −2.23145 1.28833i −0.211800 0.122283i
\(112\) 3.55193i 0.335626i
\(113\) 5.16933 8.95354i 0.486290 0.842278i −0.513586 0.858038i \(-0.671683\pi\)
0.999876 + 0.0157598i \(0.00501670\pi\)
\(114\) 4.86168 + 8.42067i 0.455338 + 0.788668i
\(115\) 0 0
\(116\) −4.05886 −0.376856
\(117\) 4.70732 + 2.75232i 0.435192 + 0.254453i
\(118\) 12.2357 1.12639
\(119\) 9.69615 5.59808i 0.888845 0.513175i
\(120\) 0 0
\(121\) 6.42761 11.1329i 0.584328 1.01209i
\(122\) 4.18555i 0.378942i
\(123\) −6.70430 3.87073i −0.604506 0.349012i
\(124\) 4.35154 + 2.51236i 0.390780 + 0.225617i
\(125\) 0 0
\(126\) −2.68591 + 4.65213i −0.239280 + 0.414445i
\(127\) 2.50753 + 4.34317i 0.222507 + 0.385394i 0.955569 0.294769i \(-0.0952426\pi\)
−0.733061 + 0.680162i \(0.761909\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −2.24985 −0.198088
\(130\) 0 0
\(131\) −9.40715 −0.821906 −0.410953 0.911656i \(-0.634804\pi\)
−0.410953 + 0.911656i \(0.634804\pi\)
\(132\) −5.15906 + 2.97859i −0.449039 + 0.259253i
\(133\) 14.1580 + 24.5224i 1.22766 + 2.12636i
\(134\) 7.83062 13.5630i 0.676462 1.17167i
\(135\) 0 0
\(136\) 2.72982 + 1.57606i 0.234080 + 0.135146i
\(137\) −1.34420 0.776074i −0.114843 0.0663045i 0.441478 0.897272i \(-0.354454\pi\)
−0.556321 + 0.830967i \(0.687788\pi\)
\(138\) 5.98070i 0.509111i
\(139\) 10.9572 18.9784i 0.929375 1.60972i 0.145006 0.989431i \(-0.453680\pi\)
0.784369 0.620294i \(-0.212987\pi\)
\(140\) 0 0
\(141\) −6.42598 + 3.71004i −0.541165 + 0.312442i
\(142\) 7.31812 0.614123
\(143\) 8.72126 + 15.2989i 0.729309 + 1.27936i
\(144\) −1.51236 −0.126030
\(145\) 0 0
\(146\) −2.77162 4.80059i −0.229381 0.397299i
\(147\) 3.42502 5.93231i 0.282491 0.489289i
\(148\) 2.11256i 0.173651i
\(149\) 18.3405 + 10.5889i 1.50252 + 0.867478i 0.999996 + 0.00291242i \(0.000927052\pi\)
0.502520 + 0.864566i \(0.332406\pi\)
\(150\) 0 0
\(151\) 11.8693i 0.965913i −0.875644 0.482957i \(-0.839563\pi\)
0.875644 0.482957i \(-0.160437\pi\)
\(152\) −3.98601 + 6.90396i −0.323308 + 0.559985i
\(153\) 2.38358 + 4.12849i 0.192701 + 0.333768i
\(154\) −15.0241 + 8.67414i −1.21067 + 0.698982i
\(155\) 0 0
\(156\) 0.0241312 4.39758i 0.00193204 0.352088i
\(157\) 15.4552 1.23346 0.616729 0.787175i \(-0.288457\pi\)
0.616729 + 0.787175i \(0.288457\pi\)
\(158\) −1.74509 + 1.00753i −0.138832 + 0.0801546i
\(159\) −4.93304 8.54427i −0.391215 0.677605i
\(160\) 0 0
\(161\) 17.4168i 1.37264i
\(162\) 1.88418 + 1.08783i 0.148035 + 0.0854681i
\(163\) −3.41863 1.97375i −0.267768 0.154596i 0.360105 0.932912i \(-0.382741\pi\)
−0.627873 + 0.778316i \(0.716074\pi\)
\(164\) 6.34709i 0.495624i
\(165\) 0 0
\(166\) 3.11786 + 5.40029i 0.241993 + 0.419144i
\(167\) 1.64479 0.949618i 0.127277 0.0734837i −0.435009 0.900426i \(-0.643255\pi\)
0.562287 + 0.826942i \(0.309922\pi\)
\(168\) 4.33225 0.334240
\(169\) −12.9992 0.142667i −0.999940 0.0109744i
\(170\) 0 0
\(171\) −10.4413 + 6.02829i −0.798467 + 0.460995i
\(172\) −0.922305 1.59748i −0.0703251 0.121807i
\(173\) 3.47799 6.02405i 0.264427 0.458000i −0.702987 0.711203i \(-0.748151\pi\)
0.967413 + 0.253203i \(0.0814840\pi\)
\(174\) 4.95054i 0.375300i
\(175\) 0 0
\(176\) −4.22982 2.44209i −0.318835 0.184079i
\(177\) 14.9237i 1.12174i
\(178\) −3.06321 + 5.30564i −0.229597 + 0.397674i
\(179\) −4.50791 7.80793i −0.336937 0.583592i 0.646918 0.762560i \(-0.276058\pi\)
−0.983855 + 0.178968i \(0.942724\pi\)
\(180\) 0 0
\(181\) −8.60563 −0.639651 −0.319826 0.947476i \(-0.603624\pi\)
−0.319826 + 0.947476i \(0.603624\pi\)
\(182\) 0.0702740 12.8065i 0.00520906 0.949280i
\(183\) 5.10506 0.377377
\(184\) −4.24653 + 2.45174i −0.313059 + 0.180744i
\(185\) 0 0
\(186\) 3.06430 5.30752i 0.224685 0.389166i
\(187\) 15.3956i 1.12584i
\(188\) −5.26855 3.04180i −0.384248 0.221846i
\(189\) 16.9296 + 9.77434i 1.23145 + 0.710978i
\(190\) 0 0
\(191\) −7.10020 + 12.2979i −0.513752 + 0.889845i 0.486121 + 0.873892i \(0.338412\pi\)
−0.999873 + 0.0159531i \(0.994922\pi\)
\(192\) 0.609843 + 1.05628i 0.0440117 + 0.0762304i
\(193\) 16.3979 9.46731i 1.18034 0.681472i 0.224250 0.974532i \(-0.428007\pi\)
0.956094 + 0.293060i \(0.0946736\pi\)
\(194\) 2.27664 0.163453
\(195\) 0 0
\(196\) 5.61623 0.401159
\(197\) −21.2827 + 12.2875i −1.51633 + 0.875452i −0.516510 + 0.856281i \(0.672769\pi\)
−0.999816 + 0.0191706i \(0.993897\pi\)
\(198\) −3.69333 6.39703i −0.262473 0.454617i
\(199\) 4.92067 8.52286i 0.348817 0.604169i −0.637222 0.770680i \(-0.719917\pi\)
0.986040 + 0.166511i \(0.0532500\pi\)
\(200\) 0 0
\(201\) −16.5426 9.55090i −1.16683 0.673669i
\(202\) −7.45435 4.30377i −0.524486 0.302812i
\(203\) 14.4168i 1.01186i
\(204\) 1.92231 3.32953i 0.134588 0.233114i
\(205\) 0 0
\(206\) 7.27224 4.19863i 0.506681 0.292532i
\(207\) −7.41584 −0.515436
\(208\) 3.13234 1.78561i 0.217189 0.123810i
\(209\) −38.9367 −2.69331
\(210\) 0 0
\(211\) −8.77754 15.2031i −0.604271 1.04663i −0.992166 0.124924i \(-0.960131\pi\)
0.387895 0.921703i \(-0.373202\pi\)
\(212\) 4.04451 7.00530i 0.277778 0.481126i
\(213\) 8.92582i 0.611587i
\(214\) −1.64846 0.951738i −0.112686 0.0650594i
\(215\) 0 0
\(216\) 5.50367i 0.374477i
\(217\) 8.92375 15.4564i 0.605784 1.04925i
\(218\) 9.98601 + 17.2963i 0.676338 + 1.17145i
\(219\) −5.85521 + 3.38051i −0.395659 + 0.228434i
\(220\) 0 0
\(221\) −9.81119 5.73650i −0.659972 0.385879i
\(222\) −2.57666 −0.172934
\(223\) −16.9972 + 9.81331i −1.13821 + 0.657148i −0.945988 0.324203i \(-0.894904\pi\)
