Properties

Label 650.6.a.p
Level 650650
Weight 66
Character orbit 650.a
Self dual yes
Analytic conductor 104.249104.249
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 104.249482878104.249482878
Analytic rank: 11
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x5x4601x3+1405x2+36840x60300 x^{5} - x^{4} - 601x^{3} + 1405x^{2} + 36840x - 60300 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 25 2\cdot 5
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+4q2+(β12)q3+16q4+(4β18)q6+(β23β1+9)q7+64q8+(β36β1+2)q9+(β42β3+43)q11++(176β4124β3+88197)q99+O(q100) q + 4 q^{2} + (\beta_1 - 2) q^{3} + 16 q^{4} + (4 \beta_1 - 8) q^{6} + (\beta_{2} - 3 \beta_1 + 9) q^{7} + 64 q^{8} + (\beta_{3} - 6 \beta_1 + 2) q^{9} + ( - \beta_{4} - 2 \beta_{3} + \cdots - 43) q^{11}+ \cdots + (176 \beta_{4} - 124 \beta_{3} + \cdots - 88197) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+20q29q3+80q436q6+42q7+320q8+4q9213q11144q12845q13+168q14+1280q16601q17+16q18567q193700q21852q22+440284q99+O(q100) 5 q + 20 q^{2} - 9 q^{3} + 80 q^{4} - 36 q^{6} + 42 q^{7} + 320 q^{8} + 4 q^{9} - 213 q^{11} - 144 q^{12} - 845 q^{13} + 168 q^{14} + 1280 q^{16} - 601 q^{17} + 16 q^{18} - 567 q^{19} - 3700 q^{21} - 852 q^{22}+ \cdots - 440284 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x5x4601x3+1405x2+36840x60300 x^{5} - x^{4} - 601x^{3} + 1405x^{2} + 36840x - 60300 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν4ν3571ν2+1225ν+22290)/120 ( \nu^{4} - \nu^{3} - 571\nu^{2} + 1225\nu + 22290 ) / 120 Copy content Toggle raw display
β3\beta_{3}== ν2+2ν241 \nu^{2} + 2\nu - 241 Copy content Toggle raw display
β4\beta_{4}== (ν4+14ν3601ν25990ν+38160)/120 ( \nu^{4} + 14\nu^{3} - 601\nu^{2} - 5990\nu + 38160 ) / 120 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β32β1+241 \beta_{3} - 2\beta _1 + 241 Copy content Toggle raw display
ν3\nu^{3}== 8β4+2β38β2+477β1576 8\beta_{4} + 2\beta_{3} - 8\beta_{2} + 477\beta _1 - 576 Copy content Toggle raw display
ν4\nu^{4}== 8β4+573β3+112β21890β1+114745 8\beta_{4} + 573\beta_{3} + 112\beta_{2} - 1890\beta _1 + 114745 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−23.8063
−7.92606
1.60591
8.98932
22.1371
4.00000 −25.8063 16.0000 0 −103.225 115.455 64.0000 422.964 0
1.2 4.00000 −9.92606 16.0000 0 −39.7042 −124.276 64.0000 −144.473 0
1.3 4.00000 −0.394093 16.0000 0 −1.57637 194.075 64.0000 −242.845 0
1.4 4.00000 6.98932 16.0000 0 27.9573 −76.6003 64.0000 −194.149 0
1.5 4.00000 20.1371 16.0000 0 80.5485 −66.6546 64.0000 162.503 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.a.p yes 5
5.b even 2 1 650.6.a.o 5
5.c odd 4 2 650.6.b.m 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.6.a.o 5 5.b even 2 1
650.6.a.p yes 5 1.a even 1 1 trivial
650.6.b.m 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T35+9T34569T332145T32+35296T3+14208 T_{3}^{5} + 9T_{3}^{4} - 569T_{3}^{3} - 2145T_{3}^{2} + 35296T_{3} + 14208 acting on S6new(Γ0(650))S_{6}^{\mathrm{new}}(\Gamma_0(650)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4)5 (T - 4)^{5} Copy content Toggle raw display
33 T5+9T4++14208 T^{5} + 9 T^{4} + \cdots + 14208 Copy content Toggle raw display
55 T5 T^{5} Copy content Toggle raw display
77 T5++14217728944 T^{5} + \cdots + 14217728944 Copy content Toggle raw display
1111 T5+310309345876 T^{5} + \cdots - 310309345876 Copy content Toggle raw display
1313 (T+169)5 (T + 169)^{5} Copy content Toggle raw display
1717 T5++59701212884156 T^{5} + \cdots + 59701212884156 Copy content Toggle raw display
1919 T5++57 ⁣ ⁣32 T^{5} + \cdots + 57\!\cdots\!32 Copy content Toggle raw display
2323 T5++20 ⁣ ⁣00 T^{5} + \cdots + 20\!\cdots\!00 Copy content Toggle raw display
2929 T5+21 ⁣ ⁣76 T^{5} + \cdots - 21\!\cdots\!76 Copy content Toggle raw display
3131 T5++190703824040808 T^{5} + \cdots + 190703824040808 Copy content Toggle raw display
3737 T5+46 ⁣ ⁣12 T^{5} + \cdots - 46\!\cdots\!12 Copy content Toggle raw display
4141 T5++17 ⁣ ⁣00 T^{5} + \cdots + 17\!\cdots\!00 Copy content Toggle raw display
4343 T5++11 ⁣ ⁣80 T^{5} + \cdots + 11\!\cdots\!80 Copy content Toggle raw display
4747 T5+34 ⁣ ⁣48 T^{5} + \cdots - 34\!\cdots\!48 Copy content Toggle raw display
5353 T5++71 ⁣ ⁣50 T^{5} + \cdots + 71\!\cdots\!50 Copy content Toggle raw display
5959 T5+35 ⁣ ⁣60 T^{5} + \cdots - 35\!\cdots\!60 Copy content Toggle raw display
6161 T5++33 ⁣ ⁣08 T^{5} + \cdots + 33\!\cdots\!08 Copy content Toggle raw display
6767 T5+17 ⁣ ⁣04 T^{5} + \cdots - 17\!\cdots\!04 Copy content Toggle raw display
7171 T5+36 ⁣ ⁣40 T^{5} + \cdots - 36\!\cdots\!40 Copy content Toggle raw display
7373 T5+50 ⁣ ⁣00 T^{5} + \cdots - 50\!\cdots\!00 Copy content Toggle raw display
7979 T5++99 ⁣ ⁣56 T^{5} + \cdots + 99\!\cdots\!56 Copy content Toggle raw display
8383 T5+52 ⁣ ⁣00 T^{5} + \cdots - 52\!\cdots\!00 Copy content Toggle raw display
8989 T5+23 ⁣ ⁣44 T^{5} + \cdots - 23\!\cdots\!44 Copy content Toggle raw display
9797 T5++37 ⁣ ⁣00 T^{5} + \cdots + 37\!\cdots\!00 Copy content Toggle raw display
show more
show less