Properties

Label 650.6.a.o.1.4
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 601x^{3} + 1405x^{2} + 36840x - 60300 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-7.92606\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +9.92606 q^{3} +16.0000 q^{4} -39.7042 q^{6} +124.276 q^{7} -64.0000 q^{8} -144.473 q^{9} +120.384 q^{11} +158.817 q^{12} +169.000 q^{13} -497.102 q^{14} +256.000 q^{16} -1234.94 q^{17} +577.893 q^{18} +2711.16 q^{19} +1233.57 q^{21} -481.535 q^{22} -1573.59 q^{23} -635.268 q^{24} -676.000 q^{26} -3846.08 q^{27} +1988.41 q^{28} -184.523 q^{29} -51.4763 q^{31} -1024.00 q^{32} +1194.94 q^{33} +4939.77 q^{34} -2311.57 q^{36} +12051.0 q^{37} -10844.6 q^{38} +1677.50 q^{39} -4439.57 q^{41} -4934.27 q^{42} +13909.2 q^{43} +1926.14 q^{44} +6294.35 q^{46} +27970.2 q^{47} +2541.07 q^{48} -1362.59 q^{49} -12258.1 q^{51} +2704.00 q^{52} -24170.2 q^{53} +15384.3 q^{54} -7953.64 q^{56} +26911.1 q^{57} +738.091 q^{58} -38786.4 q^{59} +53666.6 q^{61} +205.905 q^{62} -17954.5 q^{63} +4096.00 q^{64} -4779.75 q^{66} +10772.8 q^{67} -19759.1 q^{68} -15619.5 q^{69} +6297.35 q^{71} +9246.29 q^{72} -4254.45 q^{73} -48204.1 q^{74} +43378.5 q^{76} +14960.8 q^{77} -6710.02 q^{78} -49474.9 q^{79} -3069.45 q^{81} +17758.3 q^{82} +100785. q^{83} +19737.1 q^{84} -55636.8 q^{86} -1831.58 q^{87} -7704.56 q^{88} +55060.2 q^{89} +21002.6 q^{91} -25177.4 q^{92} -510.957 q^{93} -111881. q^{94} -10164.3 q^{96} +177285. q^{97} +5450.34 q^{98} -17392.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 20 q^{2} + 9 q^{3} + 80 q^{4} - 36 q^{6} - 42 q^{7} - 320 q^{8} + 4 q^{9} - 213 q^{11} + 144 q^{12} + 845 q^{13} + 168 q^{14} + 1280 q^{16} + 601 q^{17} - 16 q^{18} - 567 q^{19} - 3700 q^{21} + 852 q^{22}+ \cdots - 440284 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 9.92606 0.636757 0.318379 0.947964i \(-0.396862\pi\)
0.318379 + 0.947964i \(0.396862\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −39.7042 −0.450255
\(7\) 124.276 0.958607 0.479304 0.877649i \(-0.340889\pi\)
0.479304 + 0.877649i \(0.340889\pi\)
\(8\) −64.0000 −0.353553
\(9\) −144.473 −0.594540
\(10\) 0 0
\(11\) 120.384 0.299976 0.149988 0.988688i \(-0.452077\pi\)
0.149988 + 0.988688i \(0.452077\pi\)
\(12\) 158.817 0.318379
\(13\) 169.000 0.277350
\(14\) −497.102 −0.677838
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1234.94 −1.03639 −0.518197 0.855262i \(-0.673396\pi\)
−0.518197 + 0.855262i \(0.673396\pi\)
\(18\) 577.893 0.420404
\(19\) 2711.16 1.72294 0.861471 0.507807i \(-0.169544\pi\)
0.861471 + 0.507807i \(0.169544\pi\)
\(20\) 0 0
\(21\) 1233.57 0.610400
\(22\) −481.535 −0.212115
\(23\) −1573.59 −0.620257 −0.310128 0.950695i \(-0.600372\pi\)
−0.310128 + 0.950695i \(0.600372\pi\)
\(24\) −635.268 −0.225128
\(25\) 0 0
\(26\) −676.000 −0.196116
\(27\) −3846.08 −1.01533
\(28\) 1988.41 0.479304
\(29\) −184.523 −0.0407432 −0.0203716 0.999792i \(-0.506485\pi\)
−0.0203716 + 0.999792i \(0.506485\pi\)
\(30\) 0 0
\(31\) −51.4763 −0.00962062 −0.00481031 0.999988i \(-0.501531\pi\)
−0.00481031 + 0.999988i \(0.501531\pi\)
\(32\) −1024.00 −0.176777
\(33\) 1194.94 0.191012
\(34\) 4939.77 0.732841
\(35\) 0 0
\(36\) −2311.57 −0.297270
\(37\) 12051.0 1.44717 0.723585 0.690236i \(-0.242493\pi\)
0.723585 + 0.690236i \(0.242493\pi\)
\(38\) −10844.6 −1.21830
\(39\) 1677.50 0.176605
\(40\) 0 0
\(41\) −4439.57 −0.412459 −0.206230 0.978504i \(-0.566119\pi\)
−0.206230 + 0.978504i \(0.566119\pi\)
\(42\) −4934.27 −0.431618
\(43\) 13909.2 1.14718 0.573590 0.819143i \(-0.305550\pi\)
0.573590 + 0.819143i \(0.305550\pi\)
\(44\) 1926.14 0.149988
\(45\) 0 0
\(46\) 6294.35 0.438588
\(47\) 27970.2 1.84693 0.923465 0.383683i \(-0.125345\pi\)
0.923465 + 0.383683i \(0.125345\pi\)
\(48\) 2541.07 0.159189
\(49\) −1362.59 −0.0810725
\(50\) 0 0
\(51\) −12258.1 −0.659931
\(52\) 2704.00 0.138675
\(53\) −24170.2 −1.18193 −0.590963 0.806699i \(-0.701252\pi\)
−0.590963 + 0.806699i \(0.701252\pi\)
\(54\) 15384.3 0.717950
\(55\) 0 0
\(56\) −7953.64 −0.338919
\(57\) 26911.1 1.09710
\(58\) 738.091 0.0288098
\(59\) −38786.4 −1.45060 −0.725302 0.688430i \(-0.758300\pi\)
−0.725302 + 0.688430i \(0.758300\pi\)
\(60\) 0 0
\(61\) 53666.6 1.84663 0.923314 0.384045i \(-0.125469\pi\)
0.923314 + 0.384045i \(0.125469\pi\)
\(62\) 205.905 0.00680281
\(63\) −17954.5 −0.569931
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −4779.75 −0.135066
\(67\) 10772.8 0.293184 0.146592 0.989197i \(-0.453170\pi\)
0.146592 + 0.989197i \(0.453170\pi\)
\(68\) −19759.1 −0.518197
\(69\) −15619.5 −0.394953
\(70\) 0 0
\(71\) 6297.35 0.148256 0.0741280 0.997249i \(-0.476383\pi\)
0.0741280 + 0.997249i \(0.476383\pi\)
\(72\) 9246.29 0.210202
\(73\) −4254.45 −0.0934407 −0.0467204 0.998908i \(-0.514877\pi\)
−0.0467204 + 0.998908i \(0.514877\pi\)
\(74\) −48204.1 −1.02330
\(75\) 0 0
\(76\) 43378.5 0.861471
