[N,k,chi] = [650,6,Mod(1,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − x 4 − 601 x 3 + 1405 x 2 + 36840 x − 60300 x^{5} - x^{4} - 601x^{3} + 1405x^{2} + 36840x - 60300 x 5 − x 4 − 6 0 1 x 3 + 1 4 0 5 x 2 + 3 6 8 4 0 x − 6 0 3 0 0
x^5 - x^4 - 601*x^3 + 1405*x^2 + 36840*x - 60300
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 4 − ν 3 − 571 ν 2 + 1225 ν + 22290 ) / 120 ( \nu^{4} - \nu^{3} - 571\nu^{2} + 1225\nu + 22290 ) / 120 ( ν 4 − ν 3 − 5 7 1 ν 2 + 1 2 2 5 ν + 2 2 2 9 0 ) / 1 2 0
(v^4 - v^3 - 571*v^2 + 1225*v + 22290) / 120
β 3 \beta_{3} β 3 = = =
ν 2 + 2 ν − 241 \nu^{2} + 2\nu - 241 ν 2 + 2 ν − 2 4 1
v^2 + 2*v - 241
β 4 \beta_{4} β 4 = = =
( ν 4 + 14 ν 3 − 601 ν 2 − 5990 ν + 38160 ) / 120 ( \nu^{4} + 14\nu^{3} - 601\nu^{2} - 5990\nu + 38160 ) / 120 ( ν 4 + 1 4 ν 3 − 6 0 1 ν 2 − 5 9 9 0 ν + 3 8 1 6 0 ) / 1 2 0
(v^4 + 14*v^3 - 601*v^2 - 5990*v + 38160) / 120
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 − 2 β 1 + 241 \beta_{3} - 2\beta _1 + 241 β 3 − 2 β 1 + 2 4 1
b3 - 2*b1 + 241
ν 3 \nu^{3} ν 3 = = =
8 β 4 + 2 β 3 − 8 β 2 + 477 β 1 − 576 8\beta_{4} + 2\beta_{3} - 8\beta_{2} + 477\beta _1 - 576 8 β 4 + 2 β 3 − 8 β 2 + 4 7 7 β 1 − 5 7 6
8*b4 + 2*b3 - 8*b2 + 477*b1 - 576
ν 4 \nu^{4} ν 4 = = =
8 β 4 + 573 β 3 + 112 β 2 − 1890 β 1 + 114745 8\beta_{4} + 573\beta_{3} + 112\beta_{2} - 1890\beta _1 + 114745 8 β 4 + 5 7 3 β 3 + 1 1 2 β 2 − 1 8 9 0 β 1 + 1 1 4 7 4 5
8*b4 + 573*b3 + 112*b2 - 1890*b1 + 114745
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
− 1 -1 − 1
13 13 1 3
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 5 + 9 T 3 4 − 569 T 3 3 − 2145 T 3 2 + 35296 T 3 + 14208 T_{3}^{5} + 9T_{3}^{4} - 569T_{3}^{3} - 2145T_{3}^{2} + 35296T_{3} + 14208 T 3 5 + 9 T 3 4 − 5 6 9 T 3 3 − 2 1 4 5 T 3 2 + 3 5 2 9 6 T 3 + 1 4 2 0 8
T3^5 + 9*T3^4 - 569*T3^3 - 2145*T3^2 + 35296*T3 + 14208
acting on S 6 n e w ( Γ 0 ( 650 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(650)) S 6 n e w ( Γ 0 ( 6 5 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 4 ) 5 (T - 4)^{5} ( T − 4 ) 5
(T - 4)^5
3 3 3
T 5 + 9 T 4 + ⋯ + 14208 T^{5} + 9 T^{4} + \cdots + 14208 T 5 + 9 T 4 + ⋯ + 1 4 2 0 8
T^5 + 9*T^4 - 569*T^3 - 2145*T^2 + 35296*T + 14208
5 5 5
T 5 T^{5} T 5
T^5
7 7 7
T 5 + ⋯ + 14217728944 T^{5} + \cdots + 14217728944 T 5 + ⋯ + 1 4 2 1 7 7 2 8 9 4 4
T^5 - 42*T^4 - 37493*T^3 - 461912*T^2 + 316914732*T + 14217728944
11 11 1 1
T 5 + ⋯ − 310309345876 T^{5} + \cdots - 310309345876 T 5 + ⋯ − 3 1 0 3 0 9 3 4 5 8 7 6
T^5 + 213*T^4 - 519791*T^3 - 124322887*T^2 + 24495434940*T - 310309345876
13 13 1 3
( T + 169 ) 5 (T + 169)^{5} ( T + 1 6 9 ) 5
(T + 169)^5
17 17 1 7
T 5 + ⋯ + 59701212884156 T^{5} + \cdots + 59701212884156 T 5 + ⋯ + 5 9 7 0 1 2 1 2 8 8 4 1 5 6
T^5 + 601*T^4 - 2219653*T^3 - 548023313*T^2 + 555791815936*T + 59701212884156
19 19 1 9
T 5 + ⋯ + 57 ⋯ 32 T^{5} + \cdots + 57\!\cdots\!32 T 5 + ⋯ + 5 7 ⋯ 3 2
T^5 + 567*T^4 - 7263860*T^3 - 7410838788*T^2 + 6036235891248*T + 5749505909730432
23 23 2 3
T 5 + ⋯ + 20 ⋯ 00 T^{5} + \cdots + 20\!\cdots\!00 T 5 + ⋯ + 2 0 ⋯ 0 0