−0.192226 + 0.981351i \(0.561571\pi\)
\(224\) 1.77597 + 3.07606i 0.118662 + 0.205528i
\(225\) 0 0
\(226\) 10.3387i 0.687717i
\(227\) 9.05935 + 5.23042i 0.601290 + 0.347155i 0.769549 0.638588i \(-0.220481\pi\)
−0.168259 + 0.985743i \(0.553814\pi\)
\(228\) 8.42067 + 4.86168i 0.557673 + 0.321973i
\(229\) 5.14381i 0.339912i −0.985452 0.169956i \(-0.945637\pi\)
0.985452 0.169956i \(-0.0543626\pi\)
\(230\) 0 0
\(231\) 10.5797 + 18.3246i 0.696095 + 1.20567i
\(232\) −3.51508 + 2.02943i −0.230776 + 0.133239i
\(233\) −19.1197 −1.25257 −0.626286 0.779593i \(-0.715426\pi\)
−0.626286 + 0.779593i \(0.715426\pi\)
\(234\) 5.45282 + 0.0299217i 0.356462 + 0.00195604i
\(235\) 0 0
\(236\) 10.5964 6.11786i 0.689770 0.398239i
\(237\) 1.22887 + 2.12846i 0.0798236 + 0.138259i
\(238\) 5.59808 9.69615i 0.362869 0.628508i
\(239\) 23.9572i 1.54966i 0.632169 + 0.774830i \(0.282165\pi\)
−0.632169 + 0.774830i \(0.717835\pi\)
\(240\) 0 0
\(241\) 14.1664 + 8.17898i 0.912538 + 0.526854i 0.881247 0.472656i \(-0.156705\pi\)
0.0312913 + 0.999510i \(0.490038\pi\)
\(242\) 12.8552i 0.826364i
\(243\) −6.92869 + 12.0008i −0.444476 + 0.769855i
\(244\) 2.09277 + 3.62479i 0.133976 + 0.232054i
\(245\) 0 0
\(246\) −7.74146 −0.493577
\(247\) 14.5081 24.8134i 0.923130 1.57884i
\(248\) 5.02473 0.319071
\(249\) 6.58667 3.80281i 0.417413 0.240994i
\(250\) 0 0
\(251\) −1.32260 + 2.29081i −0.0834817 + 0.144595i −0.904743 0.425957i \(-0.859937\pi\)
0.821262 + 0.570552i \(0.193271\pi\)
\(252\) 5.37182i 0.338393i
\(253\) −20.7408 11.9747i −1.30397 0.752845i
\(254\) 4.34317 + 2.50753i 0.272514 + 0.157336i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 15.6006 + 27.0210i 0.973139 + 1.68553i 0.685944 + 0.727654i \(0.259389\pi\)
0.287195 + 0.957872i \(0.407277\pi\)
\(258\) −1.94842 + 1.12492i −0.121304 + 0.0700347i
\(259\) −7.50367 −0.466255
\(260\) 0 0
\(261\) −6.13848 −0.379962
\(262\) −8.14683 + 4.70357i −0.503313 + 0.290588i
\(263\) −1.57606 2.72982i −0.0971843 0.168328i 0.813334 0.581797i \(-0.197650\pi\)
−0.910518 + 0.413469i \(0.864317\pi\)
\(264\) −2.97859 + 5.15906i −0.183319 + 0.317518i
\(265\) 0 0
\(266\) 24.5224 + 14.1580i 1.50357 + 0.868084i
\(267\) 6.47122 + 3.73616i 0.396032 + 0.228649i
\(268\) 15.6612i 0.956662i
\(269\) 6.85472 11.8727i 0.417940 0.723893i −0.577792 0.816184i \(-0.696086\pi\)
0.995732 + 0.0922908i \(0.0294189\pi\)
\(270\) 0 0
\(271\) 6.92256 3.99674i 0.420515 0.242785i −0.274782 0.961506i \(-0.588606\pi\)
0.695298 + 0.718722i \(0.255272\pi\)
\(272\) 3.15213 0.191126
\(273\) −15.6199 0.0857123i −0.945359 0.00518754i
\(274\) −1.55215 −0.0937687
\(275\) 0 0
\(276\) 2.99035 + 5.17944i 0.179998 + 0.311766i
\(277\) 0.829530 1.43679i 0.0498416 0.0863283i −0.840028 0.542543i \(-0.817462\pi\)
0.889870 + 0.456214i \(0.150795\pi\)
\(278\) 21.9143i 1.31433i
\(279\) 6.58112 + 3.79961i 0.394001 + 0.227477i
\(280\) 0 0
\(281\) 6.04076i 0.360362i −0.983633 0.180181i \(-0.942332\pi\)
0.983633 0.180181i \(-0.0576683\pi\)
\(282\) −3.71004 + 6.42598i −0.220930 + 0.382661i
\(283\) −15.3134 26.5236i −0.910288 1.57667i −0.813657 0.581345i \(-0.802527\pi\)
−0.0966310 0.995320i \(-0.530807\pi\)
\(284\) 6.33768 3.65906i 0.376072 0.217125i
\(285\) 0 0
\(286\) 15.2023 + 8.88863i 0.898931 + 0.525596i
\(287\) −22.5444 −1.33076
\(288\) −1.30975 + 0.756182i −0.0771775 + 0.0445584i
\(289\) 3.53204 + 6.11767i 0.207767 + 0.359863i
\(290\) 0 0
\(291\) 2.77679i 0.162778i
\(292\) −4.80059 2.77162i −0.280933 0.162197i
\(293\) −22.8183 13.1741i −1.33306 0.769642i −0.347291 0.937757i \(-0.612898\pi\)
−0.985767 + 0.168116i \(0.946232\pi\)
\(294\) 6.85004i 0.399503i
\(295\) 0 0
\(296\) −1.05628 1.82953i −0.0613950 0.106339i
\(297\) −23.2796 + 13.4405i −1.35082 + 0.779895i
\(298\) 21.1778 1.22680
\(299\) 15.3594 8.75572i 0.888255 0.506356i
\(300\) 0 0
\(301\) −5.67414 + 3.27597i −0.327052 + 0.188824i
\(302\) −5.93467 10.2791i −0.341502 0.591499i
\(303\) −5.24925 + 9.09197i −0.301562 + 0.522320i
\(304\) 7.97201i 0.457226i
\(305\) 0 0
\(306\) 4.12849 + 2.38358i 0.236010 + 0.136260i
\(307\) 16.3537i 0.933356i −0.884427 0.466678i \(-0.845451\pi\)
0.884427 0.466678i \(-0.154549\pi\)
\(308\) −8.67414 + 15.0241i −0.494255 + 0.856075i
\(309\) −5.12101 8.86986i −0.291324 0.504588i
\(310\) 0 0
\(311\) 23.2857 1.32041 0.660205 0.751086i \(-0.270469\pi\)
0.660205 + 0.751086i \(0.270469\pi\)
\(312\) −2.17789 3.82048i −0.123299 0.216292i
\(313\) 3.62514 0.204905 0.102452 0.994738i \(-0.467331\pi\)
0.102452 + 0.994738i \(0.467331\pi\)
\(314\) 13.3846 7.72760i 0.755336 0.436094i
\(315\) 0 0
\(316\) −1.00753 + 1.74509i −0.0566779 + 0.0981690i
\(317\) 9.98609i 0.560875i 0.959872 + 0.280437i \(0.0904795\pi\)
−0.959872 + 0.280437i \(0.909521\pi\)
\(318\) −8.54427 4.93304i −0.479139 0.276631i
\(319\) −17.1683 9.91211i −0.961239 0.554972i
\(320\) 0 0
\(321\) −1.16082 + 2.01060i −0.0647908 + 0.112221i
\(322\) 8.70841 + 15.0834i 0.485301 + 0.840565i
\(323\) 21.7622 12.5644i 1.21088 0.699102i
\(324\) 2.17566 0.120870
\(325\) 0 0
\(326\) −3.94750 −0.218632
\(327\) 21.0960 12.1798i 1.16661 0.673544i
\(328\) −3.17354 5.49674i −0.175230 0.303507i
\(329\) −10.8043 + 18.7135i −0.595658 + 1.03171i
\(330\) 0 0
\(331\) −4.50815 2.60278i −0.247790 0.143062i 0.370962 0.928648i \(-0.379028\pi\)
−0.618752 + 0.785586i \(0.712361\pi\)
\(332\) 5.40029 + 3.11786i 0.296380 + 0.171115i