\(77\) 14960.8 0.287559
\(78\) −6710.02 −0.124878
\(79\) −49474.9 −0.891901 −0.445951 0.895058i \(-0.647134\pi\)
−0.445951 + 0.895058i \(0.647134\pi\)
\(80\) 0 0
\(81\) −3069.45 −0.0519814
\(82\) 17758.3 0.291653
\(83\) 100785. 1.60584 0.802918 0.596089i \(-0.203279\pi\)
0.802918 + 0.596089i \(0.203279\pi\)
\(84\) 19737.1 0.305200
\(85\) 0 0
\(86\) −55636.8 −0.811178
\(87\) −1831.58 −0.0259435
\(88\) −7704.56 −0.106057
\(89\) 55060.2 0.736823 0.368411 0.929663i \(-0.379902\pi\)
0.368411 + 0.929663i \(0.379902\pi\)
\(90\) 0 0
\(91\) 21002.6 0.265870
\(92\) −25177.4 −0.310128
\(93\) −510.957 −0.00612600
\(94\) −111881. −1.30598
\(95\) 0 0
\(96\) −10164.3 −0.112564
\(97\) 177285. 1.91312 0.956559 0.291538i \(-0.0941668\pi\)
0.956559 + 0.291538i \(0.0941668\pi\)
\(98\) 5450.34 0.0573269
\(99\) −17392.2 −0.178348
\(100\) 0 0
\(101\) 2837.71 0.0276799 0.0138399 0.999904i \(-0.495594\pi\)
0.0138399 + 0.999904i \(0.495594\pi\)
\(102\) 49032.5 0.466642
\(103\) 26102.5 0.242431 0.121216 0.992626i \(-0.461321\pi\)
0.121216 + 0.992626i \(0.461321\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) 96680.7 0.835748
\(107\) −23317.1 −0.196886 −0.0984429 0.995143i \(-0.531386\pi\)
−0.0984429 + 0.995143i \(0.531386\pi\)
\(108\) −61537.3 −0.507667
\(109\) −107035. −0.862902 −0.431451 0.902136i \(-0.641998\pi\)
−0.431451 + 0.902136i \(0.641998\pi\)
\(110\) 0 0
\(111\) 119619. 0.921496
\(112\) 31814.5 0.239652
\(113\) −131107. −0.965898 −0.482949 0.875649i \(-0.660434\pi\)
−0.482949 + 0.875649i \(0.660434\pi\)
\(114\) −107644. −0.775763
\(115\) 0 0
\(116\) −2952.36 −0.0203716
\(117\) −24416.0 −0.164896
\(118\) 155145. 1.02573
\(119\) −153473. −0.993494
\(120\) 0 0
\(121\) −146559. −0.910015
\(122\) −214666. −1.30576
\(123\) −44067.4 −0.262636
\(124\) −823.621 −0.00481031
\(125\) 0 0
\(126\) 71818.0 0.403002
\(127\) −311667. −1.71467 −0.857336 0.514757i \(-0.827882\pi\)
−0.857336 + 0.514757i \(0.827882\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 138064. 0.730474
\(130\) 0 0
\(131\) −230646. −1.17427 −0.587134 0.809490i \(-0.699744\pi\)
−0.587134 + 0.809490i \(0.699744\pi\)
\(132\) 19119.0 0.0955059
\(133\) 336930. 1.65162
\(134\) −43091.1 −0.207313
\(135\) 0 0
\(136\) 79036.3 0.366420
\(137\) 233169. 1.06138 0.530689 0.847567i \(-0.321933\pi\)
0.530689 + 0.847567i \(0.321933\pi\)
\(138\) 62478.1 0.279274
\(139\) −30074.1 −0.132025 −0.0660125 0.997819i \(-0.521028\pi\)
−0.0660125 + 0.997819i \(0.521028\pi\)
\(140\) 0 0
\(141\) 277634. 1.17605
\(142\) −25189.4 −0.104833
\(143\) 20344.9 0.0831983
\(144\) −36985.2 −0.148635
\(145\) 0 0
\(146\) 17017.8 0.0660726
\(147\) −13525.1 −0.0516235
\(148\) 192816. 0.723585
\(149\) 19221.5 0.0709288 0.0354644 0.999371i \(-0.488709\pi\)
0.0354644 + 0.999371i \(0.488709\pi\)
\(150\) 0 0
\(151\) 342311. 1.22174 0.610869 0.791732i \(-0.290820\pi\)
0.610869 + 0.791732i \(0.290820\pi\)
\(152\) −173514. −0.609152
\(153\) 178416. 0.616178
\(154\) −59843.0 −0.203335
\(155\) 0 0
\(156\) 26840.1 0.0883023
\(157\) 549352. 1.77869 0.889347 0.457233i \(-0.151159\pi\)
0.889347 + 0.457233i \(0.151159\pi\)
\(158\) 197899. 0.630670
\(159\) −239915. −0.752600
\(160\) 0 0
\(161\) −195559. −0.594582
\(162\) 12277.8 0.0367564
\(163\) −280982. −0.828342 −0.414171 0.910199i \(-0.635928\pi\)
−0.414171 + 0.910199i \(0.635928\pi\)
\(164\) −71033.1 −0.206230
\(165\) 0 0
\(166\) −403141. −1.13550
\(167\) 652406. 1.81020 0.905101 0.425197i \(-0.139795\pi\)
0.905101 + 0.425197i \(0.139795\pi\)
\(168\) −78948.3 −0.215809
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −391690. −1.02436
\(172\) 222547. 0.573590
\(173\) 474856. 1.20628 0.603139 0.797636i \(-0.293917\pi\)
0.603139 + 0.797636i \(0.293917\pi\)
\(174\) 7326.33 0.0183448
\(175\) 0 0
\(176\) 30818.2 0.0749939
\(177\) −384996. −0.923683
\(178\) −220241. −0.521012
\(179\) −274864. −0.641189 −0.320594 0.947217i \(-0.603883\pi\)
−0.320594 + 0.947217i \(0.603883\pi\)
\(180\) 0 0
\(181\) 483212. 1.09633 0.548165 0.836370i \(-0.315326\pi\)
0.548165 + 0.836370i \(0.315326\pi\)
\(182\) −84010.3 −0.187998
\(183\) 532698. 1.17585
\(184\) 100710. 0.219294
\(185\) 0 0
\(186\) 2043.83 0.00433174
\(187\) −148667. −0.310893
\(188\) 447523. 0.923465
\(189\) −477974. −0.973307
\(190\) 0 0
\(191\) 517802. 1.02702 0.513511 0.858083i \(-0.328344\pi\)
0.513511 + 0.858083i \(0.328344\pi\)
\(192\) 40657.1 0.0795946
\(193\) 294358. 0.568830 0.284415 0.958701i \(-0.408201\pi\)
0.284415 + 0.958701i \(0.408201\pi\)
\(194\) −709139. −1.35278
\(195\) 0 0
\(196\) −21801.4 −0.0405362
\(197\) 124861. 0.229225 0.114613 0.993410i \(-0.463437\pi\)
0.114613 + 0.993410i \(0.463437\pi\)
\(198\) 69569.0 0.126111
\(199\) −142136. −0.254433 −0.127216 0.991875i \(-0.540604\pi\)
−0.127216 + 0.991875i \(0.540604\pi\)
\(200\) 0 0
\(201\) 106931. 0.186687
\(202\) −11350.8 −0.0195726
\(203\) −22931.7 −0.0390567
