Properties

Label 650.6.a.c.1.1
Level 650650
Weight 66
Character 650.1
Self dual yes
Analytic conductor 104.249104.249
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,6,Mod(1,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 650.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,16,32,0,-64,252] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 104.249482878104.249482878
Analytic rank: 00
Dimension: 22
Coefficient field: Q(14)\Q(\sqrt{14})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x214 x^{2} - 14 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 130)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 3.74166-3.74166 of defining polynomial
Character χ\chi == 650.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q4.00000q23.22497q3+16.0000q4+12.8999q6+200.833q764.0000q8232.600q9530.607q1151.5996q12+169.000q13803.333q14+256.000q16+15.1196q17+930.398q18392.592q19647.681q21+2122.43q222633.57q23+206.398q24676.000q26+1533.80q27+3213.33q287135.52q29+6828.51q311024.00q32+1711.19q3360.4783q343721.59q36+13272.7q37+1570.37q38545.020q39+3210.06q41+2590.73q42+11083.4q438489.71q44+10534.3q469258.69q47825.593q48+23527.0q4948.7602q51+2704.00q523520.99q536135.18q5412853.3q56+1266.10q57+28542.1q58+40334.1q5944243.3q6127314.0q6246713.7q63+4096.00q646844.77q667071.36q67+241.913q68+8493.18q6936271.3q71+14886.4q72+41064.8q7353090.8q746281.47q76106563.q77+2180.08q7819473.4q79+51575.2q8112840.3q8267566.0q8310362.9q8444333.6q86+23011.9q87+33958.9q88+33319.0q89+33940.8q9142137.1q9222021.7q93+37034.8q94+3302.37q96+2206.46q9794107.8q98+123419.q99+O(q100)q-4.00000 q^{2} -3.22497 q^{3} +16.0000 q^{4} +12.8999 q^{6} +200.833 q^{7} -64.0000 q^{8} -232.600 q^{9} -530.607 q^{11} -51.5996 q^{12} +169.000 q^{13} -803.333 q^{14} +256.000 q^{16} +15.1196 q^{17} +930.398 q^{18} -392.592 q^{19} -647.681 q^{21} +2122.43 q^{22} -2633.57 q^{23} +206.398 q^{24} -676.000 q^{26} +1533.80 q^{27} +3213.33 q^{28} -7135.52 q^{29} +6828.51 q^{31} -1024.00 q^{32} +1711.19 q^{33} -60.4783 q^{34} -3721.59 q^{36} +13272.7 q^{37} +1570.37 q^{38} -545.020 q^{39} +3210.06 q^{41} +2590.73 q^{42} +11083.4 q^{43} -8489.71 q^{44} +10534.3 q^{46} -9258.69 q^{47} -825.593 q^{48} +23527.0 q^{49} -48.7602 q^{51} +2704.00 q^{52} -3520.99 q^{53} -6135.18 q^{54} -12853.3 q^{56} +1266.10 q^{57} +28542.1 q^{58} +40334.1 q^{59} -44243.3 q^{61} -27314.0 q^{62} -46713.7 q^{63} +4096.00 q^{64} -6844.77 q^{66} -7071.36 q^{67} +241.913 q^{68} +8493.18 q^{69} -36271.3 q^{71} +14886.4 q^{72} +41064.8 q^{73} -53090.8 q^{74} -6281.47 q^{76} -106563. q^{77} +2180.08 q^{78} -19473.4 q^{79} +51575.2 q^{81} -12840.3 q^{82} -67566.0 q^{83} -10362.9 q^{84} -44333.6 q^{86} +23011.9 q^{87} +33958.9 q^{88} +33319.0 q^{89} +33940.8 q^{91} -42137.1 q^{92} -22021.7 q^{93} +37034.8 q^{94} +3302.37 q^{96} +2206.46 q^{97} -94107.8 q^{98} +123419. q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q2+16q3+32q464q6+252q7128q8106q936q11+256q12+338q131008q14+512q16+2380q17+424q181092q19+336q21++186036q99+O(q100) 2 q - 8 q^{2} + 16 q^{3} + 32 q^{4} - 64 q^{6} + 252 q^{7} - 128 q^{8} - 106 q^{9} - 36 q^{11} + 256 q^{12} + 338 q^{13} - 1008 q^{14} + 512 q^{16} + 2380 q^{17} + 424 q^{18} - 1092 q^{19} + 336 q^{21}+ \cdots + 186036 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −4.00000 −0.707107
33 −3.22497 −0.206882 −0.103441 0.994636i 0.532985π-0.532985\pi
−0.103441 + 0.994636i 0.532985π0.532985\pi
44 16.0000 0.500000
55 0 0
66 12.8999 0.146288
77 200.833 1.54914 0.774569 0.632489i 0.217967π-0.217967\pi
0.774569 + 0.632489i 0.217967π0.217967\pi
88 −64.0000 −0.353553
99 −232.600 −0.957200
1010 0 0
1111 −530.607 −1.32218 −0.661091 0.750306i 0.729906π-0.729906\pi
−0.661091 + 0.750306i 0.729906π0.729906\pi
1212 −51.5996 −0.103441
1313 169.000 0.277350
1414 −803.333 −1.09541
1515 0 0
1616 256.000 0.250000
1717 15.1196 0.0126887 0.00634435 0.999980i 0.497981π-0.497981\pi
0.00634435 + 0.999980i 0.497981π0.497981\pi
1818 930.398 0.676842
1919 −392.592 −0.249493 −0.124746 0.992189i 0.539812π-0.539812\pi
−0.124746 + 0.992189i 0.539812π0.539812\pi
2020 0 0
2121 −647.681 −0.320489
2222 2122.43 0.934924
2323 −2633.57 −1.03807 −0.519033 0.854754i 0.673708π-0.673708\pi
−0.519033 + 0.854754i 0.673708π0.673708\pi
2424 206.398 0.0731439
2525 0 0
2626 −676.000 −0.196116
2727 1533.80 0.404910
2828 3213.33 0.774569
2929 −7135.52 −1.57554 −0.787772 0.615966i 0.788766π-0.788766\pi
−0.787772 + 0.615966i 0.788766π0.788766\pi
3030 0 0
3131 6828.51 1.27621 0.638104 0.769950i 0.279719π-0.279719\pi
0.638104 + 0.769950i 0.279719π0.279719\pi
3232 −1024.00 −0.176777
3333 1711.19 0.273536
3434 −60.4783 −0.00897227
3535 0 0
3636 −3721.59 −0.478600
3737 13272.7 1.59388 0.796939 0.604060i 0.206451π-0.206451\pi
0.796939 + 0.604060i 0.206451π0.206451\pi
3838 1570.37 0.176418
3939 −545.020 −0.0573788
4040 0 0
4141 3210.06 0.298232 0.149116 0.988820i 0.452357π-0.452357\pi
0.149116 + 0.988820i 0.452357π0.452357\pi
4242 2590.73 0.226620
4343 11083.4 0.914118 0.457059 0.889436i 0.348903π-0.348903\pi
0.457059 + 0.889436i 0.348903π0.348903\pi
4444 −8489.71 −0.661091
