Properties

Label 650.6.a.h
Level $650$
Weight $6$
Character orbit 650.a
Self dual yes
Analytic conductor $104.249$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 5\sqrt{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + (\beta + 2) q^{3} + 16 q^{4} + (4 \beta + 8) q^{6} + (4 \beta - 150) q^{7} + 64 q^{8} + (4 \beta + 11) q^{9} + ( - 25 \beta + 192) q^{11} + (16 \beta + 32) q^{12} + 169 q^{13} + (16 \beta - 600) q^{14}+ \cdots + (493 \beta - 22888) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 4 q^{3} + 32 q^{4} + 16 q^{6} - 300 q^{7} + 128 q^{8} + 22 q^{9} + 384 q^{11} + 64 q^{12} + 338 q^{13} - 1200 q^{14} + 512 q^{16} + 244 q^{17} + 88 q^{18} - 2408 q^{19} + 1400 q^{21} + 1536 q^{22}+ \cdots - 45776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.16228
3.16228
4.00000 −13.8114 16.0000 0 −55.2456 −213.246 64.0000 −52.2456 0
1.2 4.00000 17.8114 16.0000 0 71.2456 −86.7544 64.0000 74.2456 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.a.h 2
5.b even 2 1 130.6.a.a 2
5.c odd 4 2 650.6.b.g 4
20.d odd 2 1 1040.6.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.6.a.a 2 5.b even 2 1
650.6.a.h 2 1.a even 1 1 trivial
650.6.b.g 4 5.c odd 4 2
1040.6.a.e 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 4T_{3} - 246 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(650))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 4T - 246 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 300T + 18500 \) Copy content Toggle raw display
$11$ \( T^{2} - 384T - 119386 \) Copy content Toggle raw display
$13$ \( (T - 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 244T - 66116 \) Copy content Toggle raw display
$19$ \( T^{2} + 2408 T + 189366 \) Copy content Toggle raw display
$23$ \( T^{2} + 332 T - 9674694 \) Copy content Toggle raw display
$29$ \( T^{2} - 3528 T - 17052304 \) Copy content Toggle raw display
$31$ \( T^{2} - 880 T - 19828650 \) Copy content Toggle raw display
$37$ \( T^{2} + 10744 T + 23817384 \) Copy content Toggle raw display
$41$ \( T^{2} - 16020 T + 14431100 \) Copy content Toggle raw display
$43$ \( T^{2} + 2964 T + 474074 \) Copy content Toggle raw display
$47$ \( T^{2} + 38292 T + 360485316 \) Copy content Toggle raw display
$53$ \( T^{2} + 42052 T + 427931676 \) Copy content Toggle raw display
$59$ \( T^{2} - 42872 T + 110811846 \) Copy content Toggle raw display
$61$ \( T^{2} + 33192 T + 275363216 \) Copy content Toggle raw display
$67$ \( T^{2} + 37420 T + 349943100 \) Copy content Toggle raw display
$71$ \( T^{2} + 69520 T - 648148650 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 3075333144 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 5805828184 \) Copy content Toggle raw display
$83$ \( T^{2} + 31500 T - 90661500 \) Copy content Toggle raw display
$89$ \( T^{2} + 18452 T - 219584924 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 1343944636 \) Copy content Toggle raw display
show more
show less