Properties

Label 650.6.a.v.1.1
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 1585 x^{7} + 2848 x^{6} + 753030 x^{5} - 686440 x^{4} - 130455000 x^{3} + \cdots - 22087917000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{5} \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-28.2730\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -30.2730 q^{3} +16.0000 q^{4} +121.092 q^{6} -48.6525 q^{7} -64.0000 q^{8} +673.456 q^{9} -183.365 q^{11} -484.368 q^{12} -169.000 q^{13} +194.610 q^{14} +256.000 q^{16} +21.6273 q^{17} -2693.82 q^{18} +1858.66 q^{19} +1472.86 q^{21} +733.459 q^{22} +4771.82 q^{23} +1937.47 q^{24} +676.000 q^{26} -13031.2 q^{27} -778.439 q^{28} +4875.43 q^{29} +5155.25 q^{31} -1024.00 q^{32} +5551.01 q^{33} -86.5092 q^{34} +10775.3 q^{36} -1178.68 q^{37} -7434.65 q^{38} +5116.14 q^{39} +952.823 q^{41} -5891.43 q^{42} +8187.16 q^{43} -2933.84 q^{44} -19087.3 q^{46} -12733.5 q^{47} -7749.89 q^{48} -14439.9 q^{49} -654.724 q^{51} -2704.00 q^{52} -5475.33 q^{53} +52124.8 q^{54} +3113.76 q^{56} -56267.3 q^{57} -19501.7 q^{58} +10648.6 q^{59} -27963.6 q^{61} -20621.0 q^{62} -32765.3 q^{63} +4096.00 q^{64} -22204.0 q^{66} +21481.1 q^{67} +346.037 q^{68} -144457. q^{69} -72723.3 q^{71} -43101.2 q^{72} -78686.6 q^{73} +4714.73 q^{74} +29738.6 q^{76} +8921.15 q^{77} -20464.6 q^{78} +88076.0 q^{79} +230844. q^{81} -3811.29 q^{82} +118577. q^{83} +23565.7 q^{84} -32748.6 q^{86} -147594. q^{87} +11735.4 q^{88} -70518.1 q^{89} +8222.27 q^{91} +76349.1 q^{92} -156065. q^{93} +50933.8 q^{94} +30999.6 q^{96} -11261.1 q^{97} +57759.8 q^{98} -123488. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 36 q^{2} - 14 q^{3} + 144 q^{4} + 56 q^{6} - 164 q^{7} - 576 q^{8} + 1019 q^{9} + 326 q^{11} - 224 q^{12} - 1521 q^{13} + 656 q^{14} + 2304 q^{16} - 2144 q^{17} - 4076 q^{18} + 5558 q^{19} - 236 q^{21}+ \cdots + 231774 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −30.2730 −1.94202 −0.971008 0.239048i \(-0.923165\pi\)
−0.971008 + 0.239048i \(0.923165\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 121.092 1.37321
\(7\) −48.6525 −0.375284 −0.187642 0.982238i \(-0.560084\pi\)
−0.187642 + 0.982238i \(0.560084\pi\)
\(8\) −64.0000 −0.353553
\(9\) 673.456 2.77142
\(10\) 0 0
\(11\) −183.365 −0.456914 −0.228457 0.973554i \(-0.573368\pi\)
−0.228457 + 0.973554i \(0.573368\pi\)
\(12\) −484.368 −0.971008
\(13\) −169.000 −0.277350
\(14\) 194.610 0.265366
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 21.6273 0.0181501 0.00907507 0.999959i \(-0.497111\pi\)
0.00907507 + 0.999959i \(0.497111\pi\)
\(18\) −2693.82 −1.95969
\(19\) 1858.66 1.18118 0.590590 0.806971i \(-0.298895\pi\)
0.590590 + 0.806971i \(0.298895\pi\)
\(20\) 0 0
\(21\) 1472.86 0.728807
\(22\) 733.459 0.323087
\(23\) 4771.82 1.88089 0.940447 0.339940i \(-0.110407\pi\)
0.940447 + 0.339940i \(0.110407\pi\)
\(24\) 1937.47 0.686606
\(25\) 0 0
\(26\) 676.000 0.196116
\(27\) −13031.2 −3.44013
\(28\) −778.439 −0.187642
\(29\) 4875.43 1.07651 0.538255 0.842782i \(-0.319084\pi\)