\(204\) −196130. −0.329965
\(205\) 0 0
\(206\) −104410. −0.171425
\(207\) 227341. 0.368768
\(208\) 43264.0 0.0693375
\(209\) 326379. 0.516841
\(210\) 0 0
\(211\) 313639. 0.484981 0.242490 0.970154i \(-0.422036\pi\)
0.242490 + 0.970154i \(0.422036\pi\)
\(212\) −386723. −0.590963
\(213\) 62507.9 0.0944030
\(214\) 93268.3 0.139219
\(215\) 0 0
\(216\) 246149. 0.358975
\(217\) −6397.25 −0.00922240
\(218\) 428142. 0.610164
\(219\) −42229.9 −0.0594991
\(220\) 0 0
\(221\) −208705. −0.287444
\(222\) −478477. −0.651596
\(223\) 692260. 0.932196 0.466098 0.884733i \(-0.345659\pi\)
0.466098 + 0.884733i \(0.345659\pi\)
\(224\) −127258. −0.169459
\(225\) 0 0
\(226\) 524430. 0.682993
\(227\) 308536. 0.397412 0.198706 0.980059i \(-0.436326\pi\)
0.198706 + 0.980059i \(0.436326\pi\)
\(228\) 430578. 0.548548
\(229\) −382705. −0.482254 −0.241127 0.970494i \(-0.577517\pi\)
−0.241127 + 0.970494i \(0.577517\pi\)
\(230\) 0 0
\(231\) 148501. 0.183105
\(232\) 11809.4 0.0144049
\(233\) 893271. 1.07794 0.538969 0.842326i \(-0.318814\pi\)
0.538969 + 0.842326i \(0.318814\pi\)
\(234\) 97664.0 0.116599
\(235\) 0 0
\(236\) −620582. −0.725302
\(237\) −491091. −0.567925
\(238\) 613893. 0.702506
\(239\) 494660. 0.560160 0.280080 0.959977i \(-0.409639\pi\)
0.280080 + 0.959977i \(0.409639\pi\)
\(240\) 0 0
\(241\) 1.35585e6 1.50372 0.751861 0.659322i \(-0.229156\pi\)
0.751861 + 0.659322i \(0.229156\pi\)
\(242\) 586235. 0.643477
\(243\) 904131. 0.982235
\(244\) 858666. 0.923314
\(245\) 0 0
\(246\) 176270. 0.185712
\(247\) 458185. 0.477858
\(248\) 3294.48 0.00340140
\(249\) 1.00040e6 1.02253
\(250\) 0 0
\(251\) 1.54382e6 1.54672 0.773362 0.633965i \(-0.218574\pi\)
0.773362 + 0.633965i \(0.218574\pi\)
\(252\) −287272. −0.284965
\(253\) −189434. −0.186062
\(254\) 1.24667e6 1.21246
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 538940. 0.508988 0.254494 0.967074i \(-0.418091\pi\)
0.254494 + 0.967074i \(0.418091\pi\)
\(258\) −552255. −0.516523
\(259\) 1.49765e6 1.38727
\(260\) 0 0
\(261\) 26658.6 0.0242235
\(262\) 922583. 0.830333
\(263\) 548461. 0.488941 0.244471 0.969657i \(-0.421386\pi\)
0.244471 + 0.969657i \(0.421386\pi\)
\(264\) −76475.9 −0.0675328
\(265\) 0 0
\(266\) −1.34772e6 −1.16787
\(267\) 546531. 0.469177
\(268\) 172364. 0.146592
\(269\) −1.67327e6 −1.40989 −0.704947 0.709260i \(-0.749029\pi\)
−0.704947 + 0.709260i \(0.749029\pi\)
\(270\) 0 0
\(271\) 150037. 0.124101 0.0620503 0.998073i \(-0.480236\pi\)
0.0620503 + 0.998073i \(0.480236\pi\)
\(272\) −316145. −0.259098
\(273\) 208473. 0.169294
\(274\) −932678. −0.750508
\(275\) 0 0
\(276\) −249913. −0.197476
\(277\) 1.59009e6 1.24515 0.622574 0.782561i \(-0.286087\pi\)
0.622574 + 0.782561i \(0.286087\pi\)
\(278\) 120297. 0.0933558
\(279\) 7436.95 0.00571985
\(280\) 0 0
\(281\) 1.11166e6 0.839862 0.419931 0.907556i \(-0.362054\pi\)
0.419931 + 0.907556i \(0.362054\pi\)
\(282\) −1.11053e6 −0.831590
\(283\) −960225. −0.712701 −0.356350 0.934352i \(-0.615979\pi\)
−0.356350 + 0.934352i \(0.615979\pi\)
\(284\) 100758. 0.0741280
\(285\) 0 0
\(286\) −81379.4 −0.0588301
\(287\) −551730. −0.395387
\(288\) 147941. 0.105101
\(289\) 105227. 0.0741110
\(290\) 0 0
\(291\) 1.75974e6 1.21819
\(292\) −68071.2 −0.0467204
\(293\) 1.01821e6 0.692898 0.346449 0.938069i \(-0.387387\pi\)
0.346449 + 0.938069i \(0.387387\pi\)
\(294\) 54100.4 0.0365033
\(295\) 0 0
\(296\) −771265. −0.511652
\(297\) −463006. −0.304576
\(298\) −76886.1 −0.0501542
\(299\) −265936. −0.172028
\(300\) 0 0
\(301\) 1.72857e6 1.09969
\(302\) −1.36924e6 −0.863899
\(303\) 28167.3 0.0176254
\(304\) 694056. 0.430735
\(305\) 0 0
\(306\) −713665. −0.435703
\(307\) −3.27466e6 −1.98299 −0.991494 0.130152i \(-0.958454\pi\)
−0.991494 + 0.130152i \(0.958454\pi\)
\(308\) 239372. 0.143779
\(309\) 259095. 0.154370
\(310\) 0 0
\(311\) 2.37790e6 1.39409 0.697047 0.717026i \(-0.254497\pi\)
0.697047 + 0.717026i \(0.254497\pi\)
\(312\) −107360. −0.0624392
\(313\) 424354. 0.244832 0.122416 0.992479i \(-0.460936\pi\)
0.122416 + 0.992479i \(0.460936\pi\)
\(314\) −2.19741e6 −1.25773
\(315\) 0 0
\(316\) −791598. −0.445951
\(317\) 2.30415e6 1.28784 0.643921 0.765092i \(-0.277306\pi\)
0.643921 + 0.765092i \(0.277306\pi\)
\(318\) 959659. 0.532168
\(319\) −22213.5 −0.0122220
\(320\) 0 0
\(321\) −231447. −0.125368
\(322\) 782234. 0.420433
\(323\) −3.34812e6 −1.78564
\(324\) −49111.2 −0.0259907
\(325\) 0 0
\(326\) 1.12393e6 0.585726
\(327\) −1.06244e6 −0.549459
\(328\) 284132. 0.145826
\(329\) 3.47601e6 1.77048
\(330\) 0 0
\(331\) −2.03936e6 −1.02311 −0.511557 0.859250i \(-0.670931\pi\)
−0.511557 + 0.859250i \(0.670931\pi\)
\(332\) 1.61256e6 0.802918
\(333\) −1.74105e6 −0.860401
\(334\) −2.60962e6 −1.28001
\(335\) 0 0
\(336\) 315793. 0.152600
\(337\) 1.87281e6 0.898293 0.449147 0.893458i \(-0.351728\pi\)
0.449147 + 0.893458i \(0.351728\pi\)
\(338\) −114244. −0.0543928
