Properties

Label 650.6.a.o.1.5
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 601x^{3} + 1405x^{2} + 36840x - 60300 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-23.8063\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +25.8063 q^{3} +16.0000 q^{4} -103.225 q^{6} -115.455 q^{7} -64.0000 q^{8} +422.964 q^{9} -428.556 q^{11} +412.900 q^{12} +169.000 q^{13} +461.820 q^{14} +256.000 q^{16} +591.766 q^{17} -1691.86 q^{18} +940.874 q^{19} -2979.47 q^{21} +1714.22 q^{22} +1122.65 q^{23} -1651.60 q^{24} -676.000 q^{26} +4644.20 q^{27} -1847.28 q^{28} +4415.91 q^{29} -2732.71 q^{31} -1024.00 q^{32} -11059.4 q^{33} -2367.06 q^{34} +6767.43 q^{36} +1402.78 q^{37} -3763.50 q^{38} +4361.26 q^{39} +3862.12 q^{41} +11917.9 q^{42} -12921.3 q^{43} -6856.90 q^{44} -4490.59 q^{46} -4948.22 q^{47} +6606.41 q^{48} -3477.11 q^{49} +15271.3 q^{51} +2704.00 q^{52} +23556.6 q^{53} -18576.8 q^{54} +7389.13 q^{56} +24280.5 q^{57} -17663.7 q^{58} +17736.3 q^{59} +42609.5 q^{61} +10930.8 q^{62} -48833.4 q^{63} +4096.00 q^{64} +44237.8 q^{66} +40115.3 q^{67} +9468.25 q^{68} +28971.4 q^{69} +44171.6 q^{71} -27069.7 q^{72} +38648.9 q^{73} -5611.13 q^{74} +15054.0 q^{76} +49479.0 q^{77} -17445.0 q^{78} +60465.1 q^{79} +17069.3 q^{81} -15448.5 q^{82} -40336.7 q^{83} -47671.5 q^{84} +51685.2 q^{86} +113958. q^{87} +27427.6 q^{88} -50305.7 q^{89} -19511.9 q^{91} +17962.4 q^{92} -70521.0 q^{93} +19792.9 q^{94} -26425.6 q^{96} +96623.4 q^{97} +13908.5 q^{98} -181264. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 20 q^{2} + 9 q^{3} + 80 q^{4} - 36 q^{6} - 42 q^{7} - 320 q^{8} + 4 q^{9} - 213 q^{11} + 144 q^{12} + 845 q^{13} + 168 q^{14} + 1280 q^{16} + 601 q^{17} - 16 q^{18} - 567 q^{19} - 3700 q^{21} + 852 q^{22}+ \cdots - 440284 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 25.8063 1.65547 0.827737 0.561117i \(-0.189628\pi\)
0.827737 + 0.561117i \(0.189628\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −103.225 −1.17060
\(7\) −115.455 −0.890570 −0.445285 0.895389i \(-0.646898\pi\)
−0.445285 + 0.895389i \(0.646898\pi\)
\(8\) −64.0000 −0.353553
\(9\) 422.964 1.74059
\(10\) 0 0
\(11\) −428.556 −1.06789 −0.533944 0.845520i \(-0.679291\pi\)
−0.533944 + 0.845520i \(0.679291\pi\)
\(12\) 412.900 0.827737
\(13\) 169.000 0.277350
\(14\) 461.820 0.629728
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 591.766 0.496624 0.248312 0.968680i \(-0.420124\pi\)
0.248312 + 0.968680i \(0.420124\pi\)
\(18\) −1691.86 −1.23079
\(19\) 940.874 0.597926 0.298963 0.954265i \(-0.403359\pi\)
0.298963 + 0.954265i \(0.403359\pi\)
\(20\) 0 0
\(21\) −2979.47 −1.47432
\(22\) 1714.22 0.755111
\(23\) 1122.65 0.442511 0.221255 0.975216i \(-0.428985\pi\)
0.221255 + 0.975216i \(0.428985\pi\)
\(24\) −1651.60 −0.585298
\(25\) 0 0
\(26\) −676.000 −0.196116
\(27\) 4644.20 1.22603
\(28\) −1847.28 −0.445285
\(29\) 4415.91 0.975047 0.487524 0.873110i \(-0.337900\pi\)
0.487524 + 0.873110i \(0.337900\pi\)
\(30\) 0 0
\(31\) −2732.71 −0.510727 −0.255363 0.966845i \(-0.582195\pi\)
−0.255363 + 0.966845i \(0.582195\pi\)
\(32\) −1024.00 −0.176777
\(33\) −11059.4 −1.76786
\(34\) −2367.06 −0.351166
\(35\) 0 0
\(36\) 6767.43 0.870296
\(37\) 1402.78 0.168456 0.0842280 0.996447i \(-0.473158\pi\)
0.0842280 + 0.996447i \(0.473158\pi\)
\(38\) −3763.50 −0.422798
\(39\) 4361.26 0.459146
\(40\) 0 0
\(41\) 3862.12 0.358811 0.179405 0.983775i \(-0.442583\pi\)
0.179405 + 0.983775i \(0.442583\pi\)
\(42\) 11917.9 1.04250
\(43\) −12921.3 −1.06570 −0.532851 0.846209i \(-0.678879\pi\)
−0.532851 + 0.846209i \(0.678879\pi\)
\(44\) −6856.90 −0.533944
\(45\) 0 0
\(46\) −4490.59 −0.312902
\(47\) −4948.22 −0.326742 −0.163371 0.986565i \(-0.552237\pi\)
−0.163371 + 0.986565i \(0.552237\pi\)
\(48\) 6606.41 0.413868
\(49\) −3477.11 −0.206885
\(50\) 0 0
\(51\) 15271.3 0.822148
\(52\) 2704.00 0.138675
\(53\) 23556.6 1.15192 0.575962 0.817477i \(-0.304628\pi\)
0.575962 + 0.817477i \(0.304628\pi\)
\(54\) −18576.8 −0.866936
\(55\) 0 0
\(56\) 7389.13 0.314864
\(57\) 24280.5 0.989851
\(58\) −17663.7 −0.689462
\(59\) 17736.3 0.663335 0.331667 0.943396i \(-0.392389\pi\)
0.331667 + 0.943396i \(0.392389\pi\)
\(60\) 0 0
\(61\) 42609.5 1.46616 0.733081 0.680141i \(-0.238082\pi\)
0.733081 + 0.680141i \(0.238082\pi\)
\(62\) 10930.8 0.361138
\(63\) −48833.4 −1.55012
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 44237.8 1.25007
\(67\) 40115.3 1.09175 0.545874 0.837867i \(-0.316198\pi\)
0.545874 + 0.837867i \(0.316198\pi\)
\(68\) 9468.25 0.248312
\(69\) 28971.4 0.732565
\(70\) 0 0
\(71\) 44171.6 1.03991 0.519957 0.854193i \(-0.325948\pi\)
0.519957 + 0.854193i \(0.325948\pi\)
\(72\) −27069.7 −0.615393
\(73\) 38648.9 0.848848 0.424424 0.905464i \(-0.360477\pi\)
0.424424 + 0.905464i \(0.360477\pi\)
\(74\) −5611.13 −0.119116
\(75\) 0 0
\(76\) 15054.0 0.298963
\(77\) 49479.0 0.951030