0.538255 + 0.842782i \(0.319084\pi\)
\(30\) 0 0
\(31\) 5155.25 0.963486 0.481743 0.876312i \(-0.340004\pi\)
0.481743 + 0.876312i \(0.340004\pi\)
\(32\) −1024.00 −0.176777
\(33\) 5551.01 0.887334
\(34\) −86.5092 −0.0128341
\(35\) 0 0
\(36\) 10775.3 1.38571
\(37\) −1178.68 −0.141544 −0.0707721 0.997493i \(-0.522546\pi\)
−0.0707721 + 0.997493i \(0.522546\pi\)
\(38\) −7434.65 −0.835221
\(39\) 5116.14 0.538618
\(40\) 0 0
\(41\) 952.823 0.0885222 0.0442611 0.999020i \(-0.485907\pi\)
0.0442611 + 0.999020i \(0.485907\pi\)
\(42\) −5891.43 −0.515344
\(43\) 8187.16 0.675246 0.337623 0.941281i \(-0.390377\pi\)
0.337623 + 0.941281i \(0.390377\pi\)
\(44\) −2933.84 −0.228457
\(45\) 0 0
\(46\) −19087.3 −1.32999
\(47\) −12733.5 −0.840817 −0.420409 0.907335i \(-0.638113\pi\)
−0.420409 + 0.907335i \(0.638113\pi\)
\(48\) −7749.89 −0.485504
\(49\) −14439.9 −0.859162
\(50\) 0 0
\(51\) −654.724 −0.0352479
\(52\) −2704.00 −0.138675
\(53\) −5475.33 −0.267745 −0.133872 0.990999i \(-0.542741\pi\)
−0.133872 + 0.990999i \(0.542741\pi\)
\(54\) 52124.8 2.43254
\(55\) 0 0
\(56\) 3113.76 0.132683
\(57\) −56267.3 −2.29387
\(58\) −19501.7 −0.761208
\(59\) 10648.6 0.398256 0.199128 0.979974i \(-0.436189\pi\)
0.199128 + 0.979974i \(0.436189\pi\)
\(60\) 0 0
\(61\) −27963.6 −0.962208 −0.481104 0.876664i \(-0.659764\pi\)
−0.481104 + 0.876664i \(0.659764\pi\)
\(62\) −20621.0 −0.681288
\(63\) −32765.3 −1.04007
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −22204.0 −0.627440
\(67\) 21481.1 0.584614 0.292307 0.956325i \(-0.405577\pi\)
0.292307 + 0.956325i \(0.405577\pi\)
\(68\) 346.037 0.00907507
\(69\) −144457. −3.65273
\(70\) 0 0
\(71\) −72723.3 −1.71210 −0.856048 0.516897i \(-0.827087\pi\)
−0.856048 + 0.516897i \(0.827087\pi\)
\(72\) −43101.2 −0.979846
\(73\) −78686.6 −1.72820 −0.864100 0.503321i \(-0.832112\pi\)
−0.864100 + 0.503321i \(0.832112\pi\)
\(74\) 4714.73 0.100087
\(75\) 0 0
\(76\) 29738.6 0.590590
\(77\) 8921.15 0.171472
\(78\) −20464.6 −0.380861
\(79\) 88076.0 1.58778 0.793889 0.608063i \(-0.208053\pi\)
0.793889 + 0.608063i \(0.208053\pi\)
\(80\) 0 0
\(81\) 230844. 3.90936
\(82\) −3811.29 −0.0625947
\(83\) 118577. 1.88931 0.944657 0.328060i \(-0.106395\pi\)
0.944657 + 0.328060i \(0.106395\pi\)
\(84\) 23565.7 0.364403
\(85\) 0 0
\(86\) −32748.6 −0.477471
\(87\) −147594. −2.09060
\(88\) 11735.4 0.161543
\(89\) −70518.1 −0.943682 −0.471841 0.881684i \(-0.656410\pi\)
−0.471841 + 0.881684i \(0.656410\pi\)
\(90\) 0 0
\(91\) 8222.27 0.104085
\(92\) 76349.1 0.940447
\(93\) −156065. −1.87110
\(94\) 50933.8 0.594548
\(95\) 0 0
\(96\) 30999.6 0.343303
\(97\) −11261.1 −0.121522 −0.0607608 0.998152i \(-0.519353\pi\)
−0.0607608 + 0.998152i \(0.519353\pi\)
\(98\) 57759.8 0.607519
\(99\) −123488. −1.26630
\(100\) 0 0
\(101\) 40669.3 0.396701 0.198350 0.980131i \(-0.436442\pi\)
0.198350 + 0.980131i \(0.436442\pi\)
\(102\) 2618.90 0.0249240
\(103\) −105122. −0.976340 −0.488170 0.872749i \(-0.662335\pi\)
−0.488170 + 0.872749i \(0.662335\pi\)
\(104\) 10816.0 0.0980581