4545 0 0
4646 10534.3 0.734023
4747 −9258.69 −0.611371 −0.305686 0.952132i 0.598886π-0.598886\pi
−0.305686 + 0.952132i 0.598886π0.598886\pi
4848 −825.593 −0.0517205
4949 23527.0 1.39983
5050 0 0
5151 −48.7602 −0.00262507
5252 2704.00 0.138675
5353 −3520.99 −0.172177 −0.0860885 0.996287i 0.527437π-0.527437\pi
−0.0860885 + 0.996287i 0.527437π0.527437\pi
5454 −6135.18 −0.286314
5555 0 0
5656 −12853.3 −0.547703
5757 1266.10 0.0516155
5858 28542.1 1.11408
5959 40334.1 1.50849 0.754245 0.656593i 0.228003π-0.228003\pi
0.754245 + 0.656593i 0.228003π0.228003\pi
6060 0 0
6161 −44243.3 −1.52238 −0.761189 0.648530i 0.775384π-0.775384\pi
−0.761189 + 0.648530i 0.775384π0.775384\pi
6262 −27314.0 −0.902415
6363 −46713.7 −1.48284
6464 4096.00 0.125000
6565 0 0
6666 −6844.77 −0.193419
6767 −7071.36 −0.192449 −0.0962246 0.995360i 0.530677π-0.530677\pi
−0.0962246 + 0.995360i 0.530677π0.530677\pi
6868 241.913 0.00634435
6969 8493.18 0.214757
7070 0 0
7171 −36271.3 −0.853921 −0.426961 0.904270i 0.640416π-0.640416\pi
−0.426961 + 0.904270i 0.640416π0.640416\pi
7272 14886.4 0.338421
7373 41064.8 0.901909 0.450955 0.892547i 0.351084π-0.351084\pi
0.450955 + 0.892547i 0.351084π0.351084\pi
7474 −53090.8 −1.12704
7575 0 0
7676 −6281.47 −0.124746
7777 −106563. −2.04824
7878 2180.08 0.0405729
7979 −19473.4 −0.351053 −0.175527 0.984475i 0.556163π-0.556163\pi
−0.175527 + 0.984475i 0.556163π0.556163\pi
8080 0 0
8181 51575.2 0.873431
8282 −12840.3 −0.210882
8383 −67566.0 −1.07655 −0.538274 0.842770i 0.680923π-0.680923\pi
−0.538274 + 0.842770i 0.680923π0.680923\pi
8484 −10362.9 −0.160245
8585 0 0
8686 −44333.6 −0.646379
8787 23011.9 0.325952
8888 33958.9 0.467462
8989 33319.0 0.445878 0.222939 0.974832i 0.428435π-0.428435\pi
0.222939 + 0.974832i 0.428435π0.428435\pi
9090 0 0
9191 33940.8 0.429654
9292 −42137.1 −0.519033
9393 −22021.7 −0.264025
9494 37034.8 0.432305
9595 0 0
9696 3302.37 0.0365719
9797 2206.46 0.0238103 0.0119052 0.999929i 0.496210π-0.496210\pi
0.0119052 + 0.999929i 0.496210π0.496210\pi
9898 −94107.8 −0.989830
9999 123419. 1.26559
100100 0 0
101101 −93675.8 −0.913743 −0.456871 0.889533i 0.651030π-0.651030\pi
−0.456871 + 0.889533i 0.651030π0.651030\pi
102102 195.041 0.00185620
103103 −116473. −1.08176 −0.540881 0.841099i 0.681909π-0.681909\pi
−0.540881 + 0.841099i 0.681909π0.681909\pi
104104 −10816.0 −0.0980581
105105 0 0
106106 14084.0 0.121747
107107 195303. 1.64911 0.824554 0.565784i 0.191426π-0.191426\pi
0.824554 + 0.565784i 0.191426π0.191426\pi
108108 24540.7 0.202455
109109 173562. 1.39923 0.699613 0.714522i 0.253356π-0.253356\pi
0.699613 + 0.714522i 0.253356π0.253356\pi
110110 0 0
111111 −42804.1 −0.329745
112112 51413.3 0.387285
113113 −3810.27 −0.0280711 −0.0140356 0.999901i 0.504468π-0.504468\pi
−0.0140356 + 0.999901i 0.504468π0.504468\pi
114114 −5064.39 −0.0364977
115115 0 0
116116 −114168. −0.787772
117117 −39309.3 −0.265479
118118 −161336. −1.06666
119119 3036.51 0.0196566
120120 0 0
121121 120493. 0.748166
122122 176973. 1.07648
123123 −10352.4 −0.0616988
124124 109256. 0.638104
125125 0 0
126126 186855. 1.04852
127127 19926.1 0.109626 0.0548130 0.998497i 0.482544π-0.482544\pi
0.0548130 + 0.998497i 0.482544π0.482544\pi
128128 −16384.0 −0.0883883
129129 −35743.7 −0.189115
130130 0 0
131131 266895. 1.35882 0.679409 0.733759i 0.262236π-0.262236\pi
0.679409 + 0.733759i 0.262236π0.262236\pi
132132 27379.1 0.136768
133133 −78845.5 −0.386498
134134 28285.4 0.136082
135135 0 0
136136 −967.653 −0.00448614
137137 −9618.96 −0.0437851 −0.0218926 0.999760i 0.506969π-0.506969\pi
−0.0218926 + 0.999760i 0.506969π0.506969\pi
138138 −33972.7 −0.151856
139139 −85185.2 −0.373962 −0.186981 0.982364i 0.559870π-0.559870\pi
−0.186981 + 0.982364i 0.559870π0.559870\pi
140140 0 0
141141 29859.0 0.126482
142142 145085. 0.603813
143143 −89672.6 −0.366707
144144 −59545.5 −0.239300
145145 0 0
146146 −164259. −0.637746
147147 −75873.8 −0.289600
148148 212363. 0.796939
149149 222940. 0.822663 0.411332 0.911486i 0.365064π-0.365064\pi
0.411332 + 0.911486i 0.365064π0.365064\pi
150150 0 0
151151 −363446. −1.29717 −0.648585 0.761142i 0.724639π-0.724639\pi
−0.648585 + 0.761142i 0.724639π0.724639\pi
152152 25125.9 0.0882089
153153 −3516.81 −0.0121456
154154 426254. 1.44833
155155 0 0
156156 −8720.32 −0.0286894
157157 323402. 1.04711 0.523556 0.851991i 0.324605π-0.324605\pi
0.523556 + 0.851991i 0.324605π0.324605\pi
158158 77893.5 0.248232
159159 11355.1 0.0356203
160160 0 0
161161 −528908. −1.60811
162162 −206301. −0.617609
163163 361691. 1.06627 0.533137 0.846029i 0.321013π-0.321013\pi
0.533137 + 0.846029i 0.321013π0.321013\pi
164164 51361.0 0.149116
165165 0 0
166166 270264. 0.761234
167167 535913. 1.48697 0.743486 0.668751i 0.233171π-0.233171\pi
0.743486 + 0.668751i 0.233171π0.233171\pi
168168 41451.6 0.113310
169169 28561.0 0.0769231
170170 0 0
171171 91316.7 0.238814
172172 177335. 0.457059
173173 252514. 0.641462 0.320731 0.947170i 0.396071π-0.396071\pi
0.320731 + 0.947170i 0.396071π0.396071\pi
174174 −92047.4 −0.230483
175175 0 0
176176 −135835. −0.330546
177177 −130076. −0.312079
