Properties

Label 650.6.a.q
Level $650$
Weight $6$
Character orbit 650.a
Self dual yes
Analytic conductor $104.249$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 809x^{3} + 2922x^{2} + 77904x - 57024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} - \beta_1 q^{3} + 16 q^{4} - 4 \beta_1 q^{6} + (\beta_{4} + \beta_1 + 31) q^{7} + 64 q^{8} + (\beta_{4} + \beta_{2} - 3 \beta_1 + 83) q^{9} + ( - \beta_{4} - \beta_{3} + \beta_{2} + \cdots - 67) q^{11}+ \cdots + (511 \beta_{4} - 9 \beta_{3} + \cdots + 60353) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 20 q^{2} - 2 q^{3} + 80 q^{4} - 8 q^{6} + 157 q^{7} + 320 q^{8} + 407 q^{9} - 321 q^{11} - 32 q^{12} - 845 q^{13} + 628 q^{14} + 1280 q^{16} + 1955 q^{17} + 1628 q^{18} + 1152 q^{19} - 1322 q^{21}+ \cdots + 305151 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 809x^{3} + 2922x^{2} + 77904x - 57024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 10\nu^{3} - 529\nu^{2} + 8554\nu - 37128 ) / 300 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{4} - 10\nu^{3} + 689\nu^{2} + 4266\nu - 35712 ) / 180 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + 10\nu^{3} + 829\nu^{2} - 7654\nu - 60672 ) / 300 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{2} - 3\beta _1 + 326 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 8\beta_{4} - 9\beta_{3} - 7\beta_{2} + 617\beta _1 - 1034 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 609\beta_{4} - 90\beta_{3} + 759\beta_{2} - 3971\beta _1 + 199242 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
24.8846
12.8951
0.716545
−9.02921
−27.4670
4.00000 −24.8846 16.0000 0 −99.5383 165.378 64.0000 376.242 0
1.2 4.00000 −12.8951 16.0000 0 −51.5803 −48.5387 64.0000 −76.7173 0
1.3 4.00000 −0.716545 16.0000 0 −2.86618 −187.375 64.0000 −242.487 0
1.4 4.00000 9.02921 16.0000 0 36.1168 228.688 64.0000 −161.473 0
1.5 4.00000 27.4670 16.0000 0 109.868 −1.15327 64.0000 511.435 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.a.q yes 5
5.b even 2 1 650.6.a.n 5
5.c odd 4 2 650.6.b.n 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.6.a.n 5 5.b even 2 1
650.6.a.q yes 5 1.a even 1 1 trivial
650.6.b.n 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} + 2T_{3}^{4} - 809T_{3}^{3} - 2922T_{3}^{2} + 77904T_{3} + 57024 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(650))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + 2 T^{4} + \cdots + 57024 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 157 T^{4} + \cdots + 396692544 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots - 2112867422028 \) Copy content Toggle raw display
$13$ \( (T + 169)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots - 84028069477476 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 103203582703616 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 13\!\cdots\!43 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 80\!\cdots\!72 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 12\!\cdots\!88 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 61\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 49\!\cdots\!88 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 18\!\cdots\!75 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 95\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 68\!\cdots\!83 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 11\!\cdots\!72 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 52\!\cdots\!32 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 15\!\cdots\!76 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 21\!\cdots\!60 \) Copy content Toggle raw display
show more
show less