\(78\) −17445.0 −0.324665
\(79\) 60465.1 1.09003 0.545013 0.838428i \(-0.316525\pi\)
0.545013 + 0.838428i \(0.316525\pi\)
\(80\) 0 0
\(81\) 17069.3 0.289071
\(82\) −15448.5 −0.253718
\(83\) −40336.7 −0.642695 −0.321347 0.946961i \(-0.604136\pi\)
−0.321347 + 0.946961i \(0.604136\pi\)
\(84\) −47671.5 −0.737158
\(85\) 0 0
\(86\) 51685.2 0.753565
\(87\) 113958. 1.61416
\(88\) 27427.6 0.377556
\(89\) −50305.7 −0.673197 −0.336599 0.941648i \(-0.609277\pi\)
−0.336599 + 0.941648i \(0.609277\pi\)
\(90\) 0 0
\(91\) −19511.9 −0.247000
\(92\) 17962.4 0.221255
\(93\) −70521.0 −0.845495
\(94\) 19792.9 0.231041
\(95\) 0 0
\(96\) −26425.6 −0.292649
\(97\) 96623.4 1.04268 0.521342 0.853348i \(-0.325431\pi\)
0.521342 + 0.853348i \(0.325431\pi\)
\(98\) 13908.5 0.146290
\(99\) −181264. −1.85876
\(100\) 0 0
\(101\) −99817.0 −0.973646 −0.486823 0.873501i \(-0.661844\pi\)
−0.486823 + 0.873501i \(0.661844\pi\)
\(102\) −61085.1 −0.581346
\(103\) 187609. 1.74245 0.871224 0.490885i \(-0.163326\pi\)
0.871224 + 0.490885i \(0.163326\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) −94226.5 −0.814533
\(107\) 147044. 1.24162 0.620811 0.783961i \(-0.286804\pi\)
0.620811 + 0.783961i \(0.286804\pi\)
\(108\) 74307.3 0.613016
\(109\) −80111.3 −0.645844 −0.322922 0.946426i \(-0.604665\pi\)
−0.322922 + 0.946426i \(0.604665\pi\)
\(110\) 0 0
\(111\) 36200.6 0.278874
\(112\) −29556.5 −0.222643
\(113\) 32759.3 0.241345 0.120673 0.992692i \(-0.461495\pi\)
0.120673 + 0.992692i \(0.461495\pi\)
\(114\) −97121.9 −0.699931
\(115\) 0 0
\(116\) 70654.6 0.487524
\(117\) 71480.9 0.482754
\(118\) −70945.2 −0.469048
\(119\) −68322.4 −0.442278
\(120\) 0 0
\(121\) 22609.4 0.140387
\(122\) −170438. −1.03673
\(123\) 99666.8 0.594002
\(124\) −43723.3 −0.255363
\(125\) 0 0
\(126\) 195333. 1.09610
\(127\) 333208. 1.83318 0.916592 0.399823i \(-0.130929\pi\)
0.916592 + 0.399823i \(0.130929\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −333451. −1.76424
\(130\) 0 0
\(131\) 175588. 0.893956 0.446978 0.894545i \(-0.352500\pi\)
0.446978 + 0.894545i \(0.352500\pi\)
\(132\) −176951. −0.883931
\(133\) −108629. −0.532495
\(134\) −160461. −0.771983
\(135\) 0 0
\(136\) −37873.0 −0.175583
\(137\) −250969. −1.14240 −0.571201 0.820810i \(-0.693522\pi\)
−0.571201 + 0.820810i \(0.693522\pi\)
\(138\) −115885. −0.518002
\(139\) −17764.1 −0.0779840 −0.0389920 0.999240i \(-0.512415\pi\)
−0.0389920 + 0.999240i \(0.512415\pi\)
\(140\) 0 0
\(141\) −127695. −0.540912
\(142\) −176686. −0.735330
\(143\) −72426.0 −0.296179
\(144\) 108279. 0.435148
\(145\) 0 0
\(146\) −154596. −0.600226
\(147\) −89731.4 −0.342493
\(148\) 22444.5 0.0842280
\(149\) −255058. −0.941181 −0.470591 0.882352i \(-0.655959\pi\)
−0.470591 + 0.882352i \(0.655959\pi\)
\(150\) 0 0
\(151\) −536801. −1.91589 −0.957947 0.286947i \(-0.907360\pi\)
−0.957947 + 0.286947i \(0.907360\pi\)
\(152\) −60216.0 −0.211399
\(153\) 250296. 0.864420
\(154\) −197916. −0.672480
\(155\) 0 0
\(156\) 69780.2 0.229573
\(157\) −292686. −0.947660 −0.473830 0.880616i \(-0.657129\pi\)
−0.473830 + 0.880616i \(0.657129\pi\)
\(158\) −241860. −0.770764
\(159\) 607909. 1.90698
\(160\) 0 0
\(161\) −129615. −0.394087
\(162\) −68277.4 −0.204404
\(163\) 468501. 1.38115 0.690575 0.723260i \(-0.257357\pi\)
0.690575 + 0.723260i \(0.257357\pi\)
\(164\) 61793.8 0.179405
\(165\) 0 0
\(166\) 161347. 0.454454
\(167\) 36218.4 0.100494 0.0502468 0.998737i \(-0.483999\pi\)
0.0502468 + 0.998737i \(0.483999\pi\)
\(168\) 190686. 0.521249
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 397956. 1.04075
\(172\) −206741. −0.532851
\(173\) 455733. 1.15770 0.578849 0.815435i \(-0.303502\pi\)
0.578849 + 0.815435i \(0.303502\pi\)
\(174\) −455833. −1.14139
\(175\) 0 0
\(176\) −109710. −0.266972
\(177\) 457708. 1.09813
\(178\) 201223. 0.476022
\(179\) 110354. 0.257427 0.128713 0.991682i \(-0.458915\pi\)
0.128713 + 0.991682i \(0.458915\pi\)
\(180\) 0 0
\(181\) −828916. −1.88068 −0.940338 0.340242i \(-0.889491\pi\)
−0.940338 + 0.340242i \(0.889491\pi\)
\(182\) 78047.7 0.174655
\(183\) 1.09959e6 2.42719
\(184\) −71849.4 −0.156451
\(185\) 0 0
\(186\) 282084. 0.597855
\(187\) −253605. −0.530339
\(188\) −79171.6 −0.163371
\(189\) −536197. −1.09187
\(190\) 0 0
\(191\) 164897. 0.327061 0.163530 0.986538i \(-0.447712\pi\)
0.163530 + 0.986538i \(0.447712\pi\)
\(192\) 105703. 0.206934
\(193\) 808004. 1.56142 0.780711 0.624892i \(-0.214857\pi\)
0.780711 + 0.624892i \(0.214857\pi\)
\(194\) −386494. −0.737289
\(195\) 0 0
\(196\) −55633.8 −0.103442
\(197\) −148038. −0.271774 −0.135887 0.990724i \(-0.543388\pi\)
−0.135887 + 0.990724i \(0.543388\pi\)
\(198\) 725056. 1.31434
\(199\) 433179. 0.775415 0.387708 0.921782i \(-0.373267\pi\)
0.387708 + 0.921782i \(0.373267\pi\)
\(200\) 0 0
\(201\) 1.03523e6 1.80736
\(202\) 399268. 0.688472
\(203\) −509840. −0.868348
\(204\) 244340. 0.411074