178178 −133276. −0.315284
179179 −499988. −1.16634 −0.583172 0.812349i 0.698189π-0.698189\pi
−0.583172 + 0.812349i 0.698189π0.698189\pi
180180 0 0
181181 −607767. −1.37892 −0.689462 0.724322i 0.742153π-0.742153\pi
−0.689462 + 0.724322i 0.742153π0.742153\pi
182182 −135763. −0.303811
183183 142683. 0.314953
184184 168548. 0.367012
185185 0 0
186186 88087.0 0.186694
187187 −8022.56 −0.0167768
188188 −148139. −0.305686
189189 308037. 0.627261
190190 0 0
191191 51603.7 0.102352 0.0511762 0.998690i 0.483703π-0.483703\pi
0.0511762 + 0.998690i 0.483703π0.483703\pi
192192 −13209.5 −0.0258603
193193 946349. 1.82877 0.914383 0.404851i 0.132677π-0.132677\pi
0.914383 + 0.404851i 0.132677π0.132677\pi
194194 −8825.82 −0.0168365
195195 0 0
196196 376431. 0.699915
197197 229033. 0.420468 0.210234 0.977651i 0.432577π-0.432577\pi
0.210234 + 0.977651i 0.432577π0.432577\pi
198198 −493676. −0.894909
199199 1.06207e6 1.90116 0.950582 0.310473i 0.100487π-0.100487\pi
0.950582 + 0.310473i 0.100487π0.100487\pi
200200 0 0
201201 22804.9 0.0398143
202202 374703. 0.646114
203203 −1.43305e6 −2.44074
204204 −780.164 −0.00131253
205205 0 0
206206 465892. 0.764922
207207 612567. 0.993636
208208 43264.0 0.0693375
209209 208312. 0.329875
210210 0 0
211211 −256699. −0.396934 −0.198467 0.980108i 0.563596π-0.563596\pi
−0.198467 + 0.980108i 0.563596π0.563596\pi
212212 −56335.8 −0.0860885
213213 116974. 0.176661
214214 −781211. −1.16610
215215 0 0
216216 −98162.9 −0.143157
217217 1.37139e6 1.97702
218218 −694247. −0.989402
219219 −132433. −0.186589
220220 0 0
221221 2555.21 0.00351921
222222 171216. 0.233165
223223 −809910. −1.09062 −0.545312 0.838233i 0.683589π-0.683589\pi
−0.545312 + 0.838233i 0.683589π0.683589\pi
224224 −205653. −0.273852
225225 0 0
226226 15241.1 0.0198493
227227 656318. 0.845375 0.422687 0.906276i 0.361087π-0.361087\pi
0.422687 + 0.906276i 0.361087π0.361087\pi
228228 20257.6 0.0258078
229229 1.19398e6 1.50456 0.752280 0.658844i 0.228954π-0.228954\pi
0.752280 + 0.658844i 0.228954π0.228954\pi
230230 0 0
231231 343664. 0.423745
232232 456673. 0.557039
233233 1.06005e6 1.27920 0.639598 0.768709i 0.279101π-0.279101\pi
0.639598 + 0.768709i 0.279101π0.279101\pi
234234 157237. 0.187722
235235 0 0
236236 645346. 0.754245
237237 62801.1 0.0726267
238238 −12146.1 −0.0138993
239239 456553. 0.517006 0.258503 0.966010i 0.416771π-0.416771\pi
0.258503 + 0.966010i 0.416771π0.416771\pi
240240 0 0
241241 1.22007e6 1.35314 0.676569 0.736379i 0.263466π-0.263466\pi
0.676569 + 0.736379i 0.263466π0.263466\pi
242242 −481971. −0.529033
243243 −539041. −0.585607
244244 −707892. −0.761189
245245 0 0
246246 41409.5 0.0436277
247247 −66348.1 −0.0691968
248248 −437024. −0.451208
249249 217899. 0.222718
250250 0 0
251251 1.44804e6 1.45076 0.725382 0.688347i 0.241663π-0.241663\pi
0.725382 + 0.688347i 0.241663π0.241663\pi
252252 −747419. −0.741418
253253 1.39739e6 1.37251
254254 −79704.5 −0.0775173
255255 0 0
256256 65536.0 0.0625000
257257 1.21790e6 1.15021 0.575106 0.818079i 0.304961π-0.304961\pi
0.575106 + 0.818079i 0.304961π0.304961\pi
258258 142975. 0.133724
259259 2.66560e6 2.46914
260260 0 0
261261 1.65972e6 1.50811
262262 −1.06758e6 −0.960830
263263 −1.51165e6 −1.34760 −0.673799 0.738915i 0.735339π-0.735339\pi
−0.673799 + 0.738915i 0.735339π0.735339\pi
264264 −109516. −0.0967095
265265 0 0
266266 315382. 0.273296
267267 −107453. −0.0922443
268268 −113142. −0.0962246
269269 405154. 0.341381 0.170691 0.985325i 0.445400π-0.445400\pi
0.170691 + 0.985325i 0.445400π0.445400\pi
270270 0 0
271271 613161. 0.507167 0.253584 0.967313i 0.418391π-0.418391\pi
0.253584 + 0.967313i 0.418391π0.418391\pi
272272 3870.61 0.00317218
273273 −109458. −0.0888877
274274 38475.8 0.0309608
275275 0 0
276276 135891. 0.107379
277277 1.14240e6 0.894579 0.447289 0.894389i 0.352389π-0.352389\pi
0.447289 + 0.894389i 0.352389π0.352389\pi
278278 340741. 0.264431
279279 −1.58831e6 −1.22159
280280 0 0
281281 −705223. −0.532795 −0.266398 0.963863i 0.585833π-0.585833\pi
−0.266398 + 0.963863i 0.585833π0.585833\pi
282282 −119436. −0.0894361
283283 205148. 0.152266 0.0761328 0.997098i 0.475743π-0.475743\pi
0.0761328 + 0.997098i 0.475743π0.475743\pi
284284 −580341. −0.426961
285285 0 0
286286 358690. 0.259301
287287 644687. 0.462003
288288 238182. 0.169211
289289 −1.41963e6 −0.999839
290290 0 0
291291 −7115.76 −0.00492593
292292 657037. 0.450955
293293 2.50408e6 1.70404 0.852018 0.523513i 0.175379π-0.175379\pi
0.852018 + 0.523513i 0.175379π0.175379\pi
294294 303495. 0.204778
295295 0 0
296296 −849453. −0.563521
297297 −813843. −0.535364
298298 −891759. −0.581711
299299 −445073. −0.287908
300300 0 0
301301 2.22592e6 1.41610
302302 1.45378e6 0.917238
303303 302102. 0.189037
304304 −100504. −0.0623731
305305 0 0
306306 14067.2 0.00858826
307307 110033. 0.0666312 0.0333156 0.999445i 0.489393π-0.489393\pi
0.0333156 + 0.999445i 0.489393π0.489393\pi
308308 −1.70502e6 −1.02412
309309 375622. 0.223797
310310 0 0
311311 −1.15351e6 −0.676272 −0.338136 0.941097i 0.609796π-0.609796\pi
−0.338136 + 0.941097i 0.609796π0.609796\pi
312312 34881.3 0.0202865
