Properties

Label 650.4.b.f
Level 650650
Weight 44
Character orbit 650.b
Analytic conductor 38.35138.351
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,4,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 650.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.351241503738.3512415037
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2iq2+4iq34q4+8q620iq7+8iq8+11q948q1116iq12+13iq1340q14+16q1666iq1722iq18+16q19+80q21+96iq22+528q99+O(q100) q - 2 i q^{2} + 4 i q^{3} - 4 q^{4} + 8 q^{6} - 20 i q^{7} + 8 i q^{8} + 11 q^{9} - 48 q^{11} - 16 i q^{12} + 13 i q^{13} - 40 q^{14} + 16 q^{16} - 66 i q^{17} - 22 i q^{18} + 16 q^{19} + 80 q^{21} + 96 i q^{22} + \cdots - 528 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q4+16q6+22q996q1180q14+32q16+32q19+160q2164q24+52q2612q29+40q31264q3488q36104q39780q41+384q44+1056q99+O(q100) 2 q - 8 q^{4} + 16 q^{6} + 22 q^{9} - 96 q^{11} - 80 q^{14} + 32 q^{16} + 32 q^{19} + 160 q^{21} - 64 q^{24} + 52 q^{26} - 12 q^{29} + 40 q^{31} - 264 q^{34} - 88 q^{36} - 104 q^{39} - 780 q^{41} + 384 q^{44}+ \cdots - 1056 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
599.1
1.00000i
1.00000i
2.00000i 4.00000i −4.00000 0 8.00000 20.0000i 8.00000i 11.0000 0
599.2 2.00000i 4.00000i −4.00000 0 8.00000 20.0000i 8.00000i 11.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.b.f 2
5.b even 2 1 inner 650.4.b.f 2
5.c odd 4 1 26.4.a.c 1
5.c odd 4 1 650.4.a.b 1
15.e even 4 1 234.4.a.e 1
20.e even 4 1 208.4.a.b 1
35.f even 4 1 1274.4.a.d 1
40.i odd 4 1 832.4.a.d 1
40.k even 4 1 832.4.a.o 1
60.l odd 4 1 1872.4.a.q 1
65.f even 4 1 338.4.b.d 2
65.h odd 4 1 338.4.a.c 1
65.k even 4 1 338.4.b.d 2
65.o even 12 2 338.4.e.a 4
65.q odd 12 2 338.4.c.a 2
65.r odd 12 2 338.4.c.e 2
65.t even 12 2 338.4.e.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.4.a.c 1 5.c odd 4 1
208.4.a.b 1 20.e even 4 1
234.4.a.e 1 15.e even 4 1
338.4.a.c 1 65.h odd 4 1
338.4.b.d 2 65.f even 4 1
338.4.b.d 2 65.k even 4 1
338.4.c.a 2 65.q odd 12 2
338.4.c.e 2 65.r odd 12 2
338.4.e.a 4 65.o even 12 2
338.4.e.a 4 65.t even 12 2
650.4.a.b 1 5.c odd 4 1
650.4.b.f 2 1.a even 1 1 trivial
650.4.b.f 2 5.b even 2 1 inner
832.4.a.d 1 40.i odd 4 1
832.4.a.o 1 40.k even 4 1
1274.4.a.d 1 35.f even 4 1
1872.4.a.q 1 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(650,[χ])S_{4}^{\mathrm{new}}(650, [\chi]):

T32+16 T_{3}^{2} + 16 Copy content Toggle raw display
T72+400 T_{7}^{2} + 400 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+16 T^{2} + 16 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+400 T^{2} + 400 Copy content Toggle raw display
1111 (T+48)2 (T + 48)^{2} Copy content Toggle raw display
1313 T2+169 T^{2} + 169 Copy content Toggle raw display
1717 T2+4356 T^{2} + 4356 Copy content Toggle raw display
1919 (T16)2 (T - 16)^{2} Copy content Toggle raw display
2323 T2+28224 T^{2} + 28224 Copy content Toggle raw display
2929 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3131 (T20)2 (T - 20)^{2} Copy content Toggle raw display
3737 T2+64516 T^{2} + 64516 Copy content Toggle raw display
4141 (T+390)2 (T + 390)^{2} Copy content Toggle raw display
4343 T2+15376 T^{2} + 15376 Copy content Toggle raw display
4747 T2+219024 T^{2} + 219024 Copy content Toggle raw display
5353 T2+311364 T^{2} + 311364 Copy content Toggle raw display
5959 (T96)2 (T - 96)^{2} Copy content Toggle raw display
6161 (T+826)2 (T + 826)^{2} Copy content Toggle raw display
6767 T2+25600 T^{2} + 25600 Copy content Toggle raw display
7171 (T+420)2 (T + 420)^{2} Copy content Toggle raw display
7373 T2+131044 T^{2} + 131044 Copy content Toggle raw display
7979 (T+776)2 (T + 776)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T+1626)2 (T + 1626)^{2} Copy content Toggle raw display
9797 T2+1674436 T^{2} + 1674436 Copy content Toggle raw display
show more
show less