\(205\) 0 0
\(206\) −750435. −1.23210
\(207\) 474840. 0.770231
\(208\) 43264.0 0.0693375
\(209\) −403218. −0.638519
\(210\) 0 0
\(211\) 791530. 1.22394 0.611971 0.790880i \(-0.290377\pi\)
0.611971 + 0.790880i \(0.290377\pi\)
\(212\) 376906. 0.575962
\(213\) 1.13990e6 1.72155
\(214\) −588178. −0.877959
\(215\) 0 0
\(216\) −297229. −0.433468
\(217\) 315505. 0.454838
\(218\) 320445. 0.456680
\(219\) 997384. 1.40525
\(220\) 0 0
\(221\) 100008. 0.137739
\(222\) −144803. −0.197194
\(223\) 151340. 0.203794 0.101897 0.994795i \(-0.467509\pi\)
0.101897 + 0.994795i \(0.467509\pi\)
\(224\) 118226. 0.157432
\(225\) 0 0
\(226\) −131037. −0.170657
\(227\) 1.33510e6 1.71968 0.859840 0.510563i \(-0.170563\pi\)
0.859840 + 0.510563i \(0.170563\pi\)
\(228\) 388487. 0.494926
\(229\) 39849.9 0.0502156 0.0251078 0.999685i \(-0.492007\pi\)
0.0251078 + 0.999685i \(0.492007\pi\)
\(230\) 0 0
\(231\) 1.27687e6 1.57440
\(232\) −282618. −0.344731
\(233\) 902942. 1.08961 0.544804 0.838563i \(-0.316604\pi\)
0.544804 + 0.838563i \(0.316604\pi\)
\(234\) −285924. −0.341358
\(235\) 0 0
\(236\) 283781. 0.331667
\(237\) 1.56038e6 1.80451
\(238\) 273290. 0.312738
\(239\) 614525. 0.695896 0.347948 0.937514i \(-0.386879\pi\)
0.347948 + 0.937514i \(0.386879\pi\)
\(240\) 0 0
\(241\) −104935. −0.116379 −0.0581897 0.998306i \(-0.518533\pi\)
−0.0581897 + 0.998306i \(0.518533\pi\)
\(242\) −90437.7 −0.0992684
\(243\) −688045. −0.747483
\(244\) 681752. 0.733081
\(245\) 0 0
\(246\) −398667. −0.420023
\(247\) 159008. 0.165835
\(248\) 174893. 0.180569
\(249\) −1.04094e6 −1.06396
\(250\) 0 0
\(251\) 1.52431e6 1.52717 0.763587 0.645705i \(-0.223437\pi\)
0.763587 + 0.645705i \(0.223437\pi\)
\(252\) −781334. −0.775060
\(253\) −481118. −0.472552
\(254\) −1.33283e6 −1.29626
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.26765e6 −1.19720 −0.598599 0.801049i \(-0.704276\pi\)
−0.598599 + 0.801049i \(0.704276\pi\)
\(258\) 1.33380e6 1.24751
\(259\) −161959. −0.150022
\(260\) 0 0
\(261\) 1.86777e6 1.69716
\(262\) −702351. −0.632122
\(263\) −926143. −0.825636 −0.412818 0.910814i \(-0.635455\pi\)
−0.412818 + 0.910814i \(0.635455\pi\)
\(264\) 707804. 0.625034
\(265\) 0 0
\(266\) 434515. 0.376531
\(267\) −1.29820e6 −1.11446
\(268\) 641844. 0.545874
\(269\) −151222. −0.127419 −0.0637097 0.997968i \(-0.520293\pi\)
−0.0637097 + 0.997968i \(0.520293\pi\)
\(270\) 0 0
\(271\) −977358. −0.808407 −0.404204 0.914669i \(-0.632451\pi\)
−0.404204 + 0.914669i \(0.632451\pi\)
\(272\) 151492. 0.124156
\(273\) −503530. −0.408901
\(274\) 1.00388e6 0.807801
\(275\) 0 0
\(276\) 463542. 0.366282
\(277\) 1506.04 0.00117934 0.000589668 1.00000i \(-0.499812\pi\)
0.000589668 1.00000i \(0.499812\pi\)
\(278\) 71056.3 0.0551430
\(279\) −1.15584e6 −0.888967
\(280\) 0 0
\(281\) 1.44171e6 1.08921 0.544607 0.838691i \(-0.316679\pi\)
0.544607 + 0.838691i \(0.316679\pi\)
\(282\) 510781. 0.382483
\(283\) −2.54980e6 −1.89252 −0.946258 0.323413i \(-0.895170\pi\)
−0.946258 + 0.323413i \(0.895170\pi\)
\(284\) 706746. 0.519957
\(285\) 0 0
\(286\) 289704. 0.209430
\(287\) −445901. −0.319546
\(288\) −433115. −0.307696
\(289\) −1.06967e6 −0.753365
\(290\) 0 0
\(291\) 2.49349e6 1.72614
\(292\) 618382. 0.424424
\(293\) −1.70676e6 −1.16146 −0.580728 0.814098i \(-0.697232\pi\)
−0.580728 + 0.814098i \(0.697232\pi\)
\(294\) 358926. 0.242179
\(295\) 0 0
\(296\) −89778.2 −0.0595582
\(297\) −1.99030e6 −1.30927
\(298\) 1.02023e6 0.665516
\(299\) 189727. 0.122730
\(300\) 0 0
\(301\) 1.49183e6 0.949082
\(302\) 2.14721e6 1.35474
\(303\) −2.57591e6 −1.61185
\(304\) 240864. 0.149482
\(305\) 0 0
\(306\) −1.00118e6 −0.611237
\(307\) 2.78504e6 1.68649 0.843247 0.537526i \(-0.180641\pi\)
0.843247 + 0.537526i \(0.180641\pi\)
\(308\) 791664. 0.475515
\(309\) 4.84148e6 2.88458
\(310\) 0 0
\(311\) −3.08423e6 −1.80820 −0.904098 0.427325i \(-0.859456\pi\)
−0.904098 + 0.427325i \(0.859456\pi\)
\(312\) −279121. −0.162333
\(313\) 220186. 0.127037 0.0635183 0.997981i \(-0.479768\pi\)
0.0635183 + 0.997981i \(0.479768\pi\)
\(314\) 1.17074e6 0.670097
\(315\) 0 0
\(316\) 967441. 0.545013
\(317\) 592873. 0.331370 0.165685 0.986179i \(-0.447016\pi\)
0.165685 + 0.986179i \(0.447016\pi\)
\(318\) −2.43164e6 −1.34844
\(319\) −1.89247e6 −1.04124
\(320\) 0 0
\(321\) 3.79467e6 2.05547
\(322\) 518462. 0.278661
\(323\) 556777. 0.296944
\(324\) 273109. 0.144535
\(325\) 0 0
\(326\) −1.87400e6 −0.976621
\(327\) −2.06737e6 −1.06918
\(328\) −247175. −0.126859
\(329\) 571298. 0.290986
\(330\) 0 0
\(331\) −198774. −0.0997218 −0.0498609 0.998756i \(-0.515878\pi\)
−0.0498609 + 0.998756i \(0.515878\pi\)
\(332\) −645386. −0.321347
\(333\) 593327. 0.293213
\(334\) −144874. −0.0710597
\(335\) 0 0
\(336\) −762744. −0.368579
\(337\) 2.05554e6 0.985940 0.492970 0.870046i \(-0.335911\pi\)
0.492970 + 0.870046i \(0.335911\pi\)
\(338\) −114244. −0.0543928