\(333\) 3.19496i 0.175083i
\(334\) 0.949618 1.64479i 0.0519608 0.0899987i
\(335\) 0 0
\(336\) 3.75184 2.16612i 0.204679 0.118172i
\(337\) 7.08153 0.385755 0.192878 0.981223i \(-0.438218\pi\)
0.192878 + 0.981223i \(0.438218\pi\)
\(338\) −11.3290 + 6.37605i −0.616216 + 0.346812i
\(339\) −12.6099 −0.684877
\(340\) 0 0
\(341\) 12.2708 + 21.2537i 0.664503 + 1.15095i
\(342\) −6.02829 + 10.4413i −0.325973 + 0.564601i
\(343\) 4.91506i 0.265388i
\(344\) −1.59748 0.922305i −0.0861303 0.0497274i
\(345\) 0 0
\(346\) 6.95598i 0.373956i
\(347\) −10.9671 + 18.9955i −0.588743 + 1.01973i 0.405654 + 0.914027i \(0.367044\pi\)
−0.994397 + 0.105706i \(0.966290\pi\)
\(348\) 2.47527 + 4.28730i 0.132689 + 0.229823i
\(349\) −26.4773 + 15.2867i −1.41730 + 0.818278i −0.996061 0.0886715i \(-0.971738\pi\)
−0.421239 + 0.906950i \(0.638405\pi\)
\(350\) 0 0
\(351\) 0.108889 19.8435i 0.00581204 1.05917i
\(352\) −4.88418 −0.260328
\(353\) 8.45042 4.87885i 0.449771 0.259675i −0.257963 0.966155i \(-0.583051\pi\)
0.707733 + 0.706480i \(0.249718\pi\)
\(354\) −7.46187 12.9243i −0.396594 0.686921i
\(355\) 0 0
\(356\) 6.12642i 0.324700i
\(357\) −11.8263 6.82790i −0.625913 0.361371i
\(358\) −7.80793 4.50791i −0.412662 0.238250i
\(359\) 11.2129i 0.591794i 0.955220 + 0.295897i \(0.0956186\pi\)
−0.955220 + 0.295897i \(0.904381\pi\)
\(360\) 0 0
\(361\) 22.2765 + 38.5840i 1.17245 + 2.03074i
\(362\) −7.45269 + 4.30281i −0.391705 + 0.226151i
\(363\) −15.6793 −0.822952
\(364\) −6.34238 11.1259i −0.332431 0.583154i
\(365\) 0 0
\(366\) 4.42111 2.55253i 0.231095 0.133423i
\(367\) −2.68922 4.65787i −0.140376 0.243139i 0.787262 0.616618i \(-0.211498\pi\)
−0.927638 + 0.373480i \(0.878165\pi\)
\(368\) −2.45174 + 4.24653i −0.127806 + 0.221366i
\(369\) 9.59911i 0.499710i
\(370\) 0 0
\(371\) −24.8824 14.3658i −1.29183 0.745837i
\(372\) 6.12859i 0.317753i
\(373\) 2.19941 3.80949i 0.113881 0.197248i −0.803451 0.595371i \(-0.797005\pi\)
0.917332 + 0.398123i \(0.130338\pi\)
\(374\) 7.69778 + 13.3330i 0.398043 + 0.689430i
\(375\) 0 0
\(376\) −6.08359 −0.313737
\(377\) 12.7138 7.24757i 0.654792 0.373269i
\(378\) 19.5487 1.00548
\(379\) 6.70731 3.87247i 0.344531 0.198915i −0.317743 0.948177i \(-0.602925\pi\)
0.662274 + 0.749262i \(0.269591\pi\)
\(380\) 0 0
\(381\) 3.05840 5.29730i 0.156687 0.271389i
\(382\) 14.2004i 0.726555i
\(383\) 12.0979 + 6.98473i 0.618175 + 0.356903i 0.776158 0.630539i \(-0.217166\pi\)
−0.157983 + 0.987442i \(0.550499\pi\)
\(384\) 1.05628 + 0.609843i 0.0539031 + 0.0311209i
\(385\) 0 0
\(386\) 9.46731 16.3979i 0.481873 0.834629i
\(387\) −1.39486 2.41597i −0.0709048 0.122811i
\(388\) 1.97163 1.13832i 0.100094 0.0577895i
\(389\) −14.2746 −0.723750 −0.361875 0.932227i \(-0.617863\pi\)
−0.361875 + 0.932227i \(0.617863\pi\)
\(390\) 0 0
\(391\) 15.4564 0.781663
\(392\) 4.86380 2.80812i 0.245659 0.141831i
\(393\) 5.73689 + 9.93658i 0.289388 + 0.501234i
\(394\) −12.2875 + 21.2827i −0.619038 + 1.07220i
\(395\) 0 0
\(396\) −6.39703 3.69333i −0.321463 0.185597i
\(397\) −3.94186 2.27584i −0.197836 0.114221i 0.397809 0.917468i \(-0.369771\pi\)
−0.595646 + 0.803247i \(0.703104\pi\)
\(398\) 9.84135i 0.493302i
\(399\) 17.2684 29.9097i 0.864499 1.49736i
\(400\) 0 0
\(401\) −21.7923 + 12.5818i −1.08825 + 0.628304i −0.933111 0.359588i \(-0.882917\pi\)
−0.155143 + 0.987892i \(0.549584\pi\)
\(402\) −19.1018 −0.952711
\(403\) −18.1166 0.0994128i −0.902454 0.00495211i
\(404\) −8.60754 −0.428241
\(405\) 0 0
\(406\) 7.20841 + 12.4853i 0.357747 + 0.619637i
\(407\) 5.15906 8.93576i 0.255725 0.442929i
\(408\) 3.84461i 0.190337i
\(409\) 9.68881 + 5.59384i 0.479081 + 0.276597i 0.720033 0.693939i \(-0.244126\pi\)
−0.240953 + 0.970537i \(0.577460\pi\)
\(410\) 0 0
\(411\) 1.89313i 0.0933815i
\(412\) 4.19863 7.27224i 0.206852 0.358278i
\(413\) −21.7302 37.6379i −1.06927 1.85204i
\(414\) −6.42231 + 3.70792i −0.315639 + 0.182234i
\(415\) 0 0
\(416\) 1.81988 3.11256i 0.0892271 0.152606i
\(417\) −26.7286 −1.30891
\(418\) −33.7202 + 19.4684i −1.64931 + 0.952229i
\(419\) −7.25901 12.5730i −0.354626 0.614230i 0.632428 0.774619i \(-0.282058\pi\)
−0.987054 + 0.160389i \(0.948725\pi\)
\(420\) 0 0
\(421\) 6.96332i 0.339371i −0.985498 0.169686i \(-0.945725\pi\)
0.985498 0.169686i \(-0.0542753\pi\)
\(422\) −15.2031 8.77754i −0.740078 0.427284i
\(423\) −7.96796 4.60030i −0.387415 0.223674i
\(424\) 8.08903i 0.392838i
\(425\) 0 0
\(426\) −4.46291 7.72998i −0.216229 0.374519i
\(427\) 12.8750 7.43340i 0.623066 0.359727i
\(428\) −1.90348 −0.0920080
\(429\) 10.8413 18.5420i 0.523425 0.895218i
\(430\) 0 0
\(431\) −19.2718 + 11.1266i −0.928290 + 0.535949i −0.886270 0.463168i \(-0.846713\pi\)
−0.0420198 + 0.999117i \(0.513379\pi\)
\(432\) 2.75184 + 4.76632i 0.132398 + 0.229320i
\(433\) 0.311190 0.538996i 0.0149548 0.0259025i −0.858451 0.512895i \(-0.828573\pi\)
0.873406 + 0.486993i \(0.161906\pi\)
\(434\) 17.8475i 0.856707i
\(435\) 0 0
\(436\) 17.2963 + 9.98601i 0.828341 + 0.478243i
\(437\) 39.0906i 1.86996i
\(438\) −3.38051 + 5.85521i −0.161527 + 0.279773i
\(439\) 16.5840 + 28.7243i 0.791511 + 1.37094i 0.925031 + 0.379892i \(0.124039\pi\)
−0.133520 + 0.991046i \(0.542628\pi\)
\(440\) 0 0
\(441\) 8.49378 0.404466
\(442\) −11.3650 0.0623640i −0.540578 0.00296635i
\(443\) 2.05137 0.0974633 0.0487317 0.998812i \(-0.484482\pi\)
0.0487317 + 0.998812i \(0.484482\pi\)