\(339\) −1.30138e6 −0.615042
\(340\) 0 0
\(341\) −6196.91 −0.00288595
\(342\) 1.56676e6 0.724331
\(343\) −2.25804e6 −1.03632
\(344\) −890189. −0.405589
\(345\) 0 0
\(346\) −1.89943e6 −0.852967
\(347\) −501716. −0.223684 −0.111842 0.993726i \(-0.535675\pi\)
−0.111842 + 0.993726i \(0.535675\pi\)
\(348\) −29305.3 −0.0129717
\(349\) −1.52260e6 −0.669147 −0.334573 0.942370i \(-0.608592\pi\)
−0.334573 + 0.942370i \(0.608592\pi\)
\(350\) 0 0
\(351\) −649988. −0.281603
\(352\) −123273. −0.0530287
\(353\) −1.87049e6 −0.798949 −0.399475 0.916744i \(-0.630807\pi\)
−0.399475 + 0.916744i \(0.630807\pi\)
\(354\) 1.53998e6 0.653142
\(355\) 0 0
\(356\) 880964. 0.368411
\(357\) −1.52338e6 −0.632614
\(358\) 1.09946e6 0.453389
\(359\) −1.70160e6 −0.696820 −0.348410 0.937342i \(-0.613278\pi\)
−0.348410 + 0.937342i \(0.613278\pi\)
\(360\) 0 0
\(361\) 4.87427e6 1.96853
\(362\) −1.93285e6 −0.775223
\(363\) −1.45475e6 −0.579458
\(364\) 336041. 0.132935
\(365\) 0 0
\(366\) −2.13079e6 −0.831454
\(367\) 314731. 0.121976 0.0609880 0.998139i \(-0.480575\pi\)
0.0609880 + 0.998139i \(0.480575\pi\)
\(368\) −402839. −0.155064
\(369\) 641399. 0.245224
\(370\) 0 0
\(371\) −3.00376e6 −1.13300
\(372\) −8175.31 −0.00306300
\(373\) −2.16445e6 −0.805519 −0.402759 0.915306i \(-0.631949\pi\)
−0.402759 + 0.915306i \(0.631949\pi\)
\(374\) 594668. 0.219834
\(375\) 0 0
\(376\) −1.79009e6 −0.652988
\(377\) −31184.3 −0.0113001
\(378\) 1.91190e6 0.688232
\(379\) 1.67898e6 0.600410 0.300205 0.953875i \(-0.402945\pi\)
0.300205 + 0.953875i \(0.402945\pi\)
\(380\) 0 0
\(381\) −3.09362e6 −1.09183
\(382\) −2.07121e6 −0.726215
\(383\) 2.42699e6 0.845417 0.422709 0.906266i \(-0.361079\pi\)
0.422709 + 0.906266i \(0.361079\pi\)
\(384\) −162629. −0.0562819
\(385\) 0 0
\(386\) −1.17743e6 −0.402224
\(387\) −2.00951e6 −0.682044
\(388\) 2.83656e6 0.956559
\(389\) −3.41549e6 −1.14440 −0.572202 0.820113i \(-0.693911\pi\)
−0.572202 + 0.820113i \(0.693911\pi\)
\(390\) 0 0
\(391\) 1.94329e6 0.642830
\(392\) 87205.5 0.0286635
\(393\) −2.28940e6 −0.747724
\(394\) −499445. −0.162087
\(395\) 0 0
\(396\) −278276. −0.0891739
\(397\) 3.57792e6 1.13934 0.569672 0.821872i \(-0.307070\pi\)
0.569672 + 0.821872i \(0.307070\pi\)
\(398\) 568546. 0.179911
\(399\) 3.34439e6 1.05168
\(400\) 0 0
\(401\) −4.70140e6 −1.46004 −0.730022 0.683423i \(-0.760490\pi\)
−0.730022 + 0.683423i \(0.760490\pi\)
\(402\) −427725. −0.132008
\(403\) −8699.50 −0.00266828
\(404\) 45403.3 0.0138399
\(405\) 0 0
\(406\) 91726.6 0.0276172
\(407\) 1.45075e6 0.434116
\(408\) 784520. 0.233321
\(409\) −4.96552e6 −1.46776 −0.733882 0.679277i \(-0.762293\pi\)
−0.733882 + 0.679277i \(0.762293\pi\)
\(410\) 0 0
\(411\) 2.31445e6 0.675840
\(412\) 417640. 0.121216
\(413\) −4.82020e6 −1.39056
\(414\) −909366. −0.260758
\(415\) 0 0
\(416\) −173056. −0.0490290
\(417\) −298518. −0.0840679
\(418\) −1.30552e6 −0.365462
\(419\) −2.71480e6 −0.755445 −0.377723 0.925919i \(-0.623293\pi\)
−0.377723 + 0.925919i \(0.623293\pi\)
\(420\) 0 0
\(421\) 883315. 0.242890 0.121445 0.992598i \(-0.461247\pi\)
0.121445 + 0.992598i \(0.461247\pi\)
\(422\) −1.25456e6 −0.342933
\(423\) −4.04094e6 −1.09807
\(424\) 1.54689e6 0.417874
\(425\) 0 0
\(426\) −250032. −0.0667530
\(427\) 6.66945e6 1.77019
\(428\) −373073. −0.0984429
\(429\) 201944. 0.0529771
\(430\) 0 0
\(431\) −5.47099e6 −1.41864 −0.709321 0.704886i \(-0.750998\pi\)
−0.709321 + 0.704886i \(0.750998\pi\)
\(432\) −984597. −0.253834
\(433\) 5.10026e6 1.30729 0.653646 0.756801i \(-0.273239\pi\)
0.653646 + 0.756801i \(0.273239\pi\)
\(434\) 25589.0 0.00652122
\(435\) 0 0
\(436\) −1.71257e6 −0.431451
\(437\) −4.26624e6 −1.06867
\(438\) 168920. 0.0420722
\(439\) 4.45494e6 1.10327 0.551633 0.834087i \(-0.314005\pi\)
0.551633 + 0.834087i \(0.314005\pi\)
\(440\) 0 0
\(441\) 196857. 0.0482009
\(442\) 834821. 0.203253
\(443\) −938918. −0.227310 −0.113655 0.993520i \(-0.536256\pi\)
−0.113655 + 0.993520i \(0.536256\pi\)
\(444\) 1.91391e6 0.460748
\(445\) 0 0
\(446\) −2.76904e6 −0.659162
\(447\) 190794. 0.0451644
\(448\) 509033. 0.119826
\(449\) 4.55776e6 1.06693 0.533464 0.845823i \(-0.320890\pi\)
0.533464 + 0.845823i \(0.320890\pi\)
\(450\) 0 0
\(451\) −534452. −0.123728
\(452\) −2.09772e6 −0.482949
\(453\) 3.39780e6 0.777950
\(454\) −1.23414e6 −0.281013
\(455\) 0 0
\(456\) −1.72231e6 −0.387882
\(457\) −294965. −0.0660662 −0.0330331 0.999454i \(-0.510517\pi\)
−0.0330331 + 0.999454i \(0.510517\pi\)
\(458\) 1.53082e6 0.341005
\(459\) 4.74969e6 1.05229
\(460\) 0 0
\(461\) −3.53147e6 −0.773933 −0.386966 0.922094i \(-0.626477\pi\)
−0.386966 + 0.922094i \(0.626477\pi\)
\(462\) −594006. −0.129475
\(463\) −6.20665e6 −1.34556 −0.672782 0.739841i \(-0.734901\pi\)
−0.672782 + 0.739841i \(0.734901\pi\)
\(464\) −47237.8 −0.0101858
\(465\) 0 0
\(466\) −3.57308e6 −0.762217
\(467\) −3.68433e6 −0.781746 −0.390873 0.920445i \(-0.627827\pi\)