313313 −2.00121e6 −1.15460 −0.577302 0.816531i 0.695894π-0.695894\pi
−0.577302 + 0.816531i 0.695894π0.695894\pi
314314 −1.29361e6 −0.740421
315315 0 0
316316 −311574. −0.175527
317317 −90375.3 −0.0505128 −0.0252564 0.999681i 0.508040π-0.508040\pi
−0.0252564 + 0.999681i 0.508040π0.508040\pi
318318 −45420.4 −0.0251874
319319 3.78616e6 2.08316
320320 0 0
321321 −629846. −0.341171
322322 2.11563e6 1.13710
323323 −5935.83 −0.00316574
324324 825204. 0.436716
325325 0 0
326326 −1.44676e6 −0.753970
327327 −559732. −0.289475
328328 −205444. −0.105441
329329 −1.85945e6 −0.947099
330330 0 0
331331 −3.83957e6 −1.92625 −0.963126 0.269051i 0.913290π-0.913290\pi
−0.963126 + 0.269051i 0.913290π0.913290\pi
332332 −1.08106e6 −0.538274
333333 −3.08723e6 −1.52566
334334 −2.14365e6 −1.05145
335335 0 0
336336 −165806. −0.0801223
337337 −2.29930e6 −1.10286 −0.551430 0.834221i 0.685917π-0.685917\pi
−0.551430 + 0.834221i 0.685917π0.685917\pi
338338 −114244. −0.0543928
339339 12288.0 0.00580742
340340 0 0
341341 −3.62325e6 −1.68738
342342 −365267. −0.168867
343343 1.34959e6 0.619393
344344 −709338. −0.323190
345345 0 0
346346 −1.01006e6 −0.453582
347347 1.82848e6 0.815204 0.407602 0.913160i 0.366365π-0.366365\pi
0.407602 + 0.913160i 0.366365π0.366365\pi
348348 368190. 0.162976
349349 2.54054e6 1.11651 0.558254 0.829670i 0.311472π-0.311472\pi
0.558254 + 0.829670i 0.311472π0.311472\pi
350350 0 0
351351 259211. 0.112302
352352 543342. 0.233731
353353 3.67598e6 1.57013 0.785066 0.619412i 0.212629π-0.212629\pi
0.785066 + 0.619412i 0.212629π0.212629\pi
354354 520305. 0.220674
355355 0 0
356356 533103. 0.222939
357357 −9792.67 −0.00406659
358358 1.99995e6 0.824730
359359 −920537. −0.376969 −0.188484 0.982076i 0.560357π-0.560357\pi
−0.188484 + 0.982076i 0.560357π0.560357\pi
360360 0 0
361361 −2.32197e6 −0.937753
362362 2.43107e6 0.975047
363363 −388586. −0.154782
364364 543053. 0.214827
365365 0 0
366366 −570733. −0.222705
367367 −2.28316e6 −0.884854 −0.442427 0.896804i 0.645882π-0.645882\pi
−0.442427 + 0.896804i 0.645882π0.645882\pi
368368 −674193. −0.259516
369369 −746659. −0.285467
370370 0 0
371371 −707131. −0.266726
372372 −352348. −0.132012
373373 −2.84732e6 −1.05965 −0.529827 0.848106i 0.677743π-0.677743\pi
−0.529827 + 0.848106i 0.677743π0.677743\pi
374374 32090.2 0.0118630
375375 0 0
376376 592556. 0.216152
377377 −1.20590e6 −0.436977
378378 −1.23215e6 −0.443541
379379 3.75104e6 1.34139 0.670693 0.741735i 0.265997π-0.265997\pi
0.670693 + 0.741735i 0.265997π0.265997\pi
380380 0 0
381381 −64261.2 −0.0226797
382382 −206415. −0.0723740
383383 1.81532e6 0.632349 0.316174 0.948701i 0.397602π-0.397602\pi
0.316174 + 0.948701i 0.397602π0.397602\pi
384384 52837.9 0.0182860
385385 0 0
386386 −3.78540e6 −1.29313
387387 −2.57800e6 −0.874994
388388 35303.3 0.0119052
389389 −4.37154e6 −1.46474 −0.732371 0.680906i 0.761586π-0.761586\pi
−0.732371 + 0.680906i 0.761586π0.761586\pi
390390 0 0
391391 −39818.4 −0.0131717
392392 −1.50573e6 −0.494915
393393 −860728. −0.281115
394394 −916133. −0.297316
395395 0 0
396396 1.97470e6 0.632796
397397 2.28486e6 0.727584 0.363792 0.931480i 0.381482π-0.381482\pi
0.363792 + 0.931480i 0.381482π0.381482\pi
398398 −4.24827e6 −1.34433
399399 254275. 0.0799596
400400 0 0
401401 5.53357e6 1.71848 0.859240 0.511573i 0.170937π-0.170937\pi
0.859240 + 0.511573i 0.170937π0.170937\pi
402402 −91219.8 −0.0281529
403403 1.15402e6 0.353956
404404 −1.49881e6 −0.456871
405405 0 0
406406 5.73220e6 1.72586
407407 −7.04259e6 −2.10740
408408 3120.65 0.000928101 0
409409 −2.28293e6 −0.674815 −0.337408 0.941359i 0.609550π-0.609550\pi
−0.337408 + 0.941359i 0.609550π0.609550\pi
410410 0 0
411411 31020.9 0.00905836
412412 −1.86357e6 −0.540881
413413 8.10043e6 2.33686
414414 −2.45027e6 −0.702607
415415 0 0
416416 −173056. −0.0490290
417417 274720. 0.0773660
418418 −833248. −0.233257
419419 2.75540e6 0.766741 0.383371 0.923595i 0.374763π-0.374763\pi
0.383371 + 0.923595i 0.374763π0.374763\pi
420420 0 0
421421 −6.19470e6 −1.70339 −0.851697 0.524035i 0.824426π-0.824426\pi
−0.851697 + 0.524035i 0.824426π0.824426\pi
422422 1.02680e6 0.280675
423423 2.15357e6 0.585204
424424 225343. 0.0608737
425425 0 0
426426 −467896. −0.124918
427427 −8.88552e6 −2.35838
428428 3.12484e6 0.824554
429429 289192. 0.0758652
430430 0 0
431431 5.52072e6 1.43154 0.715768 0.698338i 0.246077π-0.246077\pi
0.715768 + 0.698338i 0.246077π0.246077\pi
432432 392652. 0.101227
433433 4.76773e6 1.22206 0.611030 0.791608i 0.290756π-0.290756\pi
0.611030 + 0.791608i 0.290756π0.290756\pi
434434 −5.48556e6 −1.39797
435435 0 0
436436 2.77699e6 0.699613
437437 1.03392e6 0.258990
438438 529732. 0.131938
439439 275097. 0.0681279 0.0340639 0.999420i 0.489155π-0.489155\pi
0.0340639 + 0.999420i 0.489155π0.489155\pi
440440 0 0
441441 −5.47236e6 −1.33992
442442 −10220.8 −0.00248846
443443 5.89806e6 1.42791 0.713953 0.700194i 0.246903π-0.246903\pi
0.713953 + 0.700194i 0.246903π0.246903\pi
444444 −684866. −0.164872
445445 0 0
446446 3.23964e6 0.771187
447447 −718975. −0.170194
448448 822613. 0.193642
449449 2.69527e6 0.630938 0.315469 0.948936i 0.397838π-0.397838\pi