\(105\) 0 0
\(106\) 21901.3 0.189324
\(107\) −68533.0 −0.578682 −0.289341 0.957226i \(-0.593436\pi\)
−0.289341 + 0.957226i \(0.593436\pi\)
\(108\) −208499. −1.72007
\(109\) 159560. 1.28635 0.643175 0.765720i \(-0.277617\pi\)
0.643175 + 0.765720i \(0.277617\pi\)
\(110\) 0 0
\(111\) 35682.3 0.274881
\(112\) −12455.0 −0.0938209
\(113\) −100116. −0.737579 −0.368790 0.929513i \(-0.620228\pi\)
−0.368790 + 0.929513i \(0.620228\pi\)
\(114\) 225069. 1.62201
\(115\) 0 0
\(116\) 78006.9 0.538255
\(117\) −113814. −0.768655
\(118\) −42594.4 −0.281609
\(119\) −1052.22 −0.00681145
\(120\) 0 0
\(121\) −127428. −0.791230
\(122\) 111854. 0.680383
\(123\) −28844.8 −0.171912
\(124\) 82484.0 0.481743
\(125\) 0 0
\(126\) 131061. 0.735441
\(127\) 259872. 1.42972 0.714858 0.699270i \(-0.246491\pi\)
0.714858 + 0.699270i \(0.246491\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −247850. −1.31134
\(130\) 0 0
\(131\) −171651. −0.873912 −0.436956 0.899483i \(-0.643943\pi\)
−0.436956 + 0.899483i \(0.643943\pi\)
\(132\) 88816.1 0.443667
\(133\) −90428.5 −0.443278
\(134\) −85924.3 −0.413384
\(135\) 0 0
\(136\) −1384.15 −0.00641705
\(137\) 218907. 0.996457 0.498228 0.867046i \(-0.333984\pi\)
0.498228 + 0.867046i \(0.333984\pi\)
\(138\) 577829. 2.58287
\(139\) −331271. −1.45428 −0.727138 0.686492i \(-0.759150\pi\)
−0.727138 + 0.686492i \(0.759150\pi\)
\(140\) 0 0
\(141\) 385480. 1.63288
\(142\) 290893. 1.21063
\(143\) 30988.7 0.126725
\(144\) 172405. 0.692856
\(145\) 0 0
\(146\) 314747. 1.22202
\(147\) 437141. 1.66851
\(148\) −18858.9 −0.0707721
\(149\) −56849.5 −0.209778 −0.104889 0.994484i \(-0.533449\pi\)
−0.104889 + 0.994484i \(0.533449\pi\)
\(150\) 0 0
\(151\) 67592.0 0.241242 0.120621 0.992699i \(-0.461511\pi\)
0.120621 + 0.992699i \(0.461511\pi\)
\(152\) −118954. −0.417611
\(153\) 14565.0 0.0503017
\(154\) −35684.6 −0.121249
\(155\) 0 0
\(156\) 81858.3 0.269309
\(157\) −222975. −0.721950 −0.360975 0.932575i \(-0.617556\pi\)
−0.360975 + 0.932575i \(0.617556\pi\)
\(158\) −352304. −1.12273
\(159\) 165755. 0.519964
\(160\) 0 0
\(161\) −232161. −0.705869
\(162\) −923376. −2.76434
\(163\) 606609. 1.78830 0.894149 0.447769i \(-0.147781\pi\)
0.894149 + 0.447769i \(0.147781\pi\)
\(164\) 15245.2 0.0442611
\(165\) 0 0
\(166\) −474307. −1.33595
\(167\) 347642. 0.964587 0.482293 0.876010i \(-0.339804\pi\)
0.482293 + 0.876010i \(0.339804\pi\)
\(168\) −94262.8 −0.257672
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 1.25173e6 3.27355
\(172\) 130995. 0.337623
\(173\) −36365.7 −0.0923798 −0.0461899 0.998933i \(-0.514708\pi\)
−0.0461899 + 0.998933i \(0.514708\pi\)
\(174\) 590376. 1.47828
\(175\) 0 0
\(176\) −46941.4 −0.114228
\(177\) −322365. −0.773419
\(178\) 282072. 0.667284
\(179\) −186888. −0.435962 −0.217981 0.975953i \(-0.569947\pi\)
−0.217981 + 0.975953i \(0.569947\pi\)
\(180\) 0 0
\(181\) 256584. 0.582148 0.291074 0.956701i \(-0.405987\pi\)
0.291074 + 0.956701i \(0.405987\pi\)
\(182\) −32889.1 −0.0735992
\(183\) 846543. 1.86862
\(184\) −305396. −0.664996