\(339\) 845397. 0.399541
\(340\) 0 0
\(341\) 1.17112e6 0.545399
\(342\) −1.59182e6 −0.735919
\(343\) 2.34190e6 1.07482
\(344\) 826964. 0.376782
\(345\) 0 0
\(346\) −1.82293e6 −0.818616
\(347\) 1.92285e6 0.857279 0.428639 0.903476i \(-0.358993\pi\)
0.428639 + 0.903476i \(0.358993\pi\)
\(348\) 1.82333e6 0.807082
\(349\) −3.55687e6 −1.56317 −0.781583 0.623802i \(-0.785587\pi\)
−0.781583 + 0.623802i \(0.785587\pi\)
\(350\) 0 0
\(351\) 784870. 0.340040
\(352\) 438842. 0.188778
\(353\) 751255. 0.320886 0.160443 0.987045i \(-0.448708\pi\)
0.160443 + 0.987045i \(0.448708\pi\)
\(354\) −1.83083e6 −0.776497
\(355\) 0 0
\(356\) −804891. −0.336599
\(357\) −1.76315e6 −0.732180
\(358\) −441414. −0.182028
\(359\) 656399. 0.268802 0.134401 0.990927i \(-0.457089\pi\)
0.134401 + 0.990927i \(0.457089\pi\)
\(360\) 0 0
\(361\) −1.59085e6 −0.642484
\(362\) 3.31566e6 1.32984
\(363\) 583465. 0.232406
\(364\) −312191. −0.123500
\(365\) 0 0
\(366\) −4.39837e6 −1.71628
\(367\) 1.50179e6 0.582028 0.291014 0.956719i \(-0.406007\pi\)
0.291014 + 0.956719i \(0.406007\pi\)
\(368\) 287398. 0.110628
\(369\) 1.63354e6 0.624544
\(370\) 0 0
\(371\) −2.71973e6 −1.02587
\(372\) −1.12834e6 −0.422747
\(373\) 292527. 0.108866 0.0544332 0.998517i \(-0.482665\pi\)
0.0544332 + 0.998517i \(0.482665\pi\)
\(374\) 1.01442e6 0.375006
\(375\) 0 0
\(376\) 316686. 0.115521
\(377\) 746289. 0.270429
\(378\) 2.14479e6 0.772067
\(379\) −392340. −0.140302 −0.0701511 0.997536i \(-0.522348\pi\)
−0.0701511 + 0.997536i \(0.522348\pi\)
\(380\) 0 0
\(381\) 8.59886e6 3.03479
\(382\) −659587. −0.231267
\(383\) −5.32936e6 −1.85643 −0.928214 0.372046i \(-0.878656\pi\)
−0.928214 + 0.372046i \(0.878656\pi\)
\(384\) −422810. −0.146325
\(385\) 0 0
\(386\) −3.23202e6 −1.10409
\(387\) −5.46525e6 −1.85495
\(388\) 1.54597e6 0.521342
\(389\) −2.95835e6 −0.991231 −0.495616 0.868542i \(-0.665057\pi\)
−0.495616 + 0.868542i \(0.665057\pi\)
\(390\) 0 0
\(391\) 664344. 0.219761
\(392\) 222535. 0.0731449
\(393\) 4.53127e6 1.47992
\(394\) 592152. 0.192173
\(395\) 0 0
\(396\) −2.90022e6 −0.929380
\(397\) −845388. −0.269203 −0.134601 0.990900i \(-0.542975\pi\)
−0.134601 + 0.990900i \(0.542975\pi\)
\(398\) −1.73271e6 −0.548301
\(399\) −2.80330e6 −0.881532
\(400\) 0 0
\(401\) 532221. 0.165284 0.0826420 0.996579i \(-0.473664\pi\)
0.0826420 + 0.996579i \(0.473664\pi\)
\(402\) −4.14090e6 −1.27800
\(403\) −461827. −0.141650
\(404\) −1.59707e6 −0.486823
\(405\) 0 0
\(406\) 2.03936e6 0.614015
\(407\) −601172. −0.179892
\(408\) −977362. −0.290673
\(409\) −90104.5 −0.0266341 −0.0133171 0.999911i \(-0.504239\pi\)
−0.0133171 + 0.999911i \(0.504239\pi\)
\(410\) 0 0
\(411\) −6.47659e6 −1.89122
\(412\) 3.00174e6 0.871224
\(413\) −2.04775e6 −0.590746
\(414\) −1.89936e6 −0.544636
\(415\) 0 0
\(416\) −173056. −0.0490290
\(417\) −458425. −0.129100
\(418\) 1.61287e6 0.451501
\(419\) 4.26897e6 1.18792 0.593962 0.804493i \(-0.297563\pi\)
0.593962 + 0.804493i \(0.297563\pi\)
\(420\) 0 0
\(421\) 241157. 0.0663124 0.0331562 0.999450i \(-0.489444\pi\)
0.0331562 + 0.999450i \(0.489444\pi\)
\(422\) −3.16612e6 −0.865458
\(423\) −2.09292e6 −0.568724
\(424\) −1.50762e6 −0.407266
\(425\) 0 0
\(426\) −4.55962e6 −1.21732
\(427\) −4.91949e6 −1.30572
\(428\) 2.35271e6 0.620811
\(429\) −1.86905e6 −0.490317
\(430\) 0 0
\(431\) −4.37702e6 −1.13497 −0.567487 0.823383i \(-0.692084\pi\)
−0.567487 + 0.823383i \(0.692084\pi\)
\(432\) 1.18892e6 0.306508
\(433\) −1.11821e6 −0.286618 −0.143309 0.989678i \(-0.545774\pi\)
−0.143309 + 0.989678i \(0.545774\pi\)
\(434\) −1.26202e6 −0.321619
\(435\) 0 0
\(436\) −1.28178e6 −0.322922
\(437\) 1.05627e6 0.264589
\(438\) −3.98954e6 −0.993658
\(439\) 3.49497e6 0.865530 0.432765 0.901507i \(-0.357538\pi\)
0.432765 + 0.901507i \(0.357538\pi\)
\(440\) 0 0
\(441\) −1.47069e6 −0.360102
\(442\) −400034. −0.0973959
\(443\) −396387. −0.0959645 −0.0479822 0.998848i \(-0.515279\pi\)
−0.0479822 + 0.998848i \(0.515279\pi\)
\(444\) 579210. 0.139437
\(445\) 0 0
\(446\) −605359. −0.144104
\(447\) −6.58210e6 −1.55810
\(448\) −472904. −0.111321
\(449\) −4.43281e6 −1.03768 −0.518839 0.854872i \(-0.673636\pi\)
−0.518839 + 0.854872i \(0.673636\pi\)
\(450\) 0 0
\(451\) −1.65513e6 −0.383170
\(452\) 524149. 0.120673
\(453\) −1.38528e7 −3.17171
\(454\) −5.34038e6 −1.21600
\(455\) 0 0
\(456\) −1.55395e6 −0.349965
\(457\) 8.67899e6 1.94392 0.971960 0.235145i \(-0.0755566\pi\)
0.971960 + 0.235145i \(0.0755566\pi\)
\(458\) −159400. −0.0355078
\(459\) 2.74828e6 0.608877
\(460\) 0 0
\(461\) −4.02089e6 −0.881191 −0.440596 0.897706i \(-0.645233\pi\)
−0.440596 + 0.897706i \(0.645233\pi\)
\(462\) −5.10748e6 −1.11327
\(463\) −4.87552e6 −1.05698 −0.528492 0.848938i \(-0.677243\pi\)
−0.528492 + 0.848938i \(0.677243\pi\)
\(464\) 1.13047e6 0.243762
\(465\) 0 0
\(466\) −3.61177e6 −0.770469
\(467\) 2.69785e6 0.572434 0.286217 0.958165i \(-0.407602\pi\)