0.315469 + 0.948936i 0.397838π0.397838\pi
450450 0 0
451451 −1.70328e6 −0.394317
452452 −60964.4 −0.0140356
453453 1.17210e6 0.268361
454454 −2.62527e6 −0.597770
455455 0 0
456456 −81030.3 −0.0182488
457457 −5.00128e6 −1.12019 −0.560094 0.828429i 0.689235π-0.689235\pi
−0.560094 + 0.828429i 0.689235π0.689235\pi
458458 −4.77593e6 −1.06388
459459 23190.3 0.00513778
460460 0 0
461461 1.31041e6 0.287179 0.143590 0.989637i 0.454135π-0.454135\pi
0.143590 + 0.989637i 0.454135π0.454135\pi
462462 −1.37466e6 −0.299633
463463 −4.81314e6 −1.04346 −0.521731 0.853110i 0.674713π-0.674713\pi
−0.521731 + 0.853110i 0.674713π0.674713\pi
464464 −1.82669e6 −0.393886
465465 0 0
466466 −4.24021e6 −0.904529
467467 8.29674e6 1.76042 0.880208 0.474589i 0.157403π-0.157403\pi
0.880208 + 0.474589i 0.157403π0.157403\pi
468468 −628949. −0.132740
469469 −1.42016e6 −0.298130
470470 0 0
471471 −1.04296e6 −0.216629
472472 −2.58138e6 −0.533332
473473 −5.88094e6 −1.20863
474474 −251204. −0.0513548
475475 0 0
476476 48584.2 0.00982828
477477 818980. 0.164808
478478 −1.82621e6 −0.365579
479479 −1.37501e6 −0.273821 −0.136910 0.990583i 0.543717π-0.543717\pi
−0.136910 + 0.990583i 0.543717π0.543717\pi
480480 0 0
481481 2.24309e6 0.442062
482482 −4.88028e6 −0.956813
483483 1.70571e6 0.332689
484484 1.92789e6 0.374083
485485 0 0
486486 2.15616e6 0.414087
487487 3.68612e6 0.704283 0.352142 0.935947i 0.385454π-0.385454\pi
0.352142 + 0.935947i 0.385454π0.385454\pi
488488 2.83157e6 0.538242
489489 −1.16644e6 −0.220593
490490 0 0
491491 −4.43125e6 −0.829512 −0.414756 0.909933i 0.636133π-0.636133\pi
−0.414756 + 0.909933i 0.636133π0.636133\pi
492492 −165638. −0.0308494
493493 −107886. −0.0199916
494494 265392. 0.0489295
495495 0 0
496496 1.74810e6 0.319052
497497 −7.28449e6 −1.32284
498498 −871595. −0.157486
499499 8.78314e6 1.57906 0.789529 0.613713i 0.210325π-0.210325\pi
0.789529 + 0.613713i 0.210325π0.210325\pi
500500 0 0
501501 −1.72830e6 −0.307628
502502 −5.79216e6 −1.02584
503503 8.16254e6 1.43849 0.719243 0.694759i 0.244489π-0.244489\pi
0.719243 + 0.694759i 0.244489π0.244489\pi
504504 2.98968e6 0.524261
505505 0 0
506506 −5.58956e6 −0.970512
507507 −92108.4 −0.0159140
508508 318818. 0.0548130
509509 1.76886e6 0.302621 0.151310 0.988486i 0.451651π-0.451651\pi
0.151310 + 0.988486i 0.451651π0.451651\pi
510510 0 0
511511 8.24718e6 1.39718
512512 −262144. −0.0441942
513513 −602156. −0.101022
514514 −4.87159e6 −0.813322
515515 0 0
516516 −571899. −0.0945573
517517 4.91273e6 0.808344
518518 −1.06624e7 −1.74594
519519 −814352. −0.132707
520520 0 0
521521 −1.12965e6 −0.182327 −0.0911634 0.995836i 0.529059π-0.529059\pi
−0.0911634 + 0.995836i 0.529059π0.529059\pi
522522 −6.63888e6 −1.06640
523523 −3.65785e6 −0.584753 −0.292376 0.956303i 0.594446π-0.594446\pi
−0.292376 + 0.956303i 0.594446π0.594446\pi
524524 4.27031e6 0.679409
525525 0 0
526526 6.04658e6 0.952896
527527 103244. 0.0161934
528528 438065. 0.0683839
529529 499332. 0.0775801
530530 0 0
531531 −9.38169e6 −1.44393
532532 −1.26153e6 −0.193249
533533 542501. 0.0827146
534534 429811. 0.0652265
535535 0 0
536536 452567. 0.0680411
537537 1.61245e6 0.241296
538538 −1.62062e6 −0.241393
539539 −1.24836e7 −1.85083
540540 0 0
541541 −4.32623e6 −0.635502 −0.317751 0.948174i 0.602928π-0.602928\pi
−0.317751 + 0.948174i 0.602928π0.602928\pi
542542 −2.45264e6 −0.358621
543543 1.96003e6 0.285275
544544 −15482.5 −0.00224307
545545 0 0
546546 437833. 0.0628531
547547 −7.59075e6 −1.08472 −0.542359 0.840147i 0.682469π-0.682469\pi
−0.542359 + 0.840147i 0.682469π0.682469\pi
548548 −153903. −0.0218926
549549 1.02910e7 1.45722
550550 0 0
551551 2.80135e6 0.393087
552552 −543564. −0.0759281
553553 −3.91090e6 −0.543830
554554 −4.56960e6 −0.632563
555555 0 0
556556 −1.36296e6 −0.186981
557557 −1.04397e7 −1.42577 −0.712886 0.701280i 0.752612π-0.752612\pi
−0.712886 + 0.701280i 0.752612π0.752612\pi
558558 6.35323e6 0.863792
559559 1.87310e6 0.253531
560560 0 0
561561 25872.5 0.00347082
562562 2.82089e6 0.376743
563563 3.38176e6 0.449646 0.224823 0.974400i 0.427820π-0.427820\pi
0.224823 + 0.974400i 0.427820π0.427820\pi
564564 477744. 0.0632409
565565 0 0
566566 −820593. −0.107668
567567 1.03580e7 1.35307
568568 2.32137e6 0.301907
569569 −1.09186e7 −1.41380 −0.706900 0.707313i 0.749907π-0.749907\pi
−0.706900 + 0.707313i 0.749907π0.749907\pi
570570 0 0
571571 1.15547e7 1.48310 0.741549 0.670899i 0.234092π-0.234092\pi
0.741549 + 0.670899i 0.234092π0.234092\pi
572572 −1.43476e6 −0.183354
573573 −166421. −0.0211749
574574 −2.57875e6 −0.326685
575575 0 0
576576 −952728. −0.119650
577577 −1.71415e6 −0.214343 −0.107171 0.994241i 0.534179π-0.534179\pi
−0.107171 + 0.994241i 0.534179π0.534179\pi
578578 5.67851e6 0.706993
579579 −3.05195e6 −0.378339
580580 0 0
581581 −1.35695e7 −1.66772
582582 28463.0 0.00348316
583583 1.86826e6 0.227649
584584 −2.62815e6 −0.318873
585585 0 0
586586 −1.00163e7 −1.20494
587587 2.85910e6 0.342479 0.171239 0.985229i 0.445223π-0.445223\pi
0.171239 + 0.985229i 0.445223π0.445223\pi
588588 −1.21398e6 −0.144800
589589 −2.68082e6 −0.318404
590590 0 0