\(185\) 0 0
\(186\) 624260. 1.32307
\(187\) −3965.69 −0.00829305
\(188\) −203735. −0.420409
\(189\) 634000. 1.29103
\(190\) 0 0
\(191\) −374629. −0.743050 −0.371525 0.928423i \(-0.621165\pi\)
−0.371525 + 0.928423i \(0.621165\pi\)
\(192\) −123998. −0.242752
\(193\) −30106.5 −0.0581791 −0.0290896 0.999577i \(-0.509261\pi\)
−0.0290896 + 0.999577i \(0.509261\pi\)
\(194\) 45044.6 0.0859287
\(195\) 0 0
\(196\) −231039. −0.429581
\(197\) 813922. 1.49423 0.747114 0.664696i \(-0.231439\pi\)
0.747114 + 0.664696i \(0.231439\pi\)
\(198\) 493953. 0.895411
\(199\) 856690. 1.53353 0.766763 0.641931i \(-0.221866\pi\)
0.766763 + 0.641931i \(0.221866\pi\)
\(200\) 0 0
\(201\) −650297. −1.13533
\(202\) −162677. −0.280510
\(203\) −237202. −0.403997
\(204\) −10475.6 −0.0176239
\(205\) 0 0
\(206\) 420489. 0.690377
\(207\) 3.21361e6 5.21275
\(208\) −43264.0 −0.0693375
\(209\) −340813. −0.539698
\(210\) 0 0
\(211\) 93103.0 0.143965 0.0719826 0.997406i \(-0.477067\pi\)
0.0719826 + 0.997406i \(0.477067\pi\)
\(212\) −87605.4 −0.133872
\(213\) 2.20156e6 3.32492
\(214\) 274132. 0.409190
\(215\) 0 0
\(216\) 833997. 1.21627
\(217\) −250816. −0.361581
\(218\) −638242. −0.909586
\(219\) 2.38208e6 3.35619
\(220\) 0 0
\(221\) −3655.01 −0.00503394
\(222\) −142729. −0.194370
\(223\) 540262. 0.727515 0.363758 0.931494i \(-0.381494\pi\)
0.363758 + 0.931494i \(0.381494\pi\)
\(224\) 49820.1 0.0663414
\(225\) 0 0
\(226\) 400465. 0.521547
\(227\) −297798. −0.383581 −0.191791 0.981436i \(-0.561429\pi\)
−0.191791 + 0.981436i \(0.561429\pi\)
\(228\) −900277. −1.14694
\(229\) 835401. 1.05270 0.526352 0.850267i \(-0.323559\pi\)
0.526352 + 0.850267i \(0.323559\pi\)
\(230\) 0 0
\(231\) −270070. −0.333002
\(232\) −312028. −0.380604
\(233\) −72054.4 −0.0869502 −0.0434751 0.999055i \(-0.513843\pi\)
−0.0434751 + 0.999055i \(0.513843\pi\)
\(234\) 455256. 0.543521
\(235\) 0 0
\(236\) 170377. 0.199128
\(237\) −2.66633e6 −3.08349
\(238\) 4208.89 0.00481643
\(239\) −1.13067e6 −1.28038 −0.640191 0.768216i \(-0.721145\pi\)
−0.640191 + 0.768216i \(0.721145\pi\)
\(240\) 0 0
\(241\) −1.09237e6 −1.21152 −0.605758 0.795649i \(-0.707130\pi\)
−0.605758 + 0.795649i \(0.707130\pi\)
\(242\) 509713. 0.559484
\(243\) −3.82177e6 −4.15191
\(244\) −447418. −0.481104
\(245\) 0 0
\(246\) 115379. 0.121560
\(247\) −314114. −0.327601
\(248\) −329936. −0.340644
\(249\) −3.58968e6 −3.66908
\(250\) 0 0
\(251\) 1.90077e6 1.90435 0.952173 0.305559i \(-0.0988434\pi\)
0.952173 + 0.305559i \(0.0988434\pi\)
\(252\) −524245. −0.520035
\(253\) −874984. −0.859407
\(254\) −1.03949e6 −1.01096
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.63127e6 −1.54062 −0.770308 0.637672i \(-0.779897\pi\)
−0.770308 + 0.637672i \(0.779897\pi\)
\(258\) 991401. 0.927257
\(259\) 57345.8 0.0531193
\(260\) 0 0
\(261\) 3.28339e6 2.98347
\(262\) 686603. 0.617949
\(263\) −430511. −0.383791 −0.191896 0.981415i \(-0.561464\pi\)
−0.191896 + 0.981415i \(0.561464\pi\)
\(264\) −355265. −0.313720
\(265\) 0 0
\(266\) 361714. 0.313445
\(267\) 2.13480e6 1.83264