−0.390873 + 0.920445i \(0.627827\pi\)
\(468\) −390656. −0.0824479
\(469\) 1.33879e6 0.281048
\(470\) 0 0
\(471\) 5.45290e6 1.13260
\(472\) 2.48233e6 0.512866
\(473\) 1.67444e6 0.344126
\(474\) 1.96436e6 0.401583
\(475\) 0 0
\(476\) −2.45557e6 −0.496747
\(477\) 3.49195e6 0.702703
\(478\) −1.97864e6 −0.396093
\(479\) 3.55198e6 0.707347 0.353673 0.935369i \(-0.384932\pi\)
0.353673 + 0.935369i \(0.384932\pi\)
\(480\) 0 0
\(481\) 2.03662e6 0.401373
\(482\) −5.42338e6 −1.06329
\(483\) −1.94113e6 −0.378605
\(484\) −2.34494e6 −0.455007
\(485\) 0 0
\(486\) −3.61652e6 −0.694545
\(487\) 2.39824e6 0.458217 0.229108 0.973401i \(-0.426419\pi\)
0.229108 + 0.973401i \(0.426419\pi\)
\(488\) −3.43466e6 −0.652882
\(489\) −2.78904e6 −0.527452
\(490\) 0 0
\(491\) −7.64714e6 −1.43151 −0.715757 0.698350i \(-0.753918\pi\)
−0.715757 + 0.698350i \(0.753918\pi\)
\(492\) −705079. −0.131318
\(493\) 227875. 0.0422259
\(494\) −1.83274e6 −0.337897
\(495\) 0 0
\(496\) −13177.9 −0.00240516
\(497\) 782607. 0.142119
\(498\) −4.00160e6 −0.723036
\(499\) −1.00417e6 −0.180533 −0.0902666 0.995918i \(-0.528772\pi\)
−0.0902666 + 0.995918i \(0.528772\pi\)
\(500\) 0 0
\(501\) 6.47582e6 1.15266
\(502\) −6.17528e6 −1.09370
\(503\) −6.21382e6 −1.09506 −0.547531 0.836785i \(-0.684432\pi\)
−0.547531 + 0.836785i \(0.684432\pi\)
\(504\) 1.14909e6 0.201501
\(505\) 0 0
\(506\) 757738. 0.131566
\(507\) 283498. 0.0489813
\(508\) −4.98667e6 −0.857336
\(509\) 6.93843e6 1.18704 0.593522 0.804818i \(-0.297737\pi\)
0.593522 + 0.804818i \(0.297737\pi\)
\(510\) 0 0
\(511\) −528724. −0.0895729
\(512\) −262144. −0.0441942
\(513\) −1.04273e7 −1.74936
\(514\) −2.15576e6 −0.359909
\(515\) 0 0
\(516\) 2.20902e6 0.365237
\(517\) 3.36715e6 0.554034
\(518\) −5.99059e6 −0.980946
\(519\) 4.71345e6 0.768106
\(520\) 0 0
\(521\) −3.32358e6 −0.536428 −0.268214 0.963359i \(-0.586433\pi\)
−0.268214 + 0.963359i \(0.586433\pi\)
\(522\) −106634. −0.0171286
\(523\) −5.25138e6 −0.839497 −0.419748 0.907641i \(-0.637882\pi\)
−0.419748 + 0.907641i \(0.637882\pi\)
\(524\) −3.69033e6 −0.587134
\(525\) 0 0
\(526\) −2.19384e6 −0.345734
\(527\) 63570.3 0.00997075
\(528\) 305904. 0.0477529
\(529\) −3.96016e6 −0.615282
\(530\) 0 0
\(531\) 5.60359e6 0.862443
\(532\) 5.39089e6 0.825812
\(533\) −750287. −0.114396
\(534\) −2.18612e6 −0.331758
\(535\) 0 0
\(536\) −689458. −0.103656
\(537\) −2.72832e6 −0.408282
\(538\) 6.69310e6 0.996946
\(539\) −164033. −0.0243198
\(540\) 0 0
\(541\) −8.53307e6 −1.25346 −0.626732 0.779234i \(-0.715608\pi\)
−0.626732 + 0.779234i \(0.715608\pi\)
\(542\) −600146. −0.0877524
\(543\) 4.79640e6 0.698096
\(544\) 1.26458e6 0.183210
\(545\) 0 0
\(546\) −833891. −0.119709
\(547\) −550812. −0.0787109 −0.0393554 0.999225i \(-0.512530\pi\)
−0.0393554 + 0.999225i \(0.512530\pi\)
\(548\) 3.73071e6 0.530689
\(549\) −7.75339e6 −1.09790
\(550\) 0 0
\(551\) −500270. −0.0701981
\(552\) 999650. 0.139637
\(553\) −6.14852e6 −0.854983
\(554\) −6.36034e6 −0.880453
\(555\) 0 0
\(556\) −481186. −0.0660125
\(557\) −4.49923e6 −0.614470 −0.307235 0.951634i \(-0.599404\pi\)
−0.307235 + 0.951634i \(0.599404\pi\)
\(558\) −29747.8 −0.00404454
\(559\) 2.35066e6 0.318170
\(560\) 0 0
\(561\) −1.47568e6 −0.197963
\(562\) −4.44666e6 −0.593872
\(563\) −4.45441e6 −0.592269 −0.296134 0.955146i \(-0.595698\pi\)
−0.296134 + 0.955146i \(0.595698\pi\)
\(564\) 4.44214e6 0.588023
\(565\) 0 0
\(566\) 3.84090e6 0.503955
\(567\) −381458. −0.0498298
\(568\) −403031. −0.0524164
\(569\) 1.11716e7 1.44655 0.723274 0.690561i \(-0.242636\pi\)
0.723274 + 0.690561i \(0.242636\pi\)
\(570\) 0 0
\(571\) −165900. −0.0212939 −0.0106469 0.999943i \(-0.503389\pi\)
−0.0106469 + 0.999943i \(0.503389\pi\)
\(572\) 325518. 0.0415992
\(573\) 5.13973e6 0.653964
\(574\) 2.20692e6 0.279581
\(575\) 0 0
\(576\) −591763. −0.0743175
\(577\) −1.14786e7 −1.43532 −0.717659 0.696394i \(-0.754787\pi\)
−0.717659 + 0.696394i \(0.754787\pi\)
\(578\) −420908. −0.0524044
\(579\) 2.92182e6 0.362207
\(580\) 0 0
\(581\) 1.25251e7 1.53937
\(582\) −7.03896e6 −0.861392
\(583\) −2.90970e6 −0.354549
\(584\) 272285. 0.0330363
\(585\) 0 0
\(586\) −4.07285e6 −0.489953
\(587\) 1.47023e7 1.76113 0.880563 0.473930i \(-0.157165\pi\)
0.880563 + 0.473930i \(0.157165\pi\)
\(588\) −216402. −0.0258117
\(589\) −139560. −0.0165758
\(590\) 0 0
\(591\) 1.23938e6 0.145961
\(592\) 3.08506e6 0.361792
\(593\) −3.89089e6 −0.454373 −0.227186 0.973851i \(-0.572953\pi\)
−0.227186 + 0.973851i \(0.572953\pi\)
\(594\) 1.85202e6 0.215368
\(595\) 0 0
\(596\) 307545. 0.0354644
\(597\) −1.41086e6 −0.162012
\(598\) 1.06375e6 0.121642
\(599\) 4.56164e6 0.519462 0.259731 0.965681i \(-0.416366\pi\)
0.259731 + 0.965681i \(0.416366\pi\)
\(600\) 0 0
\(601\) −2.07826e6 −0.234700 −0.117350 0.993091i \(-0.537440\pi\)
−0.117350 + 0.993091i \(0.537440\pi\)
\(602\) −6.91430e6 −0.777601
