Properties

Label 650.4.b.j
Level $650$
Weight $4$
Character orbit 650.b
Analytic conductor $38.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,4,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{145})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 73x^{2} + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta_{2} q^{2} + ( - \beta_{2} + \beta_1) q^{3} - 4 q^{4} + (2 \beta_{3} - 4) q^{6} + (20 \beta_{2} - \beta_1) q^{7} + 8 \beta_{2} q^{8} + (3 \beta_{3} - 13) q^{9} + ( - 10 \beta_{3} + 13) q^{11}+ \cdots + (139 \beta_{3} - 1249) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 12 q^{6} - 46 q^{9} + 32 q^{11} + 164 q^{14} + 64 q^{16} - 246 q^{19} + 268 q^{21} + 48 q^{24} - 104 q^{26} + 798 q^{29} - 714 q^{31} + 48 q^{34} + 184 q^{36} - 78 q^{39} - 90 q^{41} - 128 q^{44}+ \cdots - 4718 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 73x^{2} + 1296 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 37\nu ) / 36 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 37 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 37 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 36\beta_{2} - 37\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
6.52080i
5.52080i
5.52080i
6.52080i
2.00000i 7.52080i −4.00000 0 −15.0416 26.5208i 8.00000i −29.5624 0
599.2 2.00000i 4.52080i −4.00000 0 9.04159 14.4792i 8.00000i 6.56239 0
599.3 2.00000i 4.52080i −4.00000 0 9.04159 14.4792i 8.00000i 6.56239 0
599.4 2.00000i 7.52080i −4.00000 0 −15.0416 26.5208i 8.00000i −29.5624 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.b.j 4
5.b even 2 1 inner 650.4.b.j 4
5.c odd 4 1 650.4.a.l 2
5.c odd 4 1 650.4.a.q yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.4.a.l 2 5.c odd 4 1
650.4.a.q yes 2 5.c odd 4 1
650.4.b.j 4 1.a even 1 1 trivial
650.4.b.j 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(650, [\chi])\):

\( T_{3}^{4} + 77T_{3}^{2} + 1156 \) Copy content Toggle raw display
\( T_{7}^{4} + 913T_{7}^{2} + 147456 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 77T^{2} + 1156 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 913 T^{2} + 147456 \) Copy content Toggle raw display
$11$ \( (T^{2} - 16 T - 3561)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 2682 T^{2} + 1610361 \) Copy content Toggle raw display
$19$ \( (T^{2} + 123 T + 2876)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 3028 T^{2} + 1498176 \) Copy content Toggle raw display
$29$ \( (T^{2} - 399 T + 31644)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 357 T + 31826)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 31892 T^{2} + 177848896 \) Copy content Toggle raw display
$41$ \( (T^{2} + 45 T - 15480)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 8486094400 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 37247456016 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 2106259236 \) Copy content Toggle raw display
$59$ \( (T^{2} - 125 T - 211020)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 81 T - 85396)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 6593602401 \) Copy content Toggle raw display
$71$ \( (T^{2} - 400 T - 108480)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 128257096900 \) Copy content Toggle raw display
$79$ \( (T^{2} + 388 T - 1136864)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 266643140625 \) Copy content Toggle raw display
$89$ \( (T^{2} + 343 T - 1464414)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 77188 T^{2} + 982446336 \) Copy content Toggle raw display
show more
show less