\(444\) −2.23145 + 1.28833i −0.105900 + 0.0611415i
\(445\) 0 0
\(446\) −9.81331 + 16.9972i −0.464674 + 0.804838i
\(447\) 25.8303i 1.22173i
\(448\) 3.07606 + 1.77597i 0.145330 + 0.0839065i
\(449\) −0.892538 0.515307i −0.0421215 0.0243188i 0.478791 0.877929i \(-0.341075\pi\)
−0.520913 + 0.853610i \(0.674408\pi\)
\(450\) 0 0
\(451\) 15.5002 26.8471i 0.729874 1.26418i
\(452\) −5.16933 8.95354i −0.243145 0.421139i
\(453\) −12.5373 + 7.23844i −0.589056 + 0.340091i
\(454\) 10.4608 0.490952
\(455\) 0 0
\(456\) 9.72336 0.455338
\(457\) 36.3342 20.9776i 1.69964 0.981288i 0.753549 0.657392i \(-0.228340\pi\)
0.946092 0.323897i \(-0.104993\pi\)
\(458\) −2.57190 4.45467i −0.120177 0.208153i
\(459\) 8.67414 15.0241i 0.404874 0.701263i
\(460\) 0 0
\(461\) 3.54322 + 2.04568i 0.165024 + 0.0952767i 0.580237 0.814447i \(-0.302960\pi\)
−0.415213 + 0.909724i \(0.636293\pi\)
\(462\) 18.3246 + 10.5797i 0.852539 + 0.492214i
\(463\) 31.7060i 1.47350i 0.676164 + 0.736751i \(0.263641\pi\)
−0.676164 + 0.736751i \(0.736359\pi\)
\(464\) −2.02943 + 3.51508i −0.0942140 + 0.163183i
\(465\) 0 0
\(466\) −16.5581 + 9.55984i −0.767041 + 0.442851i
\(467\) 5.72786 0.265054 0.132527 0.991179i \(-0.457691\pi\)
0.132527 + 0.991179i \(0.457691\pi\)
\(468\) 4.73724 2.70050i 0.218979 0.124831i
\(469\) −55.6277 −2.56865
\(470\) 0 0
\(471\) −9.42525 16.3250i −0.434293 0.752217i
\(472\) 6.11786 10.5964i 0.281597 0.487741i
\(473\) 9.00941i 0.414253i
\(474\) 2.12846 + 1.22887i 0.0977636 + 0.0564438i
\(475\) 0 0
\(476\) 11.1962i 0.513175i
\(477\) 6.11677 10.5946i 0.280068 0.485092i
\(478\) 11.9786 + 20.7475i 0.547888 + 0.948969i
\(479\) 2.23145 1.28833i 0.101958 0.0588653i −0.448154 0.893956i \(-0.647918\pi\)
0.550112 + 0.835091i \(0.314585\pi\)
\(480\) 0 0
\(481\) 3.77222 + 6.61726i 0.171998 + 0.301721i
\(482\) 16.3580 0.745084
\(483\) 18.3970 10.6215i 0.837094 0.483296i
\(484\) −6.42761 11.1329i −0.292164 0.506043i
\(485\) 0 0
\(486\) 13.8574i 0.628584i
\(487\) 20.2759 + 11.7063i 0.918788 + 0.530463i 0.883248 0.468906i \(-0.155352\pi\)
0.0355399 + 0.999368i \(0.488685\pi\)
\(488\) 3.62479 + 2.09277i 0.164087 + 0.0947355i
\(489\) 4.81471i 0.217729i
\(490\) 0 0
\(491\) −11.8117 20.4584i −0.533054 0.923276i −0.999255 0.0385972i \(-0.987711\pi\)
0.466201 0.884679i \(-0.345622\pi\)
\(492\) −6.70430 + 3.87073i −0.302253 + 0.174506i
\(493\) 12.7941 0.576216
\(494\) 0.157724 28.7431i 0.00709634 1.29321i
\(495\) 0 0
\(496\) 4.35154 2.51236i 0.195390 0.112808i
\(497\) −12.9967 22.5110i −0.582983 1.00976i
\(498\) 3.80281 6.58667i 0.170408 0.295156i
\(499\) 32.5385i 1.45663i 0.685245 + 0.728313i \(0.259695\pi\)
−0.685245 + 0.728313i \(0.740305\pi\)
\(500\) 0 0
\(501\) −2.00613 1.15824i −0.0896271 0.0517462i
\(502\) 2.64520i 0.118061i
\(503\) −4.42996 + 7.67292i −0.197522 + 0.342119i −0.947724 0.319090i \(-0.896623\pi\)
0.750202 + 0.661209i \(0.229956\pi\)
\(504\) 2.68591 + 4.65213i 0.119640 + 0.207222i
\(505\) 0 0
\(506\) −23.9495 −1.06468
\(507\) 7.77679 + 13.8178i 0.345379 + 0.613671i
\(508\) 5.01506 0.222507
\(509\) 12.9967 7.50367i 0.576070 0.332594i −0.183500 0.983020i \(-0.558743\pi\)
0.759570 + 0.650425i \(0.225409\pi\)
\(510\) 0 0
\(511\) −9.84461 + 17.0514i −0.435500 + 0.754308i
\(512\) 1.00000i 0.0441942i
\(513\) 37.9972 + 21.9377i 1.67762 + 0.968572i
\(514\) 27.0210 + 15.6006i 1.19185 + 0.688113i
\(515\) 0 0
\(516\) −1.12492 + 1.94842i −0.0495220 + 0.0857746i
\(517\) −14.8567 25.7325i −0.653396 1.13172i
\(518\) −6.49837 + 3.75184i −0.285522 + 0.164846i
\(519\) −8.48411 −0.372411
\(520\) 0 0
\(521\) −34.1259 −1.49508 −0.747541 0.664215i \(-0.768766\pi\)
−0.747541 + 0.664215i \(0.768766\pi\)
\(522\) −5.31608 + 3.06924i −0.232679 + 0.134337i
\(523\) 3.94207 + 6.82786i 0.172375 + 0.298561i 0.939250 0.343235i \(-0.111523\pi\)
−0.766875 + 0.641796i \(0.778189\pi\)
\(524\) −4.70357 + 8.14683i −0.205477 + 0.355896i
\(525\) 0 0
\(526\) −2.72982 1.57606i −0.119026 0.0687197i
\(527\) −13.7166 7.91930i −0.597505 0.344970i
\(528\) 5.95717i 0.259253i
\(529\) −0.522035 + 0.904192i −0.0226972 + 0.0393127i
\(530\) 0 0
\(531\) 16.0257 9.25243i 0.695455 0.401521i
\(532\) 28.3161 1.22766
\(533\) 11.3335 + 19.8813i 0.490906 + 0.861153i
\(534\) 7.47232 0.323359
\(535\) 0 0
\(536\) −7.83062 13.5630i −0.338231 0.585833i
\(537\) −5.49824 + 9.52323i −0.237267 + 0.410958i
\(538\) 13.7094i 0.591056i
\(539\) 23.7557 + 13.7153i 1.02323 + 0.590762i
\(540\) 0 0
\(541\) 21.7768i 0.936259i −0.883660 0.468130i \(-0.844928\pi\)
0.883660 0.468130i \(-0.155072\pi\)
\(542\) 3.99674 6.92256i 0.171675 0.297349i
\(543\) 5.24809 + 9.08995i 0.225217 + 0.390087i
\(544\) 2.72982 1.57606i 0.117040 0.0675732i
\(545\) 0 0
\(546\) −13.5701 + 7.73572i −0.580746 + 0.331058i
\(547\) −34.2671 −1.46515 −0.732577 0.680684i \(-0.761683\pi\)
−0.732577 + 0.680684i \(0.761683\pi\)
\(548\) −1.34420 + 0.776074i −0.0574214 + 0.0331522i
\(549\) 3.16504 + 5.48201i 0.135081 + 0.233966i
\(550\) 0 0
\(551\) 32.3573i 1.37847i
\(552\) 5.17944 + 2.99035i 0.220452 + 0.127278i
\(553\) 6.19844 + 3.57867i 0.263585 + 0.152181i
\(554\) 1.65906i 0.0704867i
\(555\) 0 0
\(556\) −10.9572 18.9784i −0.464688 0.804862i
\(557\) −16.0546 + 9.26914i −0.680256 + 0.392746i −0.799952 0.600064i \(-0.795142\pi\)
0.119695 + 0.992811i \(0.461808\pi\)
\(558\) 7.59922 0.321701
\(559\) 5.74146 + 3.35697i 0.242838 + 0.141985i
\(560\) 0 0