\(603\) −1.55638e6 −0.174310
\(604\) 5.47697e6 0.610869
\(605\) 0 0
\(606\) −112669. −0.0124630
\(607\) 4.20281e6 0.462986 0.231493 0.972837i \(-0.425639\pi\)
0.231493 + 0.972837i \(0.425639\pi\)
\(608\) −2.77622e6 −0.304576
\(609\) −227621. −0.0248696
\(610\) 0 0
\(611\) 4.72696e6 0.512246
\(612\) 2.85466e6 0.308089
\(613\) 5.73233e6 0.616141 0.308071 0.951363i \(-0.400317\pi\)
0.308071 + 0.951363i \(0.400317\pi\)
\(614\) 1.30986e7 1.40218
\(615\) 0 0
\(616\) −957489. −0.101667
\(617\) 7.42348e6 0.785046 0.392523 0.919742i \(-0.371602\pi\)
0.392523 + 0.919742i \(0.371602\pi\)
\(618\) −1.03638e6 −0.109156
\(619\) 1.60192e7 1.68041 0.840203 0.542271i \(-0.182436\pi\)
0.840203 + 0.542271i \(0.182436\pi\)
\(620\) 0 0
\(621\) 6.05215e6 0.629768
\(622\) −9.51158e6 −0.985773
\(623\) 6.84264e6 0.706323
\(624\) 429441. 0.0441512
\(625\) 0 0
\(626\) −1.69742e6 −0.173122
\(627\) 3.23966e6 0.329102
\(628\) 8.78963e6 0.889347
\(629\) −1.48823e7 −1.49984
\(630\) 0 0
\(631\) −1.04270e7 −1.04252 −0.521260 0.853398i \(-0.674538\pi\)
−0.521260 + 0.853398i \(0.674538\pi\)
\(632\) 3.16639e6 0.315335
\(633\) 3.11320e6 0.308815
\(634\) −9.21660e6 −0.910642
\(635\) 0 0
\(636\) −3.83863e6 −0.376300
\(637\) −230277. −0.0224855
\(638\) 88854.1 0.00864223
\(639\) −909799. −0.0881441
\(640\) 0 0
\(641\) 5.56044e6 0.534520 0.267260 0.963624i \(-0.413882\pi\)
0.267260 + 0.963624i \(0.413882\pi\)
\(642\) 925787. 0.0886489
\(643\) 3.35787e6 0.320285 0.160142 0.987094i \(-0.448805\pi\)
0.160142 + 0.987094i \(0.448805\pi\)
\(644\) −3.12894e6 −0.297291
\(645\) 0 0
\(646\) 1.33925e7 1.26264
\(647\) −1.16363e7 −1.09284 −0.546419 0.837512i \(-0.684009\pi\)
−0.546419 + 0.837512i \(0.684009\pi\)
\(648\) 196445. 0.0183782
\(649\) −4.66925e6 −0.435146
\(650\) 0 0
\(651\) −63499.5 −0.00587243
\(652\) −4.49571e6 −0.414171
\(653\) 3.20815e6 0.294423 0.147211 0.989105i \(-0.452970\pi\)
0.147211 + 0.989105i \(0.452970\pi\)
\(654\) 4.24976e6 0.388526
\(655\) 0 0
\(656\) −1.13653e6 −0.103115
\(657\) 614654. 0.0555543
\(658\) −1.39040e7 −1.25192
\(659\) 1.08724e6 0.0975242 0.0487621 0.998810i \(-0.484472\pi\)
0.0487621 + 0.998810i \(0.484472\pi\)
\(660\) 0 0
\(661\) 7.81571e6 0.695769 0.347884 0.937537i \(-0.386900\pi\)
0.347884 + 0.937537i \(0.386900\pi\)
\(662\) 8.15743e6 0.723450
\(663\) −2.07162e6 −0.183032
\(664\) −6.45025e6 −0.567749
\(665\) 0 0
\(666\) 6.96420e6 0.608395
\(667\) 290363. 0.0252712
\(668\) 1.04385e7 0.905101
\(669\) 6.87142e6 0.593582
\(670\) 0 0
\(671\) 6.46059e6 0.553944
\(672\) −1.26317e6 −0.107904
\(673\) −1.58854e7 −1.35195 −0.675975 0.736924i \(-0.736277\pi\)
−0.675975 + 0.736924i \(0.736277\pi\)
\(674\) −7.49123e6 −0.635189
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) −1.74735e7 −1.46524 −0.732621 0.680637i \(-0.761703\pi\)
−0.732621 + 0.680637i \(0.761703\pi\)
\(678\) 5.20552e6 0.434900
\(679\) 2.20322e7 1.83393
\(680\) 0 0
\(681\) 3.06255e6 0.253055
\(682\) 24787.6 0.00204068
\(683\) −9.62616e6 −0.789590 −0.394795 0.918769i \(-0.629184\pi\)
−0.394795 + 0.918769i \(0.629184\pi\)
\(684\) −6.26703e6 −0.512179
\(685\) 0 0
\(686\) 9.03214e6 0.732792
\(687\) −3.79875e6 −0.307078
\(688\) 3.56076e6 0.286795
\(689\) −4.08476e6 −0.327807
\(690\) 0 0
\(691\) −5.38851e6 −0.429312 −0.214656 0.976690i \(-0.568863\pi\)
−0.214656 + 0.976690i \(0.568863\pi\)
\(692\) 7.59770e6 0.603139
\(693\) −2.16143e6 −0.170965
\(694\) 2.00686e6 0.158168
\(695\) 0 0
\(696\) 117221. 0.00917241
\(697\) 5.48262e6 0.427470
\(698\) 6.09039e6 0.473158
\(699\) 8.86666e6 0.686384
\(700\) 0 0
\(701\) −2.33991e6 −0.179848 −0.0899238 0.995949i \(-0.528662\pi\)
−0.0899238 + 0.995949i \(0.528662\pi\)
\(702\) 2.59995e6 0.199124
\(703\) 3.26722e7 2.49339
\(704\) 493092. 0.0374970
\(705\) 0 0
\(706\) 7.48197e6 0.564943
\(707\) 352658. 0.0265341
\(708\) −6.15993e6 −0.461841
\(709\) −4.25213e6 −0.317681 −0.158840 0.987304i \(-0.550776\pi\)
−0.158840 + 0.987304i \(0.550776\pi\)
\(710\) 0 0
\(711\) 7.14780e6 0.530271
\(712\) −3.52385e6 −0.260506
\(713\) 81002.5 0.00596726
\(714\) 6.09354e6 0.447326
\(715\) 0 0
\(716\) −4.39783e6 −0.320594
\(717\) 4.91003e6 0.356686
\(718\) 6.80639e6 0.492726
\(719\) −5.05655e6 −0.364781 −0.182390 0.983226i \(-0.558383\pi\)
−0.182390 + 0.983226i \(0.558383\pi\)
\(720\) 0 0
\(721\) 3.24390e6 0.232396
\(722\) −1.94971e7 −1.39196
\(723\) 1.34582e7 0.957506
\(724\) 7.73140e6 0.548165
\(725\) 0 0
\(726\) 5.81900e6 0.409739
\(727\) 5.03627e6 0.353405 0.176703 0.984264i \(-0.443457\pi\)
0.176703 + 0.984264i \(0.443457\pi\)
\(728\) −1.34416e6 −0.0939992
\(729\) 9.72033e6 0.677427
\(730\) 0 0
\(731\) −1.71771e7 −1.18893
\(732\) 8.52317e6 0.587927
\(733\) 4.12919e6 0.283861 0.141930 0.989877i \(-0.454669\pi\)
0.141930 + 0.989877i \(0.454669\pi\)
\(734\) −1.25892e6 −0.0862500
\(735\) 0 0
\(736\) 1.61135e6 0.109647
\(737\) 1.29687e6 0.0879482
