Properties

Label 650.2.t.b
Level $650$
Weight $2$
Character orbit 650.t
Analytic conductor $5.190$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(7,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.t (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} + \zeta_{12}) q^{2} + ( - \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 2) q^{3} + ( - \zeta_{12}^{2} + 1) q^{4} + ( - 2 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots - 1) q^{6} + (2 \zeta_{12}^{3} - 2 \zeta_{12}^{2} + \cdots + 2) q^{7}+ \cdots + (3 \zeta_{12}^{2} - 3 \zeta_{12}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 2 q^{4} - 6 q^{6} + 4 q^{7} + 4 q^{11} - 2 q^{16} - 2 q^{17} - 12 q^{18} - 12 q^{19} + 12 q^{21} - 4 q^{22} + 14 q^{23} - 6 q^{24} - 4 q^{26} - 4 q^{28} + 12 q^{29} + 12 q^{31} + 6 q^{33}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-\zeta_{12}^{3}\) \(\zeta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i 0.633975 + 2.36603i 0.500000 + 0.866025i 0 −0.633975 + 2.36603i 0.133975 + 0.232051i 1.00000i −2.59808 + 1.50000i 0
93.1 0.866025 0.500000i 0.633975 2.36603i 0.500000 0.866025i 0 −0.633975 2.36603i 0.133975 0.232051i 1.00000i −2.59808 1.50000i 0
557.1 −0.866025 + 0.500000i 2.36603 + 0.633975i 0.500000 0.866025i 0 −2.36603 + 0.633975i 1.86603 3.23205i 1.00000i 2.59808 + 1.50000i 0
643.1 −0.866025 0.500000i 2.36603 0.633975i 0.500000 + 0.866025i 0 −2.36603 0.633975i 1.86603 + 3.23205i 1.00000i 2.59808 1.50000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.t even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.t.b yes 4
5.b even 2 1 650.2.t.a 4
5.c odd 4 1 650.2.w.a yes 4
5.c odd 4 1 650.2.w.b yes 4
13.f odd 12 1 650.2.w.b yes 4
65.o even 12 1 650.2.t.a 4
65.s odd 12 1 650.2.w.a yes 4
65.t even 12 1 inner 650.2.t.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.2.t.a 4 5.b even 2 1
650.2.t.a 4 65.o even 12 1
650.2.t.b yes 4 1.a even 1 1 trivial
650.2.t.b yes 4 65.t even 12 1 inner
650.2.w.a yes 4 5.c odd 4 1
650.2.w.a yes 4 65.s odd 12 1
650.2.w.b yes 4 5.c odd 4 1
650.2.w.b yes 4 13.f odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 6T_{3}^{3} + 18T_{3}^{2} - 36T_{3} + 36 \) acting on \(S_{2}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} + 23T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( T^{4} + 12 T^{3} + \cdots + 1521 \) Copy content Toggle raw display
$23$ \( T^{4} - 14 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$31$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} - 10 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$43$ \( T^{4} + 12 T^{3} + \cdots + 5184 \) Copy content Toggle raw display
$47$ \( (T + 7)^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - 22 T^{3} + \cdots + 3481 \) Copy content Toggle raw display
$59$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$61$ \( T^{4} + 22 T^{3} + \cdots + 13924 \) Copy content Toggle raw display
$67$ \( T^{4} - 24 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$71$ \( T^{4} + 28 T^{3} + \cdots + 21904 \) Copy content Toggle raw display
$73$ \( T^{4} + 24T^{2} + 36 \) Copy content Toggle raw display
$79$ \( T^{4} + 296 T^{2} + 21316 \) Copy content Toggle raw display
$83$ \( (T^{2} - 2 T - 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 26 T^{3} + \cdots + 69169 \) Copy content Toggle raw display
$97$ \( T^{4} + 18 T^{3} + \cdots + 8836 \) Copy content Toggle raw display
show more
show less