\(561\) 16.2620 9.38888i 0.686583 0.396399i
\(562\) −3.02038 5.23145i −0.127407 0.220676i
\(563\) −17.3888 + 30.1183i −0.732851 + 1.26933i 0.222809 + 0.974862i \(0.428477\pi\)
−0.955660 + 0.294473i \(0.904856\pi\)
\(564\) 7.42008i 0.312442i
\(565\) 0 0
\(566\) −26.5236 15.3134i −1.11487 0.643671i
\(567\) 7.72781i 0.324538i
\(568\) 3.65906 6.33768i 0.153531 0.265923i
\(569\) 10.1799 + 17.6322i 0.426765 + 0.739179i 0.996583 0.0825920i \(-0.0263198\pi\)
−0.569819 + 0.821771i \(0.692987\pi\)
\(570\) 0 0
\(571\) −20.5139 −0.858480 −0.429240 0.903190i \(-0.641219\pi\)
−0.429240 + 0.903190i \(0.641219\pi\)
\(572\) 17.6099 + 0.0966321i 0.736307 + 0.00404039i
\(573\) 17.3200 0.723555
\(574\) −19.5241 + 11.2722i −0.814918 + 0.470493i
\(575\) 0 0
\(576\) −0.756182 + 1.30975i −0.0315076 + 0.0545727i
\(577\) 32.6919i 1.36098i 0.732757 + 0.680491i \(0.238233\pi\)
−0.732757 + 0.680491i \(0.761767\pi\)
\(578\) 6.11767 + 3.53204i 0.254462 + 0.146914i
\(579\) −20.0003 11.5472i −0.831182 0.479883i
\(580\) 0 0
\(581\) 11.0744 19.1815i 0.459445 0.795782i
\(582\) −1.38840 2.40477i −0.0575508 0.0996810i
\(583\) 34.2152 19.7541i 1.41705 0.818132i
\(584\) −5.54324 −0.229381
\(585\) 0 0
\(586\) −26.3483 −1.08844
\(587\) −3.19003 + 1.84176i −0.131667 + 0.0760177i −0.564386 0.825511i \(-0.690887\pi\)
0.432720 + 0.901528i \(0.357554\pi\)
\(588\) −3.42502 5.93231i −0.141246 0.244644i
\(589\) 20.0286 34.6905i 0.825264 1.42940i
\(590\) 0 0
\(591\) 25.9582 + 14.9870i 1.06778 + 0.616481i
\(592\) −1.82953 1.05628i −0.0751932 0.0434128i
\(593\) 10.6452i 0.437144i 0.975821 + 0.218572i \(0.0701398\pi\)
−0.975821 + 0.218572i \(0.929860\pi\)
\(594\) −13.4405 + 23.2796i −0.551469 + 0.955172i
\(595\) 0 0
\(596\) 18.3405 10.5889i 0.751258 0.433739i
\(597\) −12.0034 −0.491265
\(598\) 8.92375 15.2624i 0.364919 0.624124i
\(599\) −1.74024 −0.0711044 −0.0355522 0.999368i \(-0.511319\pi\)
−0.0355522 + 0.999368i \(0.511319\pi\)
\(600\) 0 0
\(601\) −10.8181 18.7375i −0.441280 0.764320i 0.556504 0.830845i \(-0.312142\pi\)
−0.997785 + 0.0665246i \(0.978809\pi\)
\(602\) −3.27597 + 5.67414i −0.133518 + 0.231261i
\(603\) 23.6855i 0.964547i
\(604\) −10.2791 5.93467i −0.418253 0.241478i
\(605\) 0 0
\(606\) 10.4985i 0.426472i
\(607\) −5.35521 + 9.27550i −0.217361 + 0.376481i −0.954000 0.299805i \(-0.903078\pi\)
0.736639 + 0.676286i \(0.236412\pi\)
\(608\) 3.98601 + 6.90396i 0.161654 + 0.279993i
\(609\) 15.2282 8.79200i 0.617078 0.356270i
\(610\) 0 0
\(611\) 21.9344 + 0.120362i 0.887370 + 0.00486933i
\(612\) 4.76717 0.192701
\(613\) 33.3243 19.2398i 1.34596 0.777088i 0.358282 0.933613i \(-0.383362\pi\)
0.987674 + 0.156525i \(0.0500291\pi\)
\(614\) −8.17686 14.1627i −0.329991 0.571561i
\(615\) 0 0
\(616\) 17.3483i 0.698982i
\(617\) 34.6089 + 19.9815i 1.39330 + 0.804424i 0.993679 0.112256i \(-0.0358075\pi\)
0.399624 + 0.916679i \(0.369141\pi\)
\(618\) −8.86986 5.12101i −0.356798 0.205997i
\(619\) 40.4574i 1.62612i −0.582181 0.813059i \(-0.697800\pi\)
0.582181 0.813059i \(-0.302200\pi\)
\(620\) 0 0
\(621\) 13.4936 + 23.3715i 0.541478 + 0.937867i
\(622\) 20.1660 11.6428i 0.808583 0.466835i
\(623\) 21.7606 0.871822
\(624\) −3.79635 2.21969i −0.151976 0.0888586i
\(625\) 0 0
\(626\) 3.13946 1.81257i 0.125478 0.0724448i
\(627\) 23.7453 + 41.1281i 0.948297 + 1.64250i
\(628\) 7.72760 13.3846i 0.308365 0.534103i
\(629\) 6.65906i 0.265514i
\(630\) 0 0
\(631\) 33.4508 + 19.3128i 1.33166 + 0.768832i 0.985554 0.169364i \(-0.0541714\pi\)
0.346103 + 0.938196i \(0.387505\pi\)
\(632\) 2.01506i 0.0801546i
\(633\) −10.7059 + 18.5431i −0.425519 + 0.737021i
\(634\) 4.99304 + 8.64821i 0.198299 + 0.343464i
\(635\) 0 0
\(636\) −9.86608 −0.391215
\(637\) −17.5920 + 10.0284i −0.697019 + 0.397341i
\(638\) −19.8242 −0.784849
\(639\) 9.58488 5.53383i 0.379172 0.218915i
\(640\) 0 0
\(641\) 14.4286 24.9910i 0.569895 0.987087i −0.426681 0.904402i \(-0.640317\pi\)
0.996576 0.0826846i \(-0.0263494\pi\)
\(642\) 2.32164i 0.0916280i
\(643\) 17.5451 + 10.1297i 0.691910 + 0.399475i 0.804327 0.594186i \(-0.202526\pi\)
−0.112417 + 0.993661i \(0.535859\pi\)
\(644\) 15.0834 + 8.70841i 0.594369 + 0.343159i
\(645\) 0 0
\(646\) 12.5644 21.7622i 0.494340 0.856222i
\(647\) −8.30197 14.3794i −0.326384 0.565314i 0.655407 0.755275i \(-0.272497\pi\)
−0.981791 + 0.189962i \(0.939164\pi\)
\(648\) 1.88418 1.08783i 0.0740176 0.0427341i
\(649\) 59.7615 2.34584
\(650\) 0 0
\(651\) −21.7684 −0.853169
\(652\) −3.41863 + 1.97375i −0.133884 + 0.0772980i
\(653\) −6.54182 11.3308i −0.256001 0.443407i 0.709166 0.705042i \(-0.249072\pi\)
−0.965167 + 0.261635i \(0.915738\pi\)
\(654\) 12.1798 21.0960i 0.476268 0.824920i
\(655\) 0 0
\(656\) −5.49674 3.17354i −0.214612 0.123906i
\(657\) −7.26023 4.19170i −0.283249 0.163534i
\(658\) 21.6085i 0.842388i
\(659\) −23.7597 + 41.1530i −0.925545 + 1.60309i −0.134863 + 0.990864i \(0.543060\pi\)
−0.790682 + 0.612227i \(0.790274\pi\)
\(660\) 0 0
\(661\) 16.3500 9.43968i 0.635941 0.367161i −0.147108 0.989120i \(-0.546997\pi\)
0.783049 + 0.621960i \(0.213663\pi\)
\(662\) −5.20556 −0.202320
\(663\) −0.0760645 + 13.8617i −0.00295410 + 0.538345i
\(664\) 6.23572 0.241993
\(665\) 0 0
\(666\) −1.59748 2.76692i −0.0619011 0.107216i
\(667\) −9.95127 + 17.2361i −0.385315 + 0.667385i
\(668\) 1.89924i 0.0734837i
\(669\) 20.7312 + 11.9692i 0.801515 + 0.462755i
\(670\) 0 0
\(671\) 20.4430i 0.789192i