0.286217 + 0.958165i \(0.407602\pi\)
\(468\) 1.14369e6 0.241377
\(469\) −4.63151e6 −0.972278
\(470\) 0 0
\(471\) −7.55313e6 −1.56883
\(472\) −1.13512e6 −0.234524
\(473\) 5.53751e6 1.13805
\(474\) −6.24151e6 −1.27598
\(475\) 0 0
\(476\) −1.09316e6 −0.221139
\(477\) 9.96361e6 2.00503
\(478\) −2.45810e6 −0.492073
\(479\) −3.68308e6 −0.733452 −0.366726 0.930329i \(-0.619521\pi\)
−0.366726 + 0.930329i \(0.619521\pi\)
\(480\) 0 0
\(481\) 237070. 0.0467213
\(482\) 419738. 0.0822926
\(483\) −3.34489e6 −0.652400
\(484\) 361751. 0.0701934
\(485\) 0 0
\(486\) 2.75218e6 0.528550
\(487\) 7.41317e6 1.41639 0.708193 0.706019i \(-0.249511\pi\)
0.708193 + 0.706019i \(0.249511\pi\)
\(488\) −2.72701e6 −0.518367
\(489\) 1.20903e7 2.28646
\(490\) 0 0
\(491\) −590049. −0.110455 −0.0552274 0.998474i \(-0.517588\pi\)
−0.0552274 + 0.998474i \(0.517588\pi\)
\(492\) 1.59467e6 0.297001
\(493\) 2.61319e6 0.484232
\(494\) −636031. −0.117263
\(495\) 0 0
\(496\) −699573. −0.127682
\(497\) −5.09984e6 −0.926116
\(498\) 4.16376e6 0.752336
\(499\) 6.92103e6 1.24428 0.622142 0.782905i \(-0.286263\pi\)
0.622142 + 0.782905i \(0.286263\pi\)
\(500\) 0 0
\(501\) 934663. 0.166365
\(502\) −6.09723e6 −1.07987
\(503\) −2.97021e6 −0.523441 −0.261721 0.965144i \(-0.584290\pi\)
−0.261721 + 0.965144i \(0.584290\pi\)
\(504\) 3.12534e6 0.548050
\(505\) 0 0
\(506\) 1.92447e6 0.334145
\(507\) 737053. 0.127344
\(508\) 5.33133e6 0.916592
\(509\) −1.37177e6 −0.234687 −0.117343 0.993091i \(-0.537438\pi\)
−0.117343 + 0.993091i \(0.537438\pi\)
\(510\) 0 0
\(511\) −4.46221e6 −0.755958
\(512\) −262144. −0.0441942
\(513\) 4.36961e6 0.733077
\(514\) 5.07059e6 0.846547
\(515\) 0 0
\(516\) −5.33522e6 −0.882120
\(517\) 2.12059e6 0.348924
\(518\) 647834. 0.106081
\(519\) 1.17608e7 1.91654
\(520\) 0 0
\(521\) −3.40898e6 −0.550213 −0.275106 0.961414i \(-0.588713\pi\)
−0.275106 + 0.961414i \(0.588713\pi\)
\(522\) −7.47109e6 −1.20007
\(523\) −4.90440e6 −0.784028 −0.392014 0.919959i \(-0.628222\pi\)
−0.392014 + 0.919959i \(0.628222\pi\)
\(524\) 2.80940e6 0.446978
\(525\) 0 0
\(526\) 3.70457e6 0.583813
\(527\) −1.61712e6 −0.253639
\(528\) −2.83122e6 −0.441965
\(529\) −5.17601e6 −0.804184
\(530\) 0 0
\(531\) 7.50181e6 1.15460
\(532\) −1.73806e6 −0.266248
\(533\) 652697. 0.0995162
\(534\) 5.19281e6 0.788042
\(535\) 0 0
\(536\) −2.56738e6 −0.385991
\(537\) 2.84782e6 0.426163
\(538\) 604889. 0.0900991
\(539\) 1.49014e6 0.220930
\(540\) 0 0
\(541\) −5.52866e6 −0.812132 −0.406066 0.913844i \(-0.633100\pi\)
−0.406066 + 0.913844i \(0.633100\pi\)
\(542\) 3.90943e6 0.571630
\(543\) −2.13912e7 −3.11341
\(544\) −605968. −0.0877915
\(545\) 0 0
\(546\) 2.01412e6 0.289137
\(547\) −9.53313e6 −1.36228 −0.681141 0.732152i \(-0.738516\pi\)
−0.681141 + 0.732152i \(0.738516\pi\)
\(548\) −4.01551e6 −0.571201
\(549\) 1.80223e7 2.55199
\(550\) 0 0
\(551\) 4.15482e6 0.583006
\(552\) −1.85417e6 −0.259001
\(553\) −6.98100e6 −0.970744
\(554\) −6024.17 −0.000833917 0
\(555\) 0 0
\(556\) −284225. −0.0389920
\(557\) 7.40068e6 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(558\) 4.62334e6 0.628595
\(559\) −2.18370e6 −0.295572
\(560\) 0 0
\(561\) −6.54460e6 −0.877962
\(562\) −5.76686e6 −0.770191
\(563\) 4.46273e6 0.593375 0.296688 0.954975i \(-0.404118\pi\)
0.296688 + 0.954975i \(0.404118\pi\)
\(564\) −2.04312e6 −0.270456
\(565\) 0 0
\(566\) 1.01992e7 1.33821
\(567\) −1.97074e6 −0.257438
\(568\) −2.82698e6 −0.367665
\(569\) 886521. 0.114791 0.0573956 0.998352i \(-0.481720\pi\)
0.0573956 + 0.998352i \(0.481720\pi\)
\(570\) 0 0
\(571\) 1.14109e7 1.46464 0.732320 0.680961i \(-0.238438\pi\)
0.732320 + 0.680961i \(0.238438\pi\)
\(572\) −1.15882e6 −0.148090
\(573\) 4.25537e6 0.541441
\(574\) 1.78360e6 0.225953
\(575\) 0 0
\(576\) 1.73246e6 0.217574
\(577\) 1.12502e7 1.40676 0.703381 0.710813i \(-0.251673\pi\)
0.703381 + 0.710813i \(0.251673\pi\)
\(578\) 4.27868e6 0.532709
\(579\) 2.08516e7 2.58489
\(580\) 0 0
\(581\) 4.65707e6 0.572365
\(582\) −9.97396e6 −1.22056
\(583\) −1.00953e7 −1.23013
\(584\) −2.47353e6 −0.300113
\(585\) 0 0
\(586\) 6.82703e6 0.821274
\(587\) −1.14799e7 −1.37513 −0.687564 0.726124i \(-0.741320\pi\)
−0.687564 + 0.726124i \(0.741320\pi\)
\(588\) −1.43570e6 −0.171246
\(589\) −2.57113e6 −0.305377
\(590\) 0 0
\(591\) −3.82031e6 −0.449915
\(592\) 359113. 0.0421140
\(593\) −1.53809e7 −1.79616 −0.898081 0.439831i \(-0.855039\pi\)
−0.898081 + 0.439831i \(0.855039\pi\)
\(594\) 7.96121e6 0.925791
\(595\) 0 0
\(596\) −4.08093e6 −0.470591
\(597\) 1.11787e7 1.28368
\(598\) −758910. −0.0867835
\(599\) −1.38707e7 −1.57954 −0.789772 0.613400i \(-0.789801\pi\)
−0.789772 + 0.613400i \(0.789801\pi\)
\(600\) 0 0
\(601\) 5.47553e6 0.618358 0.309179 0.951004i \(-0.399946\pi\)
0.309179 + 0.951004i \(0.399946\pi\)
\(602\) −5.96733e6 −0.671102
\(603\) 1.69673e7 1.90029