591591 −738626. −0.0869873
592592 3.39781e6 0.398470
593593 −4.96085e6 −0.579321 −0.289661 0.957129i 0.593542π-0.593542\pi
−0.289661 + 0.957129i 0.593542π0.593542\pi
594594 3.25537e6 0.378560
595595 0 0
596596 3.56704e6 0.411332
597597 −3.42514e6 −0.393317
598598 1.78029e6 0.203581
599599 −1.24276e7 −1.41520 −0.707601 0.706612i 0.750223π-0.750223\pi
−0.707601 + 0.706612i 0.750223π0.750223\pi
600600 0 0
601601 3.58410e6 0.404757 0.202378 0.979307i 0.435133π-0.435133\pi
0.202378 + 0.979307i 0.435133π0.435133\pi
602602 −8.90366e6 −1.00133
603603 1.64480e6 0.184212
604604 −5.81513e6 −0.648585
605605 0 0
606606 −1.20841e6 −0.133669
607607 3.78467e6 0.416923 0.208462 0.978031i 0.433154π-0.433154\pi
0.208462 + 0.978031i 0.433154π0.433154\pi
608608 402014. 0.0441045
609609 4.62154e6 0.504945
610610 0 0
611611 −1.56472e6 −0.169564
612612 −56268.9 −0.00607281
613613 −1.54450e7 −1.66011 −0.830053 0.557685i 0.811690π-0.811690\pi
−0.830053 + 0.557685i 0.811690π0.811690\pi
614614 −440133. −0.0471154
615615 0 0
616616 6.82006e6 0.724163
617617 −6.78866e6 −0.717912 −0.358956 0.933355i 0.616867π-0.616867\pi
−0.358956 + 0.933355i 0.616867π0.616867\pi
618618 −1.50249e6 −0.158249
619619 −1.31549e7 −1.37994 −0.689970 0.723838i 0.742376π-0.742376\pi
−0.689970 + 0.723838i 0.742376π0.742376\pi
620620 0 0
621621 −4.03935e6 −0.420323
622622 4.61405e6 0.478197
623623 6.69155e6 0.690728
624624 −139525. −0.0143447
625625 0 0
626626 8.00486e6 0.816428
627627 −671801. −0.0682451
628628 5.17443e6 0.523556
629629 200678. 0.0202243
630630 0 0
631631 9.46150e6 0.945990 0.472995 0.881065i 0.343173π-0.343173\pi
0.472995 + 0.881065i 0.343173π0.343173\pi
632632 1.24630e6 0.124116
633633 827849. 0.0821186
634634 361501. 0.0357179
635635 0 0
636636 181681. 0.0178102
637637 3.97606e6 0.388243
638638 −1.51446e7 −1.47301
639639 8.43670e6 0.817373
640640 0 0
641641 −1.66495e7 −1.60050 −0.800250 0.599666i 0.795300π-0.795300\pi
−0.800250 + 0.599666i 0.795300π0.795300\pi
642642 2.51938e6 0.241244
643643 1.31070e7 1.25019 0.625096 0.780548i 0.285060π-0.285060\pi
0.625096 + 0.780548i 0.285060π0.285060\pi
644644 −8.46252e6 −0.804054
645645 0 0
646646 23743.3 0.00223851
647647 1.08998e7 1.02366 0.511832 0.859086i 0.328967π-0.328967\pi
0.511832 + 0.859086i 0.328967π0.328967\pi
648648 −3.30082e6 −0.308805
649649 −2.14016e7 −1.99450
650650 0 0
651651 −4.42270e6 −0.409011
652652 5.78706e6 0.533137
653653 1.18879e7 1.09099 0.545497 0.838113i 0.316341π-0.316341\pi
0.545497 + 0.838113i 0.316341π0.316341\pi
654654 2.23893e6 0.204689
655655 0 0
656656 821776. 0.0745580
657657 −9.55166e6 −0.863307
658658 7.43781e6 0.669700
659659 5.65451e6 0.507203 0.253601 0.967309i 0.418385π-0.418385\pi
0.253601 + 0.967309i 0.418385π0.418385\pi
660660 0 0
661661 8.05716e6 0.717263 0.358631 0.933479i 0.383243π-0.383243\pi
0.358631 + 0.933479i 0.383243π0.383243\pi
662662 1.53583e7 1.36207
663663 −8240.48 −0.000728062 0
664664 4.32423e6 0.380617
665665 0 0
666666 1.23489e7 1.07880
667667 1.87919e7 1.63552
668668 8.57461e6 0.743486
669669 2.61194e6 0.225630
670670 0 0
671671 2.34758e7 2.01286
672672 663226. 0.0566550
673673 8.86976e6 0.754874 0.377437 0.926035i 0.376806π-0.376806\pi
0.377437 + 0.926035i 0.376806π0.376806\pi
674674 9.19718e6 0.779839
675675 0 0
676676 456976. 0.0384615
677677 1.86550e7 1.56431 0.782156 0.623083i 0.214120π-0.214120\pi
0.782156 + 0.623083i 0.214120π0.214120\pi
678678 −49152.1 −0.00410646
679679 443129. 0.0368855
680680 0 0
681681 −2.11661e6 −0.174893
682682 1.44930e7 1.19316
683683 −1.79463e7 −1.47205 −0.736027 0.676952i 0.763300π-0.763300\pi
−0.736027 + 0.676952i 0.763300π0.763300\pi
684684 1.46107e6 0.119407
685685 0 0
686686 −5.39836e6 −0.437977
687687 −3.85056e6 −0.311266
688688 2.83735e6 0.228530
689689 −595047. −0.0477533
690690 0 0
691691 1.39282e7 1.10969 0.554844 0.831954i 0.312778π-0.312778\pi
0.554844 + 0.831954i 0.312778π0.312778\pi
692692 4.04023e6 0.320731
693693 2.47866e7 1.96058
694694 −7.31391e6 −0.576436
695695 0 0
696696 −1.47276e6 −0.115241
697697 48534.8 0.00378418
698698 −1.01621e7 −0.789490
699699 −3.41864e6 −0.264643
700700 0 0
701701 2.29331e7 1.76265 0.881326 0.472508i 0.156651π-0.156651\pi
0.881326 + 0.472508i 0.156651π0.156651\pi
702702 −1.03685e6 −0.0794093
703703 −5.21076e6 −0.397661
704704 −2.17337e6 −0.165273
705705 0 0
706706 −1.47039e7 −1.11025
707707 −1.88132e7 −1.41551
708708 −2.08122e6 −0.156040
709709 2.11865e7 1.58286 0.791430 0.611260i 0.209337π-0.209337\pi
0.791430 + 0.611260i 0.209337π0.209337\pi
710710 0 0
711711 4.52950e6 0.336028
712712 −2.13241e6 −0.157642
713713 −1.79833e7 −1.32479
714714 39170.7 0.00287551
715715 0 0
716716 −7.99980e6 −0.583172
717717 −1.47237e6 −0.106959
718718 3.68215e6 0.266557
719719 2.03595e7 1.46874 0.734371 0.678749i 0.237477π-0.237477\pi
0.734371 + 0.678749i 0.237477π0.237477\pi
720720 0 0
721721 −2.33916e7 −1.67580
722722 9.28788e6 0.663092
723723 −3.93469e6 −0.279940
724724 −9.72426e6 −0.689462
725725 0 0
726726 1.55434e6 0.109447
727727 −3.11392e6 −0.218510 −0.109255 0.994014i 0.534847π-0.534847\pi
−0.109255 + 0.994014i 0.534847π0.534847\pi