\(672\) 2.16612 3.75184i 0.0835600 0.144730i
\(673\) −0.0774441 0.134137i −0.00298525 0.00517061i 0.864529 0.502583i \(-0.167617\pi\)
−0.867514 + 0.497412i \(0.834284\pi\)
\(674\) 6.13278 3.54076i 0.236226 0.136385i
\(675\) 0 0
\(676\) −6.62316 + 11.1863i −0.254737 + 0.430243i
\(677\) 5.90445 0.226927 0.113463 0.993542i \(-0.463806\pi\)
0.113463 + 0.993542i \(0.463806\pi\)
\(678\) −10.9205 + 6.30496i −0.419400 + 0.242141i
\(679\) −4.04324 7.00310i −0.155165 0.268754i
\(680\) 0 0
\(681\) 12.7590i 0.488924i
\(682\) 21.2537 + 12.2708i 0.813847 + 0.469875i
\(683\) −8.39051 4.84426i −0.321054 0.185361i 0.330808 0.943698i \(-0.392679\pi\)
−0.651862 + 0.758337i \(0.726012\pi\)
\(684\) 12.0566i 0.460995i
\(685\) 0 0
\(686\) 2.45753 + 4.25656i 0.0938289 + 0.162516i
\(687\) −5.43330 + 3.13692i −0.207293 + 0.119681i
\(688\) −1.84461 −0.0703251
\(689\) −0.160039 + 29.1650i −0.00609700 + 1.11110i
\(690\) 0 0
\(691\) −19.8748 + 11.4747i −0.756072 + 0.436518i −0.827884 0.560900i \(-0.810455\pi\)
0.0718117 + 0.997418i \(0.477122\pi\)
\(692\) −3.47799 6.02405i −0.132213 0.229000i
\(693\) −13.1185 + 22.7218i −0.498329 + 0.863131i
\(694\) 21.9341i 0.832608i
\(695\) 0 0
\(696\) 4.28730 + 2.47527i 0.162510 + 0.0938249i
\(697\) 20.0068i 0.757813i
\(698\) −15.2867 + 26.4773i −0.578610 + 1.00218i
\(699\) 11.6600 + 20.1957i 0.441022 + 0.763873i
\(700\) 0 0
\(701\) −7.77875 −0.293799 −0.146900 0.989151i \(-0.546929\pi\)
−0.146900 + 0.989151i \(0.546929\pi\)
\(702\) −9.82743 17.2394i −0.370913 0.650659i
\(703\) −16.8413 −0.635184
\(704\) −4.22982 + 2.44209i −0.159417 + 0.0920397i
\(705\) 0 0
\(706\) 4.87885 8.45042i 0.183618 0.318036i
\(707\) 30.5734i 1.14983i
\(708\) −12.9243 7.46187i −0.485727 0.280434i
\(709\) 24.2737 + 14.0144i 0.911618 + 0.526323i 0.880951 0.473207i \(-0.156904\pi\)
0.0306666 + 0.999530i \(0.490237\pi\)
\(710\) 0 0
\(711\) −1.52375 + 2.63921i −0.0571451 + 0.0989782i
\(712\) 3.06321 + 5.30564i 0.114799 + 0.198837i
\(713\) 21.3377 12.3193i 0.799102 0.461362i
\(714\) −13.6558 −0.511055
\(715\) 0 0
\(716\) −9.01582 −0.336937
\(717\) 25.3055 14.6101i 0.945050 0.545625i
\(718\) 5.60645 + 9.71066i 0.209231 + 0.362399i
\(719\) 4.64553 8.04630i 0.173249 0.300076i −0.766305 0.642477i \(-0.777907\pi\)
0.939554 + 0.342401i \(0.111240\pi\)
\(720\) 0 0
\(721\) −25.8305 14.9133i −0.961979 0.555399i
\(722\) 38.5840 + 22.2765i 1.43595 + 0.829045i
\(723\) 19.9516i 0.742007i
\(724\) −4.30281 + 7.45269i −0.159913 + 0.276977i
\(725\) 0 0
\(726\) −13.5787 + 7.83967i −0.503953 + 0.290957i
\(727\) −8.60852 −0.319272 −0.159636 0.987176i \(-0.551032\pi\)
−0.159636 + 0.987176i \(0.551032\pi\)
\(728\) −11.0556 6.46410i −0.409748 0.239576i
\(729\) 23.4287 0.867728
\(730\) 0 0
\(731\) 2.90723 + 5.03546i 0.107528 + 0.186243i
\(732\) 2.55253 4.42111i 0.0943442 0.163409i
\(733\) 36.4209i 1.34524i 0.739990 + 0.672618i \(0.234830\pi\)
−0.739990 + 0.672618i \(0.765170\pi\)
\(734\) −4.65787 2.68922i −0.171925 0.0992610i
\(735\) 0 0
\(736\) 4.90348i 0.180744i
\(737\) 38.2461 66.2443i 1.40881 2.44014i
\(738\) −4.79955 8.31307i −0.176674 0.306008i
\(739\) 14.0669 8.12156i 0.517461 0.298756i −0.218434 0.975852i \(-0.570095\pi\)
0.735895 + 0.677095i \(0.236762\pi\)
\(740\) 0 0
\(741\) −35.0575 0.192374i −1.28787 0.00706703i
\(742\) −28.7317 −1.05477
\(743\) 35.9902 20.7790i 1.32035 0.762306i 0.336568 0.941659i \(-0.390734\pi\)
0.983785 + 0.179353i \(0.0574004\pi\)
\(744\) −3.06430 5.30752i −0.112343 0.194583i
\(745\) 0 0
\(746\) 4.39883i 0.161052i
\(747\) 8.16721 + 4.71534i 0.298823 + 0.172525i
\(748\) 13.3330 + 7.69778i 0.487501 + 0.281459i
\(749\) 6.76102i 0.247042i
\(750\) 0 0
\(751\) −1.19863 2.07609i −0.0437386 0.0757575i 0.843327 0.537400i \(-0.180594\pi\)
−0.887066 + 0.461643i \(0.847260\pi\)
\(752\) −5.26855 + 3.04180i −0.192124 + 0.110923i
\(753\) 3.22631 0.117573
\(754\) 7.38666 12.6335i 0.269006 0.460083i
\(755\) 0 0
\(756\) 16.9296 9.77434i 0.615725 0.355489i
\(757\) −21.6800 37.5509i −0.787974 1.36481i −0.927206 0.374552i \(-0.877797\pi\)
0.139232 0.990260i \(-0.455537\pi\)
\(758\) 3.87247 6.70731i 0.140654 0.243621i
\(759\) 29.2108i 1.06029i
\(760\) 0 0
\(761\) 42.7888 + 24.7041i 1.55109 + 0.895523i 0.998053 + 0.0623680i \(0.0198653\pi\)
0.553039 + 0.833155i \(0.313468\pi\)
\(762\) 6.11680i 0.221588i
\(763\) 35.4696 61.4352i 1.28409 2.22410i
\(764\) 7.10020 + 12.2979i 0.256876 + 0.444922i
\(765\) 0 0
\(766\) 13.9695 0.504737
\(767\) −22.2676 + 38.0844i −0.804036 + 1.37515i
\(768\) 1.21969 0.0440117
\(769\) 9.40452 5.42970i 0.339136 0.195800i −0.320754 0.947163i \(-0.603936\pi\)
0.659890 + 0.751362i \(0.270603\pi\)
\(770\) 0 0
\(771\) 19.0279 32.9572i 0.685271 1.18692i
\(772\) 18.9346i 0.681472i
\(773\) −17.1828 9.92049i −0.618022 0.356815i 0.158076 0.987427i \(-0.449471\pi\)
−0.776099 + 0.630612i \(0.782804\pi\)
\(774\) −2.41597 1.39486i −0.0868403 0.0501372i
\(775\) 0 0
\(776\) 1.13832 1.97163i 0.0408633 0.0707774i
\(777\) 4.57606 + 7.92598i 0.164165 + 0.284343i
\(778\) −12.3621 + 7.13729i −0.443204 + 0.255884i
\(779\) −50.5991 −1.81290
\(780\) 0 0
\(781\) 35.7430 1.27899
\(782\) 13.3856 7.72819i 0.478669 0.276360i
\(783\) 11.1693 + 19.3458i 0.399159 + 0.691364i
\(784\) 2.80812 4.86380i 0.100290 0.173707i
\(785\) 0 0
\(786\) 9.93658 + 5.73689i 0.354426 + 0.204628i
\(787\) 15.6836 + 9.05493i 0.559060 + 0.322773i 0.752768 0.658286i \(-0.228718\pi\)