\(268\) 343697. 0.292307
\(269\) 29531.5 0.0248832 0.0124416 0.999923i \(-0.496040\pi\)
0.0124416 + 0.999923i \(0.496040\pi\)
\(270\) 0 0
\(271\) −281575. −0.232901 −0.116450 0.993197i \(-0.537152\pi\)
−0.116450 + 0.993197i \(0.537152\pi\)
\(272\) 5536.59 0.00453754
\(273\) −248913. −0.202135
\(274\) −875628. −0.704601
\(275\) 0 0
\(276\) −2.31132e6 −1.82636
\(277\) −2.07708e6 −1.62650 −0.813250 0.581915i \(-0.802304\pi\)
−0.813250 + 0.581915i \(0.802304\pi\)
\(278\) 1.32508e6 1.02833
\(279\) 3.47183e6 2.67023
\(280\) 0 0
\(281\) −33435.8 −0.0252607 −0.0126304 0.999920i \(-0.504020\pi\)
−0.0126304 + 0.999920i \(0.504020\pi\)
\(282\) −1.54192e6 −1.15462
\(283\) 2.25537e6 1.67399 0.836994 0.547213i \(-0.184311\pi\)
0.836994 + 0.547213i \(0.184311\pi\)
\(284\) −1.16357e6 −0.856048
\(285\) 0 0
\(286\) −123955. −0.0896082
\(287\) −46357.2 −0.0332210
\(288\) −689619. −0.489923
\(289\) −1.41939e6 −0.999671
\(290\) 0 0
\(291\) 340909. 0.235997
\(292\) −1.25899e6 −0.864100
\(293\) 1.49777e6 1.01924 0.509619 0.860400i \(-0.329786\pi\)
0.509619 + 0.860400i \(0.329786\pi\)
\(294\) −1.74856e6 −1.17981
\(295\) 0 0
\(296\) 75435.6 0.0500435
\(297\) 2.38946e6 1.57184
\(298\) 227398. 0.148336
\(299\) −806437. −0.521666
\(300\) 0 0
\(301\) −398326. −0.253409
\(302\) −270368. −0.170584
\(303\) −1.23118e6 −0.770399
\(304\) 475817. 0.295295
\(305\) 0 0
\(306\) −58260.1 −0.0355687
\(307\) 752586. 0.455733 0.227866 0.973692i \(-0.426825\pi\)
0.227866 + 0.973692i \(0.426825\pi\)
\(308\) 142738. 0.0857362
\(309\) 3.18237e6 1.89607
\(310\) 0 0
\(311\) 2.24396e6 1.31557 0.657786 0.753205i \(-0.271493\pi\)
0.657786 + 0.753205i \(0.271493\pi\)
\(312\) −327433. −0.190430
\(313\) −2.20149e6 −1.27015 −0.635075 0.772450i \(-0.719031\pi\)
−0.635075 + 0.772450i \(0.719031\pi\)
\(314\) 891900. 0.510496
\(315\) 0 0
\(316\) 1.40922e6 0.793889
\(317\) 2.27670e6 1.27250 0.636250 0.771483i \(-0.280485\pi\)
0.636250 + 0.771483i \(0.280485\pi\)
\(318\) −663020. −0.367670
\(319\) −893983. −0.491872
\(320\) 0 0
\(321\) 2.07470e6 1.12381
\(322\) 928643. 0.499125
\(323\) 40197.9 0.0214386
\(324\) 3.69351e6 1.95468
\(325\) 0 0
\(326\) −2.42644e6 −1.26452
\(327\) −4.83038e6 −2.49811
\(328\) −60980.6 −0.0312973
\(329\) 619514. 0.315545
\(330\) 0 0
\(331\) −426696. −0.214066 −0.107033 0.994255i \(-0.534135\pi\)
−0.107033 + 0.994255i \(0.534135\pi\)
\(332\) 1.89723e6 0.944657
\(333\) −793790. −0.392279
\(334\) −1.39057e6 −0.682066
\(335\) 0 0
\(336\) 377051. 0.182202
\(337\) 2.06754e6 0.991697 0.495849 0.868409i \(-0.334857\pi\)
0.495849 + 0.868409i \(0.334857\pi\)
\(338\) −114244. −0.0543928
\(339\) 3.03082e6 1.43239
\(340\) 0 0
\(341\) −945292. −0.440230
\(342\) −5.00691e6 −2.31475
\(343\) 1.52024e6 0.697713
\(344\) −523978. −0.238736
\(345\) 0 0
\(346\) 145463. 0.0653224
\(347\) −984235. −0.438808 −0.219404 0.975634i \(-0.570411\pi\)
−0.219404 + 0.975634i \(0.570411\pi\)
\(348\) −2.36150e6 −1.04530
\(349\) 437783. 0.192396 0.0961979 0.995362i \(-0.469332\pi\)