\(604\) −8.58882e6 −0.957947
\(605\) 0 0
\(606\) 1.03036e7 1.13975
\(607\) 9.77961e6 1.07733 0.538666 0.842519i \(-0.318928\pi\)
0.538666 + 0.842519i \(0.318928\pi\)
\(608\) −963455. −0.105699
\(609\) −1.31571e7 −1.43753
\(610\) 0 0
\(611\) −836250. −0.0906219
\(612\) 4.00473e6 0.432210
\(613\) −4.09960e6 −0.440647 −0.220323 0.975427i \(-0.570711\pi\)
−0.220323 + 0.975427i \(0.570711\pi\)
\(614\) −1.11401e7 −1.19253
\(615\) 0 0
\(616\) −3.16666e6 −0.336240
\(617\) −6.05512e6 −0.640339 −0.320169 0.947360i \(-0.603740\pi\)
−0.320169 + 0.947360i \(0.603740\pi\)
\(618\) −1.93659e7 −2.03970
\(619\) 1.35933e7 1.42593 0.712963 0.701202i \(-0.247353\pi\)
0.712963 + 0.701202i \(0.247353\pi\)
\(620\) 0 0
\(621\) 5.21380e6 0.542532
\(622\) 1.23369e7 1.27859
\(623\) 5.80805e6 0.599529
\(624\) 1.11648e6 0.114786
\(625\) 0 0
\(626\) −880744. −0.0898284
\(627\) −1.04055e7 −1.05705
\(628\) −4.68297e6 −0.473830
\(629\) 830119. 0.0836592
\(630\) 0 0
\(631\) 1.28129e7 1.28107 0.640536 0.767928i \(-0.278712\pi\)
0.640536 + 0.767928i \(0.278712\pi\)
\(632\) −3.86976e6 −0.385382
\(633\) 2.04264e7 2.02620
\(634\) −2.37149e6 −0.234314
\(635\) 0 0
\(636\) 9.72654e6 0.953489
\(637\) −587632. −0.0573796
\(638\) 7.56987e6 0.736269
\(639\) 1.86830e7 1.81007
\(640\) 0 0
\(641\) −9.80825e6 −0.942858 −0.471429 0.881904i \(-0.656262\pi\)
−0.471429 + 0.881904i \(0.656262\pi\)
\(642\) −1.51787e7 −1.45344
\(643\) −3.19540e6 −0.304788 −0.152394 0.988320i \(-0.548698\pi\)
−0.152394 + 0.988320i \(0.548698\pi\)
\(644\) −2.07385e6 −0.197043
\(645\) 0 0
\(646\) −2.22711e6 −0.209971
\(647\) −7.34835e6 −0.690127 −0.345063 0.938579i \(-0.612143\pi\)
−0.345063 + 0.938579i \(0.612143\pi\)
\(648\) −1.09244e6 −0.102202
\(649\) −7.60100e6 −0.708368
\(650\) 0 0
\(651\) 8.14201e6 0.752972
\(652\) 7.49601e6 0.690575
\(653\) 1.82689e6 0.167660 0.0838302 0.996480i \(-0.473285\pi\)
0.0838302 + 0.996480i \(0.473285\pi\)
\(654\) 8.26949e6 0.756022
\(655\) 0 0
\(656\) 988701. 0.0897027
\(657\) 1.63471e7 1.47750
\(658\) −2.28519e6 −0.205758
\(659\) −1.71962e7 −1.54248 −0.771240 0.636545i \(-0.780363\pi\)
−0.771240 + 0.636545i \(0.780363\pi\)
\(660\) 0 0
\(661\) 6.74273e6 0.600250 0.300125 0.953900i \(-0.402972\pi\)
0.300125 + 0.953900i \(0.402972\pi\)
\(662\) 795097. 0.0705140
\(663\) 2.58085e6 0.228023
\(664\) 2.58155e6 0.227227
\(665\) 0 0
\(666\) −2.37331e6 −0.207333
\(667\) 4.95751e6 0.431469
\(668\) 579495. 0.0502468
\(669\) 3.90551e6 0.337375
\(670\) 0 0
\(671\) −1.82606e7 −1.56570
\(672\) 3.05097e6 0.260625
\(673\) 4.64492e6 0.395313 0.197656 0.980271i \(-0.436667\pi\)
0.197656 + 0.980271i \(0.436667\pi\)
\(674\) −8.22215e6 −0.697165
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) −2.10307e7 −1.76353 −0.881763 0.471692i \(-0.843643\pi\)
−0.881763 + 0.471692i \(0.843643\pi\)
\(678\) −3.38159e6 −0.282518
\(679\) −1.11557e7 −0.928584
\(680\) 0 0
\(681\) 3.44538e7 2.84689
\(682\) −4.68447e6 −0.385656
\(683\) −1.64815e7 −1.35190 −0.675951 0.736946i \(-0.736267\pi\)
−0.675951 + 0.736946i \(0.736267\pi\)
\(684\) 6.36730e6 0.520373
\(685\) 0 0
\(686\) −9.36762e6 −0.760009
\(687\) 1.02838e6 0.0831306
\(688\) −3.30786e6 −0.266425
\(689\) 3.98107e6 0.319486
\(690\) 0 0
\(691\) −3.48368e6 −0.277551 −0.138776 0.990324i \(-0.544317\pi\)
−0.138776 + 0.990324i \(0.544317\pi\)
\(692\) 7.29173e6 0.578849
\(693\) 2.09278e7 1.65536
\(694\) −7.69141e6 −0.606188
\(695\) 0 0
\(696\) −7.29333e6 −0.570693
\(697\) 2.28547e6 0.178194
\(698\) 1.42275e7 1.10532
\(699\) 2.33016e7 1.80382
\(700\) 0 0
\(701\) 2.31640e7 1.78041 0.890203 0.455565i \(-0.150563\pi\)
0.890203 + 0.455565i \(0.150563\pi\)
\(702\) −3.13948e6 −0.240445
\(703\) 1.31984e6 0.100724
\(704\) −1.75537e6 −0.133486
\(705\) 0 0
\(706\) −3.00502e6 −0.226901
\(707\) 1.15244e7 0.867100
\(708\) 7.32332e6 0.549067
\(709\) −963592. −0.0719909 −0.0359954 0.999352i \(-0.511460\pi\)
−0.0359954 + 0.999352i \(0.511460\pi\)
\(710\) 0 0
\(711\) 2.55745e7 1.89729
\(712\) 3.21957e6 0.238011
\(713\) −3.06786e6 −0.226002
\(714\) 7.05259e6 0.517730
\(715\) 0 0
\(716\) 1.76566e6 0.128713
\(717\) 1.58586e7 1.15204
\(718\) −2.62560e6 −0.190072
\(719\) 6.56134e6 0.473337 0.236669 0.971590i \(-0.423944\pi\)
0.236669 + 0.971590i \(0.423944\pi\)
\(720\) 0 0
\(721\) −2.16604e7 −1.55177
\(722\) 6.36342e6 0.454305
\(723\) −2.70797e6 −0.192663
\(724\) −1.32627e7 −0.940338
\(725\) 0 0
\(726\) −2.33386e6 −0.164336
\(727\) 2.35263e7 1.65089 0.825443 0.564485i \(-0.190925\pi\)
0.825443 + 0.564485i \(0.190925\pi\)
\(728\) 1.24876e6 0.0873276
\(729\) −2.19037e7 −1.52651
\(730\) 0 0
\(731\) −7.64639e6 −0.529253
\(732\) 1.75935e7 1.21360
\(733\) 1.73760e7 1.19451 0.597254 0.802052i \(-0.296258\pi\)
0.597254 + 0.802052i \(0.296258\pi\)
\(734\) −6.00716e6 −0.411556
\(735\) 0 0
\(736\) −1.14959e6 −0.0782256
\(737\) −1.71916e7 −1.16587
\(738\) −6.53414e6 −0.441619