\(738\) −2.56560e6 −0.173399
\(739\) −1.44286e7 −0.971881 −0.485940 0.873992i \(-0.661523\pi\)
−0.485940 + 0.873992i \(0.661523\pi\)
\(740\) 0 0
\(741\) 4.54798e6 0.304279
\(742\) 1.20150e7 0.801154
\(743\) 1.53445e7 1.01972 0.509860 0.860258i \(-0.329697\pi\)
0.509860 + 0.860258i \(0.329697\pi\)
\(744\) 32701.2 0.00216587
\(745\) 0 0
\(746\) 8.65780e6 0.569588
\(747\) −1.45608e7 −0.954735
\(748\) −2.37867e6 −0.155446
\(749\) −2.89774e6 −0.188736
\(750\) 0 0
\(751\) −2.17168e7 −1.40506 −0.702530 0.711654i \(-0.747946\pi\)
−0.702530 + 0.711654i \(0.747946\pi\)
\(752\) 7.16036e6 0.461732
\(753\) 1.53241e7 0.984887
\(754\) 124737. 0.00799039
\(755\) 0 0
\(756\) −7.64759e6 −0.486654
\(757\) 4.93082e6 0.312737 0.156369 0.987699i \(-0.450021\pi\)
0.156369 + 0.987699i \(0.450021\pi\)
\(758\) −6.71592e6 −0.424554
\(759\) −1.88034e6 −0.118476
\(760\) 0 0
\(761\) 2.14880e6 0.134504 0.0672520 0.997736i \(-0.478577\pi\)
0.0672520 + 0.997736i \(0.478577\pi\)
\(762\) 1.23745e7 0.772040
\(763\) −1.33019e7 −0.827184
\(764\) 8.28483e6 0.513511
\(765\) 0 0
\(766\) −9.70796e6 −0.597800
\(767\) −6.55490e6 −0.402325
\(768\) 650514. 0.0397973
\(769\) −296609. −0.0180871 −0.00904354 0.999959i \(-0.502879\pi\)
−0.00904354 + 0.999959i \(0.502879\pi\)
\(770\) 0 0
\(771\) 5.34955e6 0.324102
\(772\) 4.70973e6 0.284415
\(773\) 4.37418e6 0.263298 0.131649 0.991296i \(-0.457973\pi\)
0.131649 + 0.991296i \(0.457973\pi\)
\(774\) 8.03804e6 0.482278
\(775\) 0 0
\(776\) −1.13462e7 −0.676390
\(777\) 1.48657e7 0.883352
\(778\) 1.36620e7 0.809216
\(779\) −1.20364e7 −0.710643
\(780\) 0 0
\(781\) 758099. 0.0444732
\(782\) −7.77317e6 −0.454549
\(783\) 709690. 0.0413680
\(784\) −348822. −0.0202681
\(785\) 0 0
\(786\) 9.15762e6 0.528720
\(787\) −3.18884e7 −1.83525 −0.917625 0.397447i \(-0.869896\pi\)
−0.917625 + 0.397447i \(0.869896\pi\)
\(788\) 1.99778e6 0.114613
\(789\) 5.44406e6 0.311337
\(790\) 0 0
\(791\) −1.62934e7 −0.925916
\(792\) 1.11310e6 0.0630554
\(793\) 9.06966e6 0.512163
\(794\) −1.43117e7 −0.805637
\(795\) 0 0
\(796\) −2.27418e6 −0.127216
\(797\) 3.17291e7 1.76934 0.884671 0.466216i \(-0.154383\pi\)
0.884671 + 0.466216i \(0.154383\pi\)
\(798\) −1.33776e7 −0.743652
\(799\) −3.45416e7 −1.91415
\(800\) 0 0
\(801\) −7.95473e6 −0.438071
\(802\) 1.88056e7 1.03241
\(803\) −512167. −0.0280300
\(804\) 1.71090e6 0.0933436
\(805\) 0 0
\(806\) 34798.0 0.00188676
\(807\) −1.66090e7 −0.897760
\(808\) −181613. −0.00978632
\(809\) −2.63959e7 −1.41796 −0.708981 0.705227i \(-0.750845\pi\)
−0.708981 + 0.705227i \(0.750845\pi\)
\(810\) 0 0
\(811\) 3.04865e7 1.62763 0.813814 0.581125i \(-0.197387\pi\)
0.813814 + 0.581125i \(0.197387\pi\)
\(812\) −366906. −0.0195283
\(813\) 1.48927e6 0.0790220
\(814\) −5.80299e6 −0.306966
\(815\) 0 0
\(816\) −3.13808e6 −0.164983
\(817\) 3.77100e7 1.97652
\(818\) 1.98621e7 1.03787
\(819\) −3.03431e6 −0.158070
\(820\) 0 0
\(821\) −2.32779e7 −1.20528 −0.602638 0.798015i \(-0.705884\pi\)
−0.602638 + 0.798015i \(0.705884\pi\)
\(822\) −9.25782e6 −0.477891
\(823\) −9.66183e6 −0.497233 −0.248616 0.968602i \(-0.579976\pi\)
−0.248616 + 0.968602i \(0.579976\pi\)
\(824\) −1.67056e6 −0.0857124
\(825\) 0 0
\(826\) 1.92808e7 0.983274
\(827\) −1.66692e7 −0.847523 −0.423761 0.905774i \(-0.639290\pi\)
−0.423761 + 0.905774i \(0.639290\pi\)
\(828\) 3.63746e6 0.184384
\(829\) −1.71154e7 −0.864970 −0.432485 0.901641i \(-0.642363\pi\)
−0.432485 + 0.901641i \(0.642363\pi\)
\(830\) 0 0
\(831\) 1.57833e7 0.792857
\(832\) 692224. 0.0346688
\(833\) 1.68271e6 0.0840230
\(834\) 1.19407e6 0.0594450
\(835\) 0 0
\(836\) 5.22207e6 0.258420
\(837\) 197982. 0.00976815
\(838\) 1.08592e7 0.534180
\(839\) −4.89613e6 −0.240131 −0.120066 0.992766i \(-0.538310\pi\)
−0.120066 + 0.992766i \(0.538310\pi\)
\(840\) 0 0
\(841\) −2.04771e7 −0.998340
\(842\) −3.53326e6 −0.171749
\(843\) 1.10345e7 0.534788
\(844\) 5.01823e6 0.242490
\(845\) 0 0
\(846\) 1.61638e7 0.776456
\(847\) −1.82137e7 −0.872346
\(848\) −6.18757e6 −0.295481
\(849\) −9.53126e6 −0.453817
\(850\) 0 0
\(851\) −1.89633e7 −0.897617
\(852\) 1.00013e6 0.0472015
\(853\) −2.59891e6 −0.122298 −0.0611490 0.998129i \(-0.519476\pi\)
−0.0611490 + 0.998129i \(0.519476\pi\)
\(854\) −2.66778e7 −1.25171
\(855\) 0 0
\(856\) 1.49229e6 0.0696097
\(857\) 5.01734e6 0.233357 0.116679 0.993170i \(-0.462775\pi\)
0.116679 + 0.993170i \(0.462775\pi\)
\(858\) −807777. −0.0374605
\(859\) −2.55874e7 −1.18316 −0.591580 0.806246i \(-0.701496\pi\)
−0.591580 + 0.806246i \(0.701496\pi\)
\(860\) 0 0
\(861\) −5.47651e6 −0.251765
\(862\) 2.18840e7 1.00313
\(863\) 1.15679e7 0.528721 0.264361 0.964424i \(-0.414839\pi\)
0.264361 + 0.964424i \(0.414839\pi\)
\(864\) 3.93839e6 0.179488
\(865\) 0 0
\(866\) −2.04010e7 −0.924394
\(867\) 1.04449e6 0.0471907
\(868\) −102356. −0.00461120
\(869\) −5.95597e6 −0.267549
\(870\) 0 0
\(871\) 1.82060e6 0.0813147