0.0961979 + 0.995362i \(0.469332\pi\)
\(350\) 0 0
\(351\) 2.20227e6 0.954121
\(352\) 187766. 0.0807717
\(353\) 2.74405e6 1.17208 0.586038 0.810284i \(-0.300687\pi\)
0.586038 + 0.810284i \(0.300687\pi\)
\(354\) 1.28946e6 0.546890
\(355\) 0 0
\(356\) −1.12829e6 −0.471841
\(357\) 31853.9 0.0132279
\(358\) 747551. 0.308272
\(359\) −3.66684e6 −1.50161 −0.750803 0.660526i \(-0.770333\pi\)
−0.750803 + 0.660526i \(0.770333\pi\)
\(360\) 0 0
\(361\) 978526. 0.395188
\(362\) −1.02634e6 −0.411641
\(363\) 3.85764e6 1.53658
\(364\) 131556. 0.0520425
\(365\) 0 0
\(366\) −3.38617e6 −1.32132
\(367\) −3.98978e6 −1.54627 −0.773133 0.634244i \(-0.781311\pi\)
−0.773133 + 0.634244i \(0.781311\pi\)
\(368\) 1.22159e6 0.470224
\(369\) 641684. 0.245333
\(370\) 0 0
\(371\) 266388. 0.100480
\(372\) −2.49704e6 −0.935552
\(373\) 3.40693e6 1.26792 0.633960 0.773366i \(-0.281428\pi\)
0.633960 + 0.773366i \(0.281428\pi\)
\(374\) 15862.8 0.00586407
\(375\) 0 0
\(376\) 814941. 0.297274
\(377\) −823948. −0.298570
\(378\) −2.53600e6 −0.912893
\(379\) 3.86571e6 1.38239 0.691196 0.722667i \(-0.257084\pi\)
0.691196 + 0.722667i \(0.257084\pi\)
\(380\) 0 0
\(381\) −7.86710e6 −2.77653
\(382\) 1.49852e6 0.525416
\(383\) −3.95015e6 −1.37599 −0.687997 0.725714i \(-0.741510\pi\)
−0.687997 + 0.725714i \(0.741510\pi\)
\(384\) 495993. 0.171652
\(385\) 0 0
\(386\) 120426. 0.0411388
\(387\) 5.51369e6 1.87139
\(388\) −180178. −0.0607608
\(389\) −413950. −0.138699 −0.0693497 0.997592i \(-0.522092\pi\)
−0.0693497 + 0.997592i \(0.522092\pi\)
\(390\) 0 0
\(391\) 103202. 0.0341385
\(392\) 924156. 0.303760
\(393\) 5.19639e6 1.69715
\(394\) −3.25569e6 −1.05658
\(395\) 0 0
\(396\) −1.97581e6 −0.633151
\(397\) −896816. −0.285579 −0.142790 0.989753i \(-0.545607\pi\)
−0.142790 + 0.989753i \(0.545607\pi\)
\(398\) −3.42676e6 −1.08437
\(399\) 2.73754e6 0.860853
\(400\) 0 0
\(401\) −226670. −0.0703936 −0.0351968 0.999380i \(-0.511206\pi\)
−0.0351968 + 0.999380i \(0.511206\pi\)
\(402\) 2.60119e6 0.802799
\(403\) −871237. −0.267223
\(404\) 650708. 0.198350
\(405\) 0 0
\(406\) 948807. 0.285669
\(407\) 216129. 0.0646735
\(408\) 41902.3 0.0124620
\(409\) −3.06994e6 −0.907448 −0.453724 0.891142i \(-0.649905\pi\)
−0.453724 + 0.891142i \(0.649905\pi\)
\(410\) 0 0
\(411\) −6.62698e6 −1.93513
\(412\) −1.68195e6 −0.488170
\(413\) −518080. −0.149459
\(414\) −1.28544e7 −3.68597
\(415\) 0 0
\(416\) 173056. 0.0490290
\(417\) 1.00286e7 2.82422
\(418\) 1.36325e6 0.381624
\(419\) −2.75158e6 −0.765679 −0.382839 0.923815i \(-0.625054\pi\)
−0.382839 + 0.923815i \(0.625054\pi\)
\(420\) 0 0
\(421\) 2.91415e6 0.801321 0.400660 0.916227i \(-0.368781\pi\)
0.400660 + 0.916227i \(0.368781\pi\)
\(422\) −372412. −0.101799
\(423\) −8.57542e6 −2.33026
\(424\) 350421. 0.0946621
\(425\) 0 0
\(426\) −8.80622e6 −2.35107
\(427\) 1.36050e6 0.361101
\(428\) −1.09653e6 −0.289341
\(429\) −938120. −0.246102
\(430\) 0 0
\(431\) −1.28558e6 −0.333353 −0.166677 0.986012i \(-0.553304\pi\)
−0.166677 + 0.986012i \(0.553304\pi\)
\(432\) −3.33599e6 −0.860033