\(739\) 2.38287e7 1.60505 0.802527 0.596616i \(-0.203488\pi\)
0.802527 + 0.596616i \(0.203488\pi\)
\(740\) 0 0
\(741\) 4.10340e6 0.274535
\(742\) 1.08789e7 0.725398
\(743\) −4.87711e6 −0.324109 −0.162054 0.986782i \(-0.551812\pi\)
−0.162054 + 0.986782i \(0.551812\pi\)
\(744\) 4.51334e6 0.298927
\(745\) 0 0
\(746\) −1.17011e6 −0.0769801
\(747\) −1.70610e7 −1.11867
\(748\) −4.05768e6 −0.265170
\(749\) −1.69770e7 −1.10575
\(750\) 0 0
\(751\) −9.47519e6 −0.613039 −0.306519 0.951864i \(-0.599164\pi\)
−0.306519 + 0.951864i \(0.599164\pi\)
\(752\) −1.26675e6 −0.0816854
\(753\) 3.93367e7 2.52820
\(754\) −2.98516e6 −0.191222
\(755\) 0 0
\(756\) −8.57915e6 −0.545934
\(757\) 4.56663e6 0.289638 0.144819 0.989458i \(-0.453740\pi\)
0.144819 + 0.989458i \(0.453740\pi\)
\(758\) 1.56936e6 0.0992086
\(759\) −1.24159e7 −0.782298
\(760\) 0 0
\(761\) −2.29761e7 −1.43818 −0.719092 0.694915i \(-0.755442\pi\)
−0.719092 + 0.694915i \(0.755442\pi\)
\(762\) −3.43954e7 −2.14592
\(763\) 9.24926e6 0.575169
\(764\) 2.63835e6 0.163530
\(765\) 0 0
\(766\) 2.13174e7 1.31269
\(767\) 2.99743e6 0.183976
\(768\) 1.69124e6 0.103467
\(769\) 2.16413e7 1.31968 0.659838 0.751408i \(-0.270625\pi\)
0.659838 + 0.751408i \(0.270625\pi\)
\(770\) 0 0
\(771\) −3.27133e7 −1.98193
\(772\) 1.29281e7 0.780711
\(773\) 2.13234e7 1.28354 0.641768 0.766899i \(-0.278201\pi\)
0.641768 + 0.766899i \(0.278201\pi\)
\(774\) 2.18610e7 1.31165
\(775\) 0 0
\(776\) −6.18390e6 −0.368645
\(777\) −4.17955e6 −0.248357
\(778\) 1.18334e7 0.700906
\(779\) 3.63377e6 0.214542
\(780\) 0 0
\(781\) −1.89300e7 −1.11051
\(782\) −2.65738e6 −0.155395
\(783\) 2.05084e7 1.19544
\(784\) −890141. −0.0517212
\(785\) 0 0
\(786\) −1.81251e7 −1.04646
\(787\) −1.46582e7 −0.843611 −0.421806 0.906686i \(-0.638604\pi\)
−0.421806 + 0.906686i \(0.638604\pi\)
\(788\) −2.36861e6 −0.135887
\(789\) −2.39003e7 −1.36682
\(790\) 0 0
\(791\) −3.78223e6 −0.214935
\(792\) 1.16009e7 0.657171
\(793\) 7.20101e6 0.406640
\(794\) 3.38155e6 0.190355
\(795\) 0 0
\(796\) 6.93086e6 0.387708
\(797\) −2.77885e7 −1.54960 −0.774800 0.632207i \(-0.782149\pi\)
−0.774800 + 0.632207i \(0.782149\pi\)
\(798\) 1.12132e7 0.623337
\(799\) −2.92819e6 −0.162268
\(800\) 0 0
\(801\) −2.12775e7 −1.17176
\(802\) −2.12888e6 −0.116873
\(803\) −1.65632e7 −0.906475
\(804\) 1.65636e7 0.903680
\(805\) 0 0
\(806\) 1.84731e6 0.100162
\(807\) −3.90249e6 −0.210939
\(808\) 6.38829e6 0.344236
\(809\) −1.60118e7 −0.860140 −0.430070 0.902796i \(-0.641511\pi\)
−0.430070 + 0.902796i \(0.641511\pi\)
\(810\) 0 0
\(811\) 2.48699e7 1.32777 0.663883 0.747836i \(-0.268907\pi\)
0.663883 + 0.747836i \(0.268907\pi\)
\(812\) −8.15744e6 −0.434174
\(813\) −2.52220e7 −1.33830
\(814\) 2.40469e6 0.127203
\(815\) 0 0
\(816\) 3.90945e6 0.205537
\(817\) −1.21573e7 −0.637211
\(818\) 360418. 0.0188332
\(819\) −8.25284e6 −0.429926
\(820\) 0 0
\(821\) −1.36742e7 −0.708020 −0.354010 0.935242i \(-0.615182\pi\)
−0.354010 + 0.935242i \(0.615182\pi\)
\(822\) 2.59063e7 1.33729
\(823\) −1.18695e7 −0.610846 −0.305423 0.952217i \(-0.598798\pi\)
−0.305423 + 0.952217i \(0.598798\pi\)
\(824\) −1.20070e7 −0.616049
\(825\) 0 0
\(826\) 8.19098e6 0.417721
\(827\) −1.66144e7 −0.844738 −0.422369 0.906424i \(-0.638801\pi\)
−0.422369 + 0.906424i \(0.638801\pi\)
\(828\) 7.59743e6 0.385116
\(829\) 1.39935e7 0.707194 0.353597 0.935398i \(-0.384958\pi\)
0.353597 + 0.935398i \(0.384958\pi\)
\(830\) 0 0
\(831\) 38865.3 0.00195236
\(832\) 692224. 0.0346688
\(833\) −2.05764e6 −0.102744
\(834\) 1.83370e6 0.0912878
\(835\) 0 0
\(836\) −6.45148e6 −0.319259
\(837\) −1.26912e7 −0.626167
\(838\) −1.70759e7 −0.839989
\(839\) 1.58469e6 0.0777213 0.0388606 0.999245i \(-0.487627\pi\)
0.0388606 + 0.999245i \(0.487627\pi\)
\(840\) 0 0
\(841\) −1.01086e6 −0.0492833
\(842\) −964629. −0.0468900
\(843\) 3.72053e7 1.80317
\(844\) 1.26645e7 0.611971
\(845\) 0 0
\(846\) 8.37168e6 0.402149
\(847\) −2.61037e6 −0.125024
\(848\) 6.03050e6 0.287981
\(849\) −6.58008e7 −3.13301
\(850\) 0 0
\(851\) 1.57483e6 0.0745436
\(852\) 1.82385e7 0.860775
\(853\) −4.22437e7 −1.98788 −0.993939 0.109933i \(-0.964936\pi\)
−0.993939 + 0.109933i \(0.964936\pi\)
\(854\) 1.96779e7 0.923284
\(855\) 0 0
\(856\) −9.41084e6 −0.438979
\(857\) 3.17698e7 1.47762 0.738809 0.673915i \(-0.235388\pi\)
0.738809 + 0.673915i \(0.235388\pi\)
\(858\) 7.47618e6 0.346706
\(859\) −2.92427e7 −1.35218 −0.676091 0.736819i \(-0.736327\pi\)
−0.676091 + 0.736819i \(0.736327\pi\)
\(860\) 0 0
\(861\) −1.15070e7 −0.529000
\(862\) 1.75081e7 0.802547
\(863\) −407755. −0.0186368 −0.00931842 0.999957i \(-0.502966\pi\)
−0.00931842 + 0.999957i \(0.502966\pi\)
\(864\) −4.75566e6 −0.216734
\(865\) 0 0
\(866\) 4.47284e6 0.202670
\(867\) −2.76042e7 −1.24718
\(868\) 5.04808e6 0.227419
\(869\) −2.59127e7 −1.16403
\(870\) 0 0
\(871\) 6.77948e6 0.302797
\(872\) 5.12712e6 0.228340