T^5 + 636*T^4 - 21164661*T^3 - 4889964276*T^2 + 38586539405700*T + 20308915254420000
29 29 2 9
T 5 + ⋯ − 21 ⋯ 76 T^{5} + \cdots - 21\!\cdots\!76 T 5 + ⋯ − 2 1 ⋯ 7 6
T^5 - 540*T^4 - 42742958*T^3 + 134499464776*T^2 - 89367020511003*T - 21337462504523876
31 31 3 1
T 5 + ⋯ + 190703824040808 T^{5} + \cdots + 190703824040808 T 5 + ⋯ + 1 9 0 7 0 3 8 2 4 0 4 0 8 0 8
T^5 + 10828*T^4 + 34169743*T^3 + 34877323974*T^2 + 5410973728596*T + 190703824040808
37 37 3 7
T 5 + ⋯ − 46 ⋯ 12 T^{5} + \cdots - 46\!\cdots\!12 T 5 + ⋯ − 4 6 ⋯ 1 2
T^5 + 12708*T^4 - 12726668*T^3 - 304046735104*T^2 - 704971488778944*T - 469525976468941312
41 41 4 1
T 5 + ⋯ + 17 ⋯ 00 T^{5} + \cdots + 17\!\cdots\!00 T 5 + ⋯ + 1 7 ⋯ 0 0
T^5 + 11461*T^4 - 17412760*T^3 - 292906821760*T^2 + 53134267904000*T + 1757701439905792000
43 43 4 3
T 5 + ⋯ + 11 ⋯ 80 T^{5} + \cdots + 11\!\cdots\!80 T 5 + ⋯ + 1 1 ⋯ 8 0
T^5 + 2020*T^4 - 499606993*T^3 - 1156957805312*T^2 + 57027546975197380*T + 117620382030661807280
47 47 4 7
T 5 + ⋯ − 34 ⋯ 48 T^{5} + \cdots - 34\!\cdots\!48 T 5 + ⋯ − 3 4 ⋯ 4 8
T^5 + 35062*T^4 - 63411953*T^3 - 6074792218536*T^2 + 33659280051730896*T - 34116647855556267648
53 53 5 3
T 5 + ⋯ + 71 ⋯ 50 T^{5} + \cdots + 71\!\cdots\!50 T 5 + ⋯ + 7 1 ⋯ 5 0
T^5 + 7718*T^4 - 1833017230*T^3 - 16501332771944*T^2 + 724258497589713725*T + 7134060570679624382450
59 59 5 9
T 5 + ⋯ − 35 ⋯ 60 T^{5} + \cdots - 35\!\cdots\!60 T 5 + ⋯ − 3 5 ⋯ 6 0
T^5 + 44686*T^4 - 1064382961*T^3 - 29517555480196*T^2 + 709438621920308240*T - 3535853193885725812160
61 61 6 1
T 5 + ⋯ + 33 ⋯ 08 T^{5} + \cdots + 33\!\cdots\!08 T 5 + ⋯ + 3 3 ⋯ 0 8
T^5 - 18972*T^4 - 3270109158*T^3 + 9932162118436*T^2 + 2895841011979547541*T + 33638376569332128637608
67 67 6 7
T 5 + ⋯ − 17 ⋯ 04 T^{5} + \cdots - 17\!\cdots\!04 T 5 + ⋯ − 1 7 ⋯ 0 4
T^5 + 98667*T^4 + 3258386929*T^3 + 40345560200727*T^2 + 150500719022582460*T - 171013190408966294604
71 71 7 1
T 5 + ⋯ − 36 ⋯ 40 T^{5} + \cdots - 36\!\cdots\!40 T 5 + ⋯ − 3 6 ⋯ 4 0
T^5 - 23928*T^4 - 1208459180*T^3 + 13512741542864*T^2 + 24454249216197120*T - 360349430843365027840
73 73 7 3
T 5 + ⋯ − 50 ⋯ 00 T^{5} + \cdots - 50\!\cdots\!00 T 5 + ⋯ − 5 0 ⋯ 0 0
T^5 - 17529*T^4 - 7494628596*T^3 + 122438806092080*T^2 + 11388019292946027840*T - 50084448943677342807600
79 79 7 9
T 5 + ⋯ + 99 ⋯ 56 T^{5} + \cdots + 99\!\cdots\!56 T 5 + ⋯ + 9 9 ⋯ 5 6
T^5 + 67676*T^4 - 5098454125*T^3 - 254810881736876*T^2 + 4080795021410167268*T + 99123818966338926777056
83 83 8 3
T 5 + ⋯ − 52 ⋯ 00 T^{5} + \cdots - 52\!\cdots\!00 T 5 + ⋯ − 5 2 ⋯ 0 0
T^5 - 13689*T^4 - 10407726851*T^3 + 318951000873975*T^2 + 15426159035422854000*T - 528676498930753497600000
89 89 8 9
T 5 + ⋯ − 23 ⋯ 44 T^{5} + \cdots - 23\!\cdots\!44 T 5 + ⋯ − 2 3 ⋯ 4 4
T^5 + 287231*T^4 + 23611514768*T^3 - 76280430883972*T^2 - 81027768216151092704*T - 2394542958821076856074944
97 97 9 7
T 5 + ⋯ + 37 ⋯ 00 T^{5} + \cdots + 37\!\cdots\!00 T 5 + ⋯ + 3 7 ⋯ 0 0
T^5 + 78846*T^4 - 44314935620*T^3 - 3333415397905112*T^2 + 466257955168109112960*T + 37746196640579399377206400
show more
show less