−0.193708 + 0.981059i \(0.562052\pi\)
\(788\) 24.5751i 0.875452i
\(789\) −1.92231 + 3.32953i −0.0684359 + 0.118534i
\(790\) 0 0
\(791\) −31.8024 + 18.3611i −1.13076 + 0.652846i
\(792\) −7.38666 −0.262473
\(793\) −13.0278 7.61721i −0.462630 0.270495i
\(794\) −4.55167 −0.161533
\(795\) 0 0
\(796\) −4.92067 8.52286i −0.174409 0.302085i
\(797\) 10.8107 18.7247i 0.382935 0.663262i −0.608546 0.793519i \(-0.708247\pi\)
0.991480 + 0.130257i \(0.0415801\pi\)
\(798\) 34.5367i 1.22259i
\(799\) 16.6071 + 9.58813i 0.587518 + 0.339204i
\(800\) 0 0
\(801\) 9.26538i 0.327376i
\(802\) −12.5818 + 21.7923i −0.444278 + 0.769512i
\(803\) −13.5371 23.4469i −0.477714 0.827424i
\(804\) −16.5426 + 9.55090i −0.583414 + 0.336834i
\(805\) 0 0
\(806\) −15.7392 + 8.97223i −0.554389 + 0.316033i
\(807\) −16.7212 −0.588615
\(808\) −7.45435 + 4.30377i −0.262243 + 0.151406i
\(809\) −19.5890 33.9291i −0.688711 1.19288i −0.972255 0.233923i \(-0.924844\pi\)
0.283544 0.958959i \(-0.408490\pi\)
\(810\) 0 0
\(811\) 19.6903i 0.691418i −0.938342 0.345709i \(-0.887638\pi\)
0.938342 0.345709i \(-0.112362\pi\)
\(812\) 12.4853 + 7.20841i 0.438149 + 0.252966i
\(813\) −8.44335 4.87477i −0.296121 0.170966i
\(814\) 10.3181i 0.361650i
\(815\) 0 0
\(816\) −1.92231 3.32953i −0.0672941 0.116557i
\(817\) −12.7351 + 7.35263i −0.445546 + 0.257236i
\(818\) 11.1877 0.391168
\(819\) −9.59199 16.8264i −0.335171 0.587961i
\(820\) 0 0
\(821\) −5.68009 + 3.27940i −0.198236 + 0.114452i −0.595833 0.803109i \(-0.703178\pi\)
0.397596 + 0.917560i \(0.369844\pi\)
\(822\) 0.946567 + 1.63950i 0.0330153 + 0.0571842i
\(823\) −20.7672 + 35.9698i −0.723898 + 1.25383i 0.235528 + 0.971868i \(0.424318\pi\)
−0.959426 + 0.281960i \(0.909015\pi\)
\(824\) 8.39726i 0.292532i
\(825\) 0 0
\(826\) −37.6379 21.7302i −1.30959 0.756092i
\(827\) 27.7512i 0.965005i −0.875895 0.482503i \(-0.839728\pi\)
0.875895 0.482503i \(-0.160272\pi\)
\(828\) −3.70792 + 6.42231i −0.128859 + 0.223191i
\(829\) −27.3651 47.3977i −0.950428 1.64619i −0.744501 0.667622i \(-0.767312\pi\)
−0.205927 0.978567i \(-0.566021\pi\)
\(830\) 0 0
\(831\) −2.02353 −0.0701956
\(832\) 0.0197847 3.60550i 0.000685912 0.124998i
\(833\) −17.7031 −0.613376
\(834\) −23.1477 + 13.3643i −0.801538 + 0.462768i
\(835\) 0 0
\(836\) −19.4684 + 33.7202i −0.673328 + 1.16624i
\(837\) 27.6544i 0.955878i
\(838\) −12.5730 7.25901i −0.434326 0.250758i
\(839\) −19.0899 11.0216i −0.659057 0.380507i 0.132860 0.991135i \(-0.457584\pi\)
−0.791918 + 0.610628i \(0.790917\pi\)
\(840\) 0 0
\(841\) 6.26281 10.8475i 0.215959 0.374052i
\(842\) −3.48166 6.03041i −0.119986 0.207822i
\(843\) −6.38074 + 3.68392i −0.219764 + 0.126881i
\(844\) −17.5551 −0.604271
\(845\) 0 0
\(846\) −9.20061 −0.316323
\(847\) −39.5435 + 22.8304i −1.35873 + 0.784463i
\(848\) −4.04451 7.00530i −0.138889 0.240563i
\(849\) −18.6776 + 32.3505i −0.641013 + 1.11027i
\(850\) 0 0
\(851\) −8.97106 5.17944i −0.307524 0.177549i
\(852\) −7.72998 4.46291i −0.264825 0.152897i
\(853\) 2.19144i 0.0750334i 0.999296 + 0.0375167i \(0.0119447\pi\)
−0.999296 + 0.0375167i \(0.988055\pi\)
\(854\) 7.43340 12.8750i 0.254366 0.440574i
\(855\) 0 0
\(856\) −1.64846 + 0.951738i −0.0563431 + 0.0325297i
\(857\) −1.17805 −0.0402414 −0.0201207 0.999798i \(-0.506405\pi\)
−0.0201207 + 0.999798i \(0.506405\pi\)
\(858\) 0.117861 21.4786i 0.00402371 0.733266i
\(859\) −5.66200 −0.193185 −0.0965924 0.995324i \(-0.530794\pi\)
−0.0965924 + 0.995324i \(0.530794\pi\)
\(860\) 0 0
\(861\) 13.7486 + 23.8132i 0.468550 + 0.811553i
\(862\) −11.1266 + 19.2718i −0.378973 + 0.656400i
\(863\) 23.8414i 0.811571i −0.913968 0.405785i \(-0.866998\pi\)
0.913968 0.405785i \(-0.133002\pi\)
\(864\) 4.76632 + 2.75184i 0.162153 + 0.0936193i
\(865\) 0 0
\(866\) 0.622379i 0.0211493i
\(867\) 4.30798 7.46165i 0.146307 0.253411i
\(868\) −8.92375 15.4564i −0.302892 0.524624i
\(869\) −8.52333 + 4.92095i −0.289134 + 0.166932i
\(870\) 0 0
\(871\) 27.9649 + 49.0564i 0.947555 + 1.66221i
\(872\) 19.9720 0.676338
\(873\) 2.98182 1.72156i 0.100919 0.0582658i
\(874\) 19.5453 + 33.8534i 0.661129 + 1.14511i
\(875\) 0 0
\(876\) 6.76102i 0.228434i
\(877\) −1.60755 0.928119i −0.0542831 0.0313404i 0.472613 0.881270i \(-0.343311\pi\)
−0.526896 + 0.849930i \(0.676644\pi\)
\(878\) 28.7243 + 16.5840i 0.969399 + 0.559683i
\(879\) 32.1367i 1.08394i
\(880\) 0 0
\(881\) −9.15449 15.8560i −0.308423 0.534203i 0.669595 0.742726i \(-0.266468\pi\)
−0.978017 + 0.208523i \(0.933134\pi\)
\(882\) 7.35583 4.24689i 0.247684 0.143000i
\(883\) −16.6599 −0.560650 −0.280325 0.959905i \(-0.590442\pi\)
−0.280325 + 0.959905i \(0.590442\pi\)
\(884\) −9.87355 + 5.62849i −0.332084 + 0.189307i
\(885\) 0 0
\(886\) 1.77653 1.02568i 0.0596838 0.0344585i
\(887\) −10.8748 18.8357i −0.365139 0.632439i 0.623659 0.781696i \(-0.285645\pi\)
−0.988798 + 0.149257i \(0.952312\pi\)
\(888\) −1.28833 + 2.23145i −0.0432335 + 0.0748827i
\(889\) 17.8131i 0.597434i
\(890\) 0 0
\(891\) 9.20267 + 5.31317i 0.308301 + 0.177998i
\(892\) 19.6266i 0.657148i
\(893\) −24.2492 + 42.0009i −0.811470 + 1.40551i
\(894\) −12.9152 22.3697i −0.431948 0.748155i
\(895\) 0 0
\(896\) 3.55193 0.118662
\(897\) −18.6153 10.8842i −0.621547 0.363412i
\(898\) −1.03061 −0.0343920
\(899\) 17.6623 10.1973i 0.589071 0.340101i
\(900\) 0 0
\(901\) −12.7488 + 22.0816i −0.424725 + 0.735645i
\(902\) 31.0003i 1.03220i