\(873\) 4.08682e7 1.81489
\(874\) −4.22508e6 −0.187093
\(875\) 0 0
\(876\) 1.59581e7 0.702623
\(877\) −1.49933e7 −0.658259 −0.329130 0.944285i \(-0.606755\pi\)
−0.329130 + 0.944285i \(0.606755\pi\)
\(878\) −1.39799e7 −0.612022
\(879\) −4.40451e7 −1.92276
\(880\) 0 0
\(881\) −3.69735e7 −1.60491 −0.802456 0.596711i \(-0.796474\pi\)
−0.802456 + 0.596711i \(0.796474\pi\)
\(882\) 5.88278e6 0.254631
\(883\) 5.80647e6 0.250617 0.125308 0.992118i \(-0.460008\pi\)
0.125308 + 0.992118i \(0.460008\pi\)
\(884\) 1.60013e6 0.0688693
\(885\) 0 0
\(886\) 1.58555e6 0.0678571
\(887\) −3.12893e7 −1.33532 −0.667662 0.744464i \(-0.732705\pi\)
−0.667662 + 0.744464i \(0.732705\pi\)
\(888\) −2.31684e6 −0.0985970
\(889\) −3.84706e7 −1.63258
\(890\) 0 0
\(891\) −7.31517e6 −0.308695
\(892\) 2.42144e6 0.101897
\(893\) −4.65566e6 −0.195367
\(894\) 2.63284e7 1.10174
\(895\) 0 0
\(896\) 1.89162e6 0.0787160
\(897\) 4.89616e6 0.203177
\(898\) 1.77312e7 0.733750
\(899\) −1.20674e7 −0.497983
\(900\) 0 0
\(901\) 1.39400e7 0.572072
\(902\) 6.62053e6 0.270942
\(903\) 3.84986e7 1.57118
\(904\) −2.09660e6 −0.0853285
\(905\) 0 0
\(906\) 5.54114e7 2.24274
\(907\) −1.46619e7 −0.591795 −0.295897 0.955220i \(-0.595619\pi\)
−0.295897 + 0.955220i \(0.595619\pi\)
\(908\) 2.13615e7 0.859840
\(909\) −4.22190e7 −1.69472
\(910\) 0 0
\(911\) 2.48498e7 0.992036 0.496018 0.868312i \(-0.334795\pi\)
0.496018 + 0.868312i \(0.334795\pi\)
\(912\) 6.21580e6 0.247463
\(913\) 1.72865e7 0.686326
\(914\) −3.47159e7 −1.37456
\(915\) 0 0
\(916\) 637598. 0.0251078
\(917\) −2.02725e7 −0.796130
\(918\) −1.09931e7 −0.430541
\(919\) 4.44405e6 0.173576 0.0867881 0.996227i \(-0.472340\pi\)
0.0867881 + 0.996227i \(0.472340\pi\)
\(920\) 0 0
\(921\) 7.18714e7 2.79195
\(922\) 1.60836e7 0.623096
\(923\) 7.46500e6 0.288420
\(924\) 2.04299e7 0.787202
\(925\) 0 0
\(926\) 1.95021e7 0.747401
\(927\) 7.93518e7 3.03289
\(928\) −4.52190e6 −0.172366
\(929\) 4.03619e6 0.153438 0.0767188 0.997053i \(-0.475556\pi\)
0.0767188 + 0.997053i \(0.475556\pi\)
\(930\) 0 0
\(931\) −3.27153e6 −0.123702
\(932\) 1.44471e7 0.544804
\(933\) −7.95925e7 −2.99342
\(934\) −1.07914e7 −0.404772
\(935\) 0 0
\(936\) −4.57478e6 −0.170679
\(937\) 2.90322e7 1.08027 0.540133 0.841579i \(-0.318374\pi\)
0.540133 + 0.841579i \(0.318374\pi\)
\(938\) 1.85260e7 0.687505
\(939\) 5.68218e6 0.210306
\(940\) 0 0
\(941\) 2.11813e7 0.779791 0.389896 0.920859i \(-0.372511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(942\) 3.02125e7 1.10933
\(943\) 4.33579e6 0.158778
\(944\) 4.54049e6 0.165834
\(945\) 0 0
\(946\) −2.21500e7 −0.804723
\(947\) 2.15859e7 0.782161 0.391080 0.920357i \(-0.372101\pi\)
0.391080 + 0.920357i \(0.372101\pi\)
\(948\) 2.49660e7 0.902254
\(949\) 6.53166e6 0.235428
\(950\) 0 0
\(951\) 1.52998e7 0.548575
\(952\) 4.37263e6 0.156369
\(953\) 2.45061e7 0.874062 0.437031 0.899446i \(-0.356030\pi\)
0.437031 + 0.899446i \(0.356030\pi\)
\(954\) −3.98544e7 −1.41777
\(955\) 0 0
\(956\) 9.83239e6 0.347948
\(957\) −4.88375e7 −1.72375
\(958\) 1.47323e7 0.518629
\(959\) 2.89757e7 1.01739
\(960\) 0 0
\(961\) −2.11615e7 −0.739158
\(962\) −948282. −0.0330369
\(963\) 6.21945e7 2.16116
\(964\) −1.67895e6 −0.0581897
\(965\) 0 0
\(966\) 1.33796e7 0.461317
\(967\) 2.65790e7 0.914056 0.457028 0.889452i \(-0.348914\pi\)
0.457028 + 0.889452i \(0.348914\pi\)
\(968\) −1.44700e6 −0.0496342
\(969\) 1.43684e7 0.491584
\(970\) 0 0
\(971\) 1.55283e7 0.528537 0.264268 0.964449i \(-0.414869\pi\)
0.264268 + 0.964449i \(0.414869\pi\)
\(972\) −1.10087e7 −0.373742
\(973\) 2.05095e6 0.0694502
\(974\) −2.96527e7 −1.00154
\(975\) 0 0
\(976\) 1.09080e7 0.366541
\(977\) 2.62698e7 0.880482 0.440241 0.897880i \(-0.354893\pi\)
0.440241 + 0.897880i \(0.354893\pi\)
\(978\) −4.83610e7 −1.61677
\(979\) 2.15588e7 0.718900
\(980\) 0 0
\(981\) −3.38842e7 −1.12415
\(982\) 2.36020e6 0.0781033
\(983\) −4.94273e7 −1.63148 −0.815742 0.578416i \(-0.803671\pi\)
−0.815742 + 0.578416i \(0.803671\pi\)
\(984\) −6.37868e6 −0.210011
\(985\) 0 0
\(986\) −1.04527e7 −0.342403
\(987\) 1.47431e7 0.481720
\(988\) 2.54412e6 0.0829175
\(989\) −1.45061e7 −0.471584
\(990\) 0 0
\(991\) −2.40964e7 −0.779413 −0.389706 0.920939i \(-0.627424\pi\)
−0.389706 + 0.920939i \(0.627424\pi\)
\(992\) 2.79829e6 0.0902846
\(993\) −5.12962e6 −0.165087
\(994\) 2.03994e7 0.654863
\(995\) 0 0
\(996\) −1.66550e7 −0.531982
\(997\) −2.47484e7 −0.788513 −0.394256 0.919000i \(-0.628998\pi\)
−0.394256 + 0.919000i \(0.628998\pi\)
\(998\) −2.76841e7 −0.879841
\(999\) 6.51481e6 0.206532
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.o.1.5 5
5.2 odd 4 650.6.b.m.599.1 10
5.3 odd 4 650.6.b.m.599.10 10
5.4 even 2 650.6.a.p.1.1 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.6.a.o.1.5 5 1.1 even 1 trivial
650.6.a.p.1.1 yes 5 5.4 even 2
650.6.b.m.599.1 10 5.2 odd 4
650.6.b.m.599.10 10 5.3 odd 4