728728 −2.17221e6 −0.151906
729729 −1.07944e7 −0.752280
730730 0 0
731731 167577. 0.0115990
732732 2.28293e6 0.157476
733733 −2.20488e7 −1.51574 −0.757871 0.652405i 0.773760π-0.773760\pi
−0.757871 + 0.652405i 0.773760π0.773760\pi
734734 9.13265e6 0.625686
735735 0 0
736736 2.69677e6 0.183506
737737 3.75211e6 0.254453
738738 2.98664e6 0.201856
739739 2.29831e6 0.154809 0.0774046 0.997000i 0.475337π-0.475337\pi
0.0774046 + 0.997000i 0.475337π0.475337\pi
740740 0 0
741741 213971. 0.0143156
742742 2.82852e6 0.188604
743743 −711970. −0.0473140 −0.0236570 0.999720i 0.507531π-0.507531\pi
−0.0236570 + 0.999720i 0.507531π0.507531\pi
744744 1.40939e6 0.0933468
745745 0 0
746746 1.13893e7 0.749288
747747 1.57158e7 1.03047
748748 −128361. −0.00838839
749749 3.92233e7 2.55470
750750 0 0
751751 −3.24479e6 −0.209936 −0.104968 0.994476i 0.533474π-0.533474\pi
−0.104968 + 0.994476i 0.533474π0.533474\pi
752752 −2.37023e6 −0.152843
753753 −4.66989e6 −0.300137
754754 4.82361e6 0.308990
755755 0 0
756756 4.92859e6 0.313631
757757 −2.38887e7 −1.51514 −0.757569 0.652756i 0.773613π-0.773613\pi
−0.757569 + 0.652756i 0.773613π0.773613\pi
758758 −1.50042e7 −0.948504
759759 −4.50654e6 −0.283948
760760 0 0
761761 2340.75 0.000146519 0 7.32593e−5 1.00000i 0.499977π-0.499977\pi
7.32593e−5 1.00000i 0.499977π0.499977\pi
762762 257045. 0.0160369
763763 3.48569e7 2.16759
764764 825660. 0.0511762
765765 0 0
766766 −7.26128e6 −0.447138
767767 6.81646e6 0.418380
768768 −211352. −0.0129301
769769 −365454. −0.0222852 −0.0111426 0.999938i 0.503547π-0.503547\pi
−0.0111426 + 0.999938i 0.503547π0.503547\pi
770770 0 0
771771 −3.92768e6 −0.237958
772772 1.51416e7 0.914383
773773 −2.76260e7 −1.66291 −0.831457 0.555589i 0.812493π-0.812493\pi
−0.831457 + 0.555589i 0.812493π0.812493\pi
774774 1.03120e7 0.618714
775775 0 0
776776 −141213. −0.00841823
777777 −8.59648e6 −0.510820
778778 1.74862e7 1.03573
779779 −1.26025e6 −0.0744066
780780 0 0
781781 1.92458e7 1.12904
782782 159274. 0.00931381
783783 −1.09444e7 −0.637953
784784 6.02290e6 0.349958
785785 0 0
786786 3.44291e6 0.198779
787787 −9.92420e6 −0.571161 −0.285580 0.958355i 0.592186π-0.592186\pi
−0.285580 + 0.958355i 0.592186π0.592186\pi
788788 3.66453e6 0.210234
789789 4.87501e6 0.278794
790790 0 0
791791 −765229. −0.0434861
792792 −7.89881e6 −0.447455
793793 −7.47711e6 −0.422232
794794 −9.13944e6 −0.514480
795795 0 0
796796 1.69931e7 0.950582
797797 1.49499e6 0.0833668 0.0416834 0.999131i 0.486728π-0.486728\pi
0.0416834 + 0.999131i 0.486728π0.486728\pi
798798 −1.01710e6 −0.0565400
799799 −139988. −0.00775751
800800 0 0
801801 −7.74998e6 −0.426795
802802 −2.21343e7 −1.21515
803803 −2.17893e7 −1.19249
804804 364879. 0.0199071
805805 0 0
806806 −4.61607e6 −0.250285
807807 −1.30661e6 −0.0706257
808808 5.99525e6 0.323057
809809 −2.85707e6 −0.153479 −0.0767396 0.997051i 0.524451π-0.524451\pi
−0.0767396 + 0.997051i 0.524451π0.524451\pi
810810 0 0
811811 −9.42188e6 −0.503020 −0.251510 0.967855i 0.580927π-0.580927\pi
−0.251510 + 0.967855i 0.580927π0.580927\pi
812812 −2.29288e7 −1.22037
813813 −1.97743e6 −0.104924
814814 2.81704e7 1.49016
815815 0 0
816816 −12482.6 −0.000656267 0
817817 −4.35126e6 −0.228066
818818 9.13173e6 0.477167
819819 −7.89462e6 −0.411265
820820 0 0
821821 1.54084e7 0.797809 0.398904 0.916992i 0.369390π-0.369390\pi
0.398904 + 0.916992i 0.369390π0.369390\pi
822822 −124084. −0.00640523
823823 −4.13964e6 −0.213041 −0.106520 0.994311i 0.533971π-0.533971\pi
−0.106520 + 0.994311i 0.533971π0.533971\pi
824824 7.45427e6 0.382461
825825 0 0
826826 −3.24017e7 −1.65241
827827 1.01580e7 0.516470 0.258235 0.966082i 0.416859π-0.416859\pi
0.258235 + 0.966082i 0.416859π0.416859\pi
828828 9.80106e6 0.496818
829829 3.45331e7 1.74521 0.872607 0.488423i 0.162428π-0.162428\pi
0.872607 + 0.488423i 0.162428π0.162428\pi
830830 0 0
831831 −3.68421e6 −0.185072
832832 692224. 0.0346688
833833 355718. 0.0177620
834834 −1.09888e6 −0.0547060
835835 0 0
836836 3.33299e6 0.164937
837837 1.04735e7 0.516749
838838 −1.10216e7 −0.542168
839839 −2.33327e7 −1.14435 −0.572177 0.820130i 0.693901π-0.693901\pi
−0.572177 + 0.820130i 0.693901π0.693901\pi
840840 0 0
841841 3.04045e7 1.48234
842842 2.47788e7 1.20448
843843 2.27432e6 0.110226
844844 −4.10719e6 −0.198467
845845 0 0
846846 −8.61427e6 −0.413802
847847 2.41990e7 1.15901
848848 −901373. −0.0430442
849849 −661597. −0.0315010
850850 0 0
851851 −3.49546e7 −1.65455
852852 1.87158e6 0.0883305
853853 1.80270e7 0.848304 0.424152 0.905591i 0.360572π-0.360572\pi
0.424152 + 0.905591i 0.360572π0.360572\pi
854854 3.55421e7 1.66762
855855 0 0
856856 −1.24994e7 −0.583048
857857 −1.82132e7 −0.847100 −0.423550 0.905873i 0.639216π-0.639216\pi
−0.423550 + 0.905873i 0.639216π0.639216\pi
858858 −1.15677e6 −0.0536448
859859 728581. 0.0336895 0.0168448 0.999858i 0.494638π-0.494638\pi
0.0168448 + 0.999858i 0.494638π0.494638\pi
860860 0 0
861861 −2.07910e6 −0.0955800
862862 −2.20829e7 −1.01225
863863 −4.10201e7 −1.87486 −0.937432 0.348168i 0.886804π-0.886804\pi
−0.937432 + 0.348168i 0.886804π0.886804\pi
864864 −1.57061e6 −0.0715786
865865 0 0