\(903\) 6.92067 + 3.99565i 0.230306 + 0.132967i
\(904\) −8.95354 5.16933i −0.297790 0.171929i
\(905\) 0 0
\(906\) −7.23844 + 12.5373i −0.240481 + 0.416525i
\(907\) −3.56340 6.17199i −0.118321 0.204937i 0.800782 0.598956i \(-0.204418\pi\)
−0.919102 + 0.394019i \(0.871084\pi\)
\(908\) 9.05935 5.23042i 0.300645 0.173578i
\(909\) −13.0177 −0.431771
\(910\) 0 0
\(911\) 42.6390 1.41269 0.706347 0.707866i \(-0.250342\pi\)
0.706347 + 0.707866i \(0.250342\pi\)
\(912\) 8.42067 4.86168i 0.278836 0.160986i
\(913\) 15.2282 + 26.3760i 0.503980 + 0.872918i
\(914\) 20.9776 36.3342i 0.693876 1.20183i
\(915\) 0 0
\(916\) −4.45467 2.57190i −0.147186 0.0849781i
\(917\) 28.9370 + 16.7068i 0.955584 + 0.551706i
\(918\) 17.3483i 0.572579i
\(919\) −1.50248 + 2.60237i −0.0495622 + 0.0858442i −0.889742 0.456463i \(-0.849116\pi\)
0.840180 + 0.542308i \(0.182449\pi\)
\(920\) 0 0
\(921\) −17.2741 + 9.97321i −0.569201 + 0.328628i
\(922\) 4.09135 0.134742
\(923\) −13.3181 + 22.7781i −0.438371 + 0.749750i
\(924\) 21.1595 0.696095
\(925\) 0 0
\(926\) 15.8530 + 27.4582i 0.520961 + 0.902332i
\(927\) 6.34986 10.9983i 0.208557 0.361231i
\(928\) 4.05886i 0.133239i
\(929\) −40.6460 23.4670i −1.33355 0.769927i −0.347710 0.937602i \(-0.613041\pi\)
−0.985842 + 0.167675i \(0.946374\pi\)
\(930\) 0 0
\(931\) 44.7727i 1.46736i
\(932\) −9.55984 + 16.5581i −0.313143 + 0.542380i
\(933\) −14.2006 24.5962i −0.464907 0.805243i
\(934\) 4.96047 2.86393i 0.162312 0.0937106i
\(935\) 0 0
\(936\) 2.75232 4.70732i 0.0899625 0.153864i
\(937\) −4.72153 −0.154246 −0.0771228 0.997022i \(-0.524573\pi\)
−0.0771228 + 0.997022i \(0.524573\pi\)
\(938\) −48.1750 + 27.8138i −1.57297 + 0.908154i
\(939\) −2.21077 3.82916i −0.0721457 0.124960i
\(940\) 0 0
\(941\) 54.2684i 1.76910i −0.466446 0.884550i \(-0.654466\pi\)
0.466446 0.884550i \(-0.345534\pi\)
\(942\) −16.3250 9.42525i −0.531898 0.307091i
\(943\) −26.9531 15.5614i −0.877715 0.506749i
\(944\) 12.2357i 0.398239i
\(945\) 0 0
\(946\) −4.50470 7.80238i −0.146461 0.253677i
\(947\) 23.0803 13.3254i 0.750009 0.433018i −0.0756880 0.997132i \(-0.524115\pi\)
0.825697 + 0.564114i \(0.190782\pi\)
\(948\) 2.45774 0.0798236
\(949\) 19.9861 + 0.109671i 0.648777 + 0.00356009i
\(950\) 0 0
\(951\) 10.5481 6.08995i 0.342046 0.197480i
\(952\) −5.59808 9.69615i −0.181435 0.314254i
\(953\) 18.3992 31.8684i 0.596010 1.03232i −0.397394 0.917648i \(-0.630085\pi\)
0.993404 0.114671i \(-0.0365814\pi\)
\(954\) 12.2335i 0.396076i
\(955\) 0 0
\(956\) 20.7475 + 11.9786i 0.671023 + 0.387415i
\(957\) 24.1793i 0.781607i
\(958\) 1.28833 2.23145i 0.0416241 0.0720950i
\(959\) 2.75656 + 4.77451i 0.0890141 + 0.154177i
\(960\) 0 0
\(961\) 5.75211 0.185552
\(962\) 6.57547 + 3.84461i 0.212002 + 0.123955i
\(963\) −2.87875 −0.0927663
\(964\) 14.1664 8.17898i 0.456269 0.263427i
\(965\) 0 0
\(966\) 10.6215 18.3970i 0.341742 0.591915i
\(967\) 17.9486i 0.577188i −0.957452 0.288594i \(-0.906812\pi\)
0.957452 0.288594i \(-0.0931877\pi\)
\(968\) −11.1329 6.42761i −0.357826 0.206591i
\(969\) −26.5431 15.3246i −0.852686 0.492298i
\(970\) 0 0
\(971\) −19.9994 + 34.6399i −0.641810 + 1.11165i 0.343219 + 0.939256i \(0.388483\pi\)
−0.985028 + 0.172392i \(0.944851\pi\)
\(972\) 6.92869 + 12.0008i 0.222238 + 0.384927i
\(973\) −67.4099 + 38.9191i −2.16106 + 1.24769i
\(974\) 23.4126 0.750187
\(975\) 0 0
\(976\) 4.18555 0.133976
\(977\) −5.95019 + 3.43534i −0.190363 + 0.109906i −0.592153 0.805826i \(-0.701722\pi\)
0.401789 + 0.915732i \(0.368388\pi\)
\(978\) 2.40736 + 4.16966i 0.0769788 + 0.133331i
\(979\) −14.9613 + 25.9137i −0.478164 + 0.828205i
\(980\) 0 0
\(981\) 26.1583 + 15.1025i 0.835169 + 0.482185i
\(982\) −20.4584 11.8117i −0.652855 0.376926i
\(983\) 17.3627i 0.553784i −0.960901 0.276892i \(-0.910696\pi\)
0.960901 0.276892i \(-0.0893044\pi\)
\(984\) −3.87073 + 6.70430i −0.123394 + 0.213725i
\(985\) 0 0
\(986\) 11.0800 6.39703i 0.352859 0.203723i
\(987\) 26.3556 0.838909
\(988\) −14.2349 24.9711i −0.452874 0.794436i
\(989\) −9.04500 −0.287614
\(990\) 0 0
\(991\) 13.2814 + 23.0041i 0.421899 + 0.730750i 0.996125 0.0879463i \(-0.0280304\pi\)
−0.574226 + 0.818697i \(0.694697\pi\)
\(992\) 2.51236 4.35154i 0.0797676 0.138162i
\(993\) 6.34916i 0.201484i
\(994\) −22.5110 12.9967i −0.714006 0.412232i
\(995\) 0 0
\(996\) 7.60563i 0.240994i
\(997\) −9.18396 + 15.9071i −0.290859 + 0.503782i −0.974013 0.226492i \(-0.927274\pi\)
0.683154 + 0.730274i \(0.260608\pi\)
\(998\) 16.2693 + 28.1792i 0.514995 + 0.891997i
\(999\) −10.0691 + 5.81342i −0.318573 + 0.183928i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.m.b.101.3 8
5.2 odd 4 650.2.n.f.49.2 8
5.3 odd 4 650.2.n.c.49.3 8
5.4 even 2 650.2.m.d.101.2 yes 8
13.2 odd 12 8450.2.a.co.1.3 4
13.4 even 6 inner 650.2.m.b.251.3 yes 8
13.11 odd 12 8450.2.a.ck.1.3 4
65.4 even 6 650.2.m.d.251.2 yes 8
65.17 odd 12 650.2.n.c.199.3 8
65.24 odd 12 8450.2.a.cl.1.2 4
65.43 odd 12 650.2.n.f.199.2 8
65.54 odd 12 8450.2.a.ch.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.m.b.101.3 8 1.1 even 1 trivial
650.2.m.b.251.3 yes 8 13.4 even 6 inner
650.2.m.d.101.2 yes 8 5.4 even 2
650.2.m.d.251.2 yes 8 65.4 even 6
650.2.n.c.49.3 8 5.3 odd 4
650.2.n.c.199.3 8 65.17 odd 12
650.2.n.f.49.2 8 5.2 odd 4
650.2.n.f.199.2 8 65.43 odd 12
8450.2.a.ch.1.2 4 65.54 odd 12
8450.2.a.ck.1.3 4 13.11 odd 12
8450.2.a.cl.1.2 4 65.24 odd 12
8450.2.a.co.1.3 4 13.2 odd 12