\(433\) 4.82256e6 1.23611 0.618056 0.786134i \(-0.287920\pi\)
0.618056 + 0.786134i \(0.287920\pi\)
\(434\) 1.00326e6 0.255676
\(435\) 0 0
\(436\) 2.55297e6 0.643175
\(437\) 8.86920e6 2.22168
\(438\) −9.52833e6 −2.37318
\(439\) 686841. 0.170096 0.0850482 0.996377i \(-0.472896\pi\)
0.0850482 + 0.996377i \(0.472896\pi\)
\(440\) 0 0
\(441\) −9.72466e6 −2.38110
\(442\) 14620.1 0.00355954
\(443\) 3.59352e6 0.869983 0.434991 0.900435i \(-0.356751\pi\)
0.434991 + 0.900435i \(0.356751\pi\)
\(444\) 570916. 0.137441
\(445\) 0 0
\(446\) −2.16105e6 −0.514431
\(447\) 1.72100e6 0.407393
\(448\) −199280. −0.0469105
\(449\) −3.77675e6 −0.884102 −0.442051 0.896990i \(-0.645749\pi\)
−0.442051 + 0.896990i \(0.645749\pi\)
\(450\) 0 0
\(451\) −174714. −0.0404470
\(452\) −1.60186e6 −0.368790
\(453\) −2.04621e6 −0.468495
\(454\) 1.19119e6 0.271233
\(455\) 0 0
\(456\) 3.60111e6 0.811006
\(457\) 4.86264e6 1.08913 0.544567 0.838717i \(-0.316694\pi\)
0.544567 + 0.838717i \(0.316694\pi\)
\(458\) −3.34161e6 −0.744375
\(459\) −281830. −0.0624389
\(460\) 0 0
\(461\) −2.32471e6 −0.509468 −0.254734 0.967011i \(-0.581988\pi\)
−0.254734 + 0.967011i \(0.581988\pi\)
\(462\) 1.08028e6 0.235468
\(463\) 4.48469e6 0.972254 0.486127 0.873888i \(-0.338409\pi\)
0.486127 + 0.873888i \(0.338409\pi\)
\(464\) 1.24811e6 0.269128
\(465\) 0 0
\(466\) 288217. 0.0614831
\(467\) −373349. −0.0792179 −0.0396090 0.999215i \(-0.512611\pi\)
−0.0396090 + 0.999215i \(0.512611\pi\)
\(468\) −1.82102e6 −0.384327
\(469\) −1.04511e6 −0.219396
\(470\) 0 0
\(471\) 6.75013e6 1.40204
\(472\) −681510. −0.140805
\(473\) −1.50124e6 −0.308529
\(474\) 1.06653e7 2.18036
\(475\) 0 0
\(476\) −16835.5 −0.00340573
\(477\) −3.68740e6 −0.742034
\(478\) 4.52266e6 0.905367
\(479\) 5.08290e6 1.01221 0.506107 0.862470i \(-0.331084\pi\)
0.506107 + 0.862470i \(0.331084\pi\)
\(480\) 0 0
\(481\) 199197. 0.0392573
\(482\) 4.36950e6 0.856671
\(483\) 7.02821e6 1.37081
\(484\) −2.03885e6 −0.395615
\(485\) 0 0
\(486\) 1.52871e7 2.93585
\(487\) 5.05870e6 0.966532 0.483266 0.875474i \(-0.339450\pi\)
0.483266 + 0.875474i \(0.339450\pi\)
\(488\) 1.78967e6 0.340192
\(489\) −1.83639e7 −3.47290
\(490\) 0 0
\(491\) −2.93879e6 −0.550129 −0.275064 0.961426i \(-0.588699\pi\)
−0.275064 + 0.961426i \(0.588699\pi\)
\(492\) −461517. −0.0859558
\(493\) 105442. 0.0195388
\(494\) 1.25646e6 0.231649
\(495\) 0 0
\(496\) 1.31974e6 0.240872
\(497\) 3.53817e6 0.642521
\(498\) 1.43587e7 2.59443
\(499\) 944824. 0.169863 0.0849317 0.996387i \(-0.472933\pi\)
0.0849317 + 0.996387i \(0.472933\pi\)
\(500\) 0 0
\(501\) −1.05242e7 −1.87324
\(502\) −7.60309e6 −1.34658
\(503\) −5.43804e6 −0.958346 −0.479173 0.877720i \(-0.659063\pi\)
−0.479173 + 0.877720i \(0.659063\pi\)
\(504\) 2.09698e6 0.367720
\(505\) 0 0
\(506\) 3.49994e6 0.607692
\(507\) −864628. −0.149386
\(508\) 4.15795e6 0.714858
\(509\) 22475.6 0.00384518 0.00192259 0.999998i \(-0.499388\pi\)
0.00192259 + 0.999998i \(0.499388\pi\)
\(510\) 0 0
\(511\) 3.82830e6 0.648565
\(512\) −262144. −0.0441942