866866 −1.90709e7 −0.864127
867867 4.57826e6 0.206849
868868 2.19422e7 0.988511
869869 1.03327e7 0.464157
870870 0 0
871871 −1.19506e6 −0.0533758
872872 −1.11079e7 −0.494701
873873 −513220. −0.0227913
874874 −4.13567e6 −0.183133
875875 0 0
876876 −2.11893e6 −0.0932944
877877 9.34651e6 0.410346 0.205173 0.978726i 0.434224π-0.434224\pi
0.205173 + 0.978726i 0.434224π0.434224\pi
878878 −1.10039e6 −0.0481737
879879 −8.07558e6 −0.352534
880880 0 0
881881 2.76158e7 1.19872 0.599361 0.800479i 0.295422π-0.295422\pi
0.599361 + 0.800479i 0.295422π0.295422\pi
882882 2.18894e7 0.947465
883883 1.71751e7 0.741305 0.370652 0.928772i 0.379134π-0.379134\pi
0.370652 + 0.928772i 0.379134π0.379134\pi
884884 40883.3 0.00175961
885885 0 0
886886 −2.35922e7 −1.00968
887887 −5.13121e6 −0.218983 −0.109492 0.993988i 0.534922π-0.534922\pi
−0.109492 + 0.993988i 0.534922π0.534922\pi
888888 2.73946e6 0.116582
889889 4.00183e6 0.169826
890890 0 0
891891 −2.73662e7 −1.15484
892892 −1.29586e7 −0.545312
893893 3.63489e6 0.152533
894894 2.87590e6 0.120346
895895 0 0
896896 −3.29045e6 −0.136926
897897 1.43535e6 0.0595629
898898 −1.07811e7 −0.446140
899899 −4.87249e7 −2.01072
900900 0 0
901901 −53235.9 −0.00218470
902902 6.81313e6 0.278824
903903 −7.17852e6 −0.292965
904904 243858. 0.00992465
905905 0 0
906906 −4.68841e6 −0.189760
907907 4.53644e7 1.83104 0.915519 0.402275i 0.131780π-0.131780\pi
0.915519 + 0.402275i 0.131780π0.131780\pi
908908 1.05011e7 0.422687
909909 2.17889e7 0.874634
910910 0 0
911911 3.56713e7 1.42404 0.712021 0.702158i 0.247780π-0.247780\pi
0.712021 + 0.702158i 0.247780π0.247780\pi
912912 324121. 0.0129039
913913 3.58510e7 1.42339
914914 2.00051e7 0.792093
915915 0 0
916916 1.91037e7 0.752280
917917 5.36013e7 2.10500
918918 −92761.4 −0.00363296
919919 1.32697e6 0.0518289 0.0259144 0.999664i 0.491750π-0.491750\pi
0.0259144 + 0.999664i 0.491750π0.491750\pi
920920 0 0
921921 −354854. −0.0137848
922922 −5.24162e6 −0.203066
923923 −6.12986e6 −0.236835
924924 5.49863e6 0.211872
925925 0 0
926926 1.92526e7 0.737838
927927 2.70916e7 1.03546
928928 7.30677e6 0.278520
929929 1.87784e7 0.713869 0.356935 0.934129i 0.383822π-0.383822\pi
0.356935 + 0.934129i 0.383822π0.383822\pi
930930 0 0
931931 −9.23649e6 −0.349247
932932 1.69608e7 0.639598
933933 3.72005e6 0.139909
934934 −3.31870e7 −1.24480
935935 0 0
936936 2.51580e6 0.0938612
937937 2.71600e7 1.01060 0.505302 0.862942i 0.331381π-0.331381\pi
0.505302 + 0.862942i 0.331381π0.331381\pi
938938 5.68066e6 0.210810
939939 6.45386e6 0.238867
940940 0 0
941941 −3.93036e7 −1.44696 −0.723482 0.690343i 0.757460π-0.757460\pi
−0.723482 + 0.690343i 0.757460π0.757460\pi
942942 4.17185e6 0.153180
943943 −8.45392e6 −0.309584
944944 1.03255e7 0.377122
945945 0 0
946946 2.35237e7 0.854631
947947 1.05666e7 0.382877 0.191439 0.981505i 0.438685π-0.438685\pi
0.191439 + 0.981505i 0.438685π0.438685\pi
948948 1.00482e6 0.0363133
949949 6.93996e6 0.250145
950950 0 0
951951 291458. 0.0104502
952952 −194337. −0.00694965
953953 −1.99531e7 −0.711667 −0.355834 0.934549i 0.615803π-0.615803\pi
−0.355834 + 0.934549i 0.615803π0.615803\pi
954954 −3.27592e6 −0.116537
955955 0 0
956956 7.30484e6 0.258503
957957 −1.22103e7 −0.430968
958958 5.50004e6 0.193621
959959 −1.93181e6 −0.0678293
960960 0 0
961961 1.79993e7 0.628706
962962 −8.97235e6 −0.312585
963963 −4.54273e7 −1.57853
964964 1.95211e7 0.676569
965965 0 0
966966 −6.82285e6 −0.235246
967967 2.42835e6 0.0835113 0.0417556 0.999128i 0.486705π-0.486705\pi
0.0417556 + 0.999128i 0.486705π0.486705\pi
968968 −7.71154e6 −0.264517
969969 19142.9 0.000654934 0
970970 0 0
971971 1.43525e7 0.488517 0.244259 0.969710i 0.421455π-0.421455\pi
0.244259 + 0.969710i 0.421455π0.421455\pi
972972 −8.62466e6 −0.292803
973973 −1.71080e7 −0.579319
974974 −1.47445e7 −0.498004
975975 0 0
976976 −1.13263e7 −0.380595
977977 −2.56112e7 −0.858409 −0.429205 0.903207i 0.641206π-0.641206\pi
−0.429205 + 0.903207i 0.641206π0.641206\pi
978978 4.66578e6 0.155983
979979 −1.76793e7 −0.589533
980980 0 0
981981 −4.03704e7 −1.33934
982982 1.77250e7 0.586554
983983 2.23389e6 0.0737356 0.0368678 0.999320i 0.488262π-0.488262\pi
0.0368678 + 0.999320i 0.488262π0.488262\pi
984984 662551. 0.0218138
985985 0 0
986986 431544. 0.0141362
987987 5.99668e6 0.195938
988988 −1.06157e6 −0.0345984
989989 −2.91889e7 −0.948914
990990 0 0
991991 −5.77025e6 −0.186643 −0.0933213 0.995636i 0.529748π-0.529748\pi
−0.0933213 + 0.995636i 0.529748π0.529748\pi
992992 −6.99239e6 −0.225604
993993 1.23825e7 0.398507
994994 2.91379e7 0.935391
995995 0 0
996996 3.48638e6 0.111359
997997 −1.12116e7 −0.357216 −0.178608 0.983920i 0.557159π-0.557159\pi
−0.178608 + 0.983920i 0.557159π0.557159\pi
998998 −3.51325e7 −1.11656
999999 2.03576e7 0.645377
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.c.1.1 2
5.2 odd 4 650.6.b.c.599.2 4
5.3 odd 4 650.6.b.c.599.3 4
5.4 even 2 130.6.a.e.1.2 2
20.19 odd 2 1040.6.a.h.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.e.1.2 2 5.4 even 2
650.6.a.c.1.1 2 1.1 even 1 trivial
650.6.b.c.599.2 4 5.2 odd 4
650.6.b.c.599.3 4 5.3 odd 4
1040.6.a.h.1.1 2 20.19 odd 2