\(872\) 6.85027e6 0.305082
\(873\) −2.56129e7 −1.13743
\(874\) 1.70650e7 0.755661
\(875\) 0 0
\(876\) −675679. −0.0297495
\(877\) 1.09871e7 0.482376 0.241188 0.970478i \(-0.422463\pi\)
0.241188 + 0.970478i \(0.422463\pi\)
\(878\) −1.78198e7 −0.780127
\(879\) 1.01068e7 0.441208
\(880\) 0 0
\(881\) 2.80039e7 1.21557 0.607784 0.794102i \(-0.292059\pi\)
0.607784 + 0.794102i \(0.292059\pi\)
\(882\) −787429. −0.0340832
\(883\) 2.79370e7 1.20581 0.602904 0.797814i \(-0.294010\pi\)
0.602904 + 0.797814i \(0.294010\pi\)
\(884\) −3.33929e6 −0.143722
\(885\) 0 0
\(886\) 3.75567e6 0.160732
\(887\) 1.68485e7 0.719040 0.359520 0.933137i \(-0.382940\pi\)
0.359520 + 0.933137i \(0.382940\pi\)
\(888\) −7.65563e6 −0.325798
\(889\) −3.87325e7 −1.64370
\(890\) 0 0
\(891\) −369512. −0.0155932
\(892\) 1.10762e7 0.466098
\(893\) 7.58315e7 3.18215
\(894\) −763176. −0.0319360
\(895\) 0 0
\(896\) −2.03613e6 −0.0847297
\(897\) −2.63970e6 −0.109540
\(898\) −1.82310e7 −0.754433
\(899\) 9498.54 0.000391975 0
\(900\) 0 0
\(901\) 2.98488e7 1.22494
\(902\) 2.13781e6 0.0874888
\(903\) 1.71579e7 0.700238
\(904\) 8.39087e6 0.341496
\(905\) 0 0
\(906\) −1.35912e7 −0.550094
\(907\) 3.17618e7 1.28200 0.640998 0.767543i \(-0.278521\pi\)
0.640998 + 0.767543i \(0.278521\pi\)
\(908\) 4.93658e6 0.198706
\(909\) −409973. −0.0164568
\(910\) 0 0
\(911\) 1.96774e7 0.785548 0.392774 0.919635i \(-0.371516\pi\)
0.392774 + 0.919635i \(0.371516\pi\)
\(912\) 6.88924e6 0.274274
\(913\) 1.21329e7 0.481712
\(914\) 1.17986e6 0.0467159
\(915\) 0 0
\(916\) −6.12328e6 −0.241127
\(917\) −2.86636e7 −1.12566
\(918\) −1.89988e7 −0.744079
\(919\) 2.01620e7 0.787491 0.393745 0.919220i \(-0.371179\pi\)
0.393745 + 0.919220i \(0.371179\pi\)
\(920\) 0 0
\(921\) −3.25045e7 −1.26268
\(922\) 1.41259e7 0.547253
\(923\) 1.06425e6 0.0411188
\(924\) 2.37602e6 0.0915526
\(925\) 0 0
\(926\) 2.48266e7 0.951458
\(927\) −3.77111e6 −0.144135
\(928\) 188951. 0.00720244
\(929\) −6.24509e6 −0.237410 −0.118705 0.992930i \(-0.537874\pi\)
−0.118705 + 0.992930i \(0.537874\pi\)
\(930\) 0 0
\(931\) −3.69418e6 −0.139683
\(932\) 1.42923e7 0.538969
\(933\) 2.36031e7 0.887699
\(934\) 1.47373e7 0.552778
\(935\) 0 0
\(936\) 1.56262e6 0.0582995
\(937\) −3.44012e7 −1.28004 −0.640021 0.768358i \(-0.721074\pi\)
−0.640021 + 0.768358i \(0.721074\pi\)
\(938\) −5.35517e6 −0.198731
\(939\) 4.21217e6 0.155898
\(940\) 0 0
\(941\) 1.22495e7 0.450967 0.225483 0.974247i \(-0.427604\pi\)
0.225483 + 0.974247i \(0.427604\pi\)
\(942\) −2.18116e7 −0.800867
\(943\) 6.98605e6 0.255831
\(944\) −9.92931e6 −0.362651
\(945\) 0 0
\(946\) −6.69777e6 −0.243334
\(947\) −1.04126e7 −0.377298 −0.188649 0.982045i \(-0.560411\pi\)
−0.188649 + 0.982045i \(0.560411\pi\)
\(948\) −7.85745e6 −0.283962
\(949\) −719002. −0.0259158
\(950\) 0 0
\(951\) 2.28711e7 0.820043
\(952\) 9.82229e6 0.351253
\(953\) −1.10546e7 −0.394286 −0.197143 0.980375i \(-0.563166\pi\)
−0.197143 + 0.980375i \(0.563166\pi\)
\(954\) −1.39678e7 −0.496886
\(955\) 0 0
\(956\) 7.91457e6 0.280080
\(957\) −220493. −0.00778242
\(958\) −1.42079e7 −0.500170
\(959\) 2.89773e7 1.01744
\(960\) 0 0
\(961\) −2.86265e7 −0.999907
\(962\) −8.14649e6 −0.283813
\(963\) 3.36869e6 0.117057
\(964\) 2.16935e7 0.751861
\(965\) 0 0
\(966\) 7.76450e6 0.267714
\(967\) 5.56761e6 0.191471 0.0957354 0.995407i \(-0.469480\pi\)
0.0957354 + 0.995407i \(0.469480\pi\)
\(968\) 9.37976e6 0.321739
\(969\) −3.32337e7 −1.13702
\(970\) 0 0
\(971\) 2.43458e7 0.828661 0.414330 0.910127i \(-0.364016\pi\)
0.414330 + 0.910127i \(0.364016\pi\)
\(972\) 1.44661e7 0.491118
\(973\) −3.73748e6 −0.126560
\(974\) −9.59298e6 −0.324008
\(975\) 0 0
\(976\) 1.37387e7 0.461657
\(977\) −2.31597e7 −0.776242 −0.388121 0.921608i \(-0.626876\pi\)
−0.388121 + 0.921608i \(0.626876\pi\)
\(978\) 1.11562e7 0.372965
\(979\) 6.62836e6 0.221029
\(980\) 0 0
\(981\) 1.54638e7 0.513030
\(982\) 3.05886e7 1.01223
\(983\) −2.54095e7 −0.838710 −0.419355 0.907822i \(-0.637744\pi\)
−0.419355 + 0.907822i \(0.637744\pi\)
\(984\) 2.82032e6 0.0928560
\(985\) 0 0
\(986\) −911500. −0.0298582
\(987\) 3.45031e7 1.12737
\(988\) 7.33097e6 0.238929
\(989\) −2.18874e7 −0.711546
\(990\) 0 0
\(991\) 6.88244e6 0.222617 0.111308 0.993786i \(-0.464496\pi\)
0.111308 + 0.993786i \(0.464496\pi\)
\(992\) 52711.7 0.00170070
\(993\) −2.02428e7 −0.651475
\(994\) −3.13043e6 −0.100493
\(995\) 0 0
\(996\) 1.60064e7 0.511264
\(997\) 4.06394e7 1.29482 0.647411 0.762141i \(-0.275852\pi\)
0.647411 + 0.762141i \(0.275852\pi\)
\(998\) 4.01669e6 0.127656
\(999\) −4.63492e7 −1.46936
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.o.1.4 5
5.2 odd 4 650.6.b.m.599.2 10
5.3 odd 4 650.6.b.m.599.9 10
5.4 even 2 650.6.a.p.1.2 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.6.a.o.1.4 5 1.1 even 1 trivial
650.6.a.p.1.2 yes 5 5.4 even 2
650.6.b.m.599.2 10 5.2 odd 4
650.6.b.m.599.9 10 5.3 odd 4