\(513\) −2.42206e7 −4.06342
\(514\) 6.52510e6 1.08938
\(515\) 0 0
\(516\) −3.96560e6 −0.655669
\(517\) 2.33487e6 0.384181
\(518\) −229383. −0.0375610
\(519\) 1.10090e6 0.179403
\(520\) 0 0
\(521\) 4.79883e6 0.774534 0.387267 0.921968i \(-0.373419\pi\)
0.387267 + 0.921968i \(0.373419\pi\)
\(522\) −1.31336e7 −2.10963
\(523\) −828786. −0.132491 −0.0662457 0.997803i \(-0.521102\pi\)
−0.0662457 + 0.997803i \(0.521102\pi\)
\(524\) −2.74641e6 −0.436956
\(525\) 0 0
\(526\) 1.72205e6 0.271381
\(527\) 111494. 0.0174874
\(528\) 1.42106e6 0.221833
\(529\) 1.63339e7 2.53776
\(530\) 0 0
\(531\) 7.17135e6 1.10374
\(532\) −1.44686e6 −0.221639
\(533\) −161027. −0.0245517
\(534\) −8.53918e6 −1.29588
\(535\) 0 0
\(536\) −1.37479e6 −0.206692
\(537\) 5.65766e6 0.846645
\(538\) −118126. −0.0175950
\(539\) 2.64778e6 0.392563
\(540\) 0 0
\(541\) −1.09983e7 −1.61559 −0.807795 0.589463i \(-0.799339\pi\)
−0.807795 + 0.589463i \(0.799339\pi\)
\(542\) 1.12630e6 0.164686
\(543\) −7.76758e6 −1.13054
\(544\) −22146.4 −0.00320852
\(545\) 0 0
\(546\) 995651. 0.142931
\(547\) −6.04060e6 −0.863201 −0.431600 0.902065i \(-0.642051\pi\)
−0.431600 + 0.902065i \(0.642051\pi\)
\(548\) 3.50251e6 0.498228
\(549\) −1.88323e7 −2.66668
\(550\) 0 0
\(551\) 9.06178e6 1.27155
\(552\) 9.24527e6 1.29143
\(553\) −4.28511e6 −0.595867
\(554\) 8.30832e6 1.15011
\(555\) 0 0
\(556\) −5.30034e6 −0.727138
\(557\) −5.15197e6 −0.703616 −0.351808 0.936072i \(-0.614433\pi\)
−0.351808 + 0.936072i \(0.614433\pi\)
\(558\) −1.38873e7 −1.88814
\(559\) −1.38363e6 −0.187280
\(560\) 0 0
\(561\) 120053. 0.0161052
\(562\) 133743. 0.0178620
\(563\) −614271. −0.0816750 −0.0408375 0.999166i \(-0.513003\pi\)
−0.0408375 + 0.999166i \(0.513003\pi\)
\(564\) 6.16768e6 0.816440
\(565\) 0 0
\(566\) −9.02149e6 −1.18369
\(567\) −1.12311e7 −1.46712
\(568\) 4.65429e6 0.605317
\(569\) −1.06927e7 −1.38454 −0.692270 0.721639i \(-0.743389\pi\)
−0.692270 + 0.721639i \(0.743389\pi\)
\(570\) 0 0
\(571\) −1.74824e6 −0.224393 −0.112197 0.993686i \(-0.535789\pi\)
−0.112197 + 0.993686i \(0.535789\pi\)
\(572\) 495819. 0.0633626
\(573\) 1.13412e7 1.44301
\(574\) 185429. 0.0234908
\(575\) 0 0
\(576\) 2.75848e6 0.346428
\(577\) 1.02190e7 1.27782 0.638909 0.769282i \(-0.279386\pi\)
0.638909 + 0.769282i \(0.279386\pi\)
\(578\) 5.67756e6 0.706874
\(579\) 911415. 0.112985
\(580\) 0 0
\(581\) −5.76905e6 −0.709029
\(582\) −1.36364e6 −0.166875
\(583\) 1.00398e6 0.122336
\(584\) 5.03595e6 0.611011
\(585\) 0 0
\(586\) −5.99107e6 −0.720710
\(587\) −1.18011e7 −1.41360 −0.706802 0.707412i \(-0.749863\pi\)
−0.706802 + 0.707412i \(0.749863\pi\)
\(588\) 6.99425e6 0.834253
\(589\) 9.58187e6 1.13805
\(590\) 0 0
\(591\) −2.46399e7 −2.90181
\(592\) −301743. −0.0353861
\(593\) 3.55381e6 0.415009 0.207504 0.978234i \(-0.433466\pi\)
0.207504 + 0.978234i \(0.433466\pi\)
\(594\) −9.55786e6 −1.11146
\(595\) 0 0
\(596\) −909591. −0.104889
\(597\) −2.59346e7 −2.97813
\(598\) 3.22575e6 0.368874
\(599\) 1.10074e7 1.25348 0.626742 0.779227i \(-0.284388\pi\)
0.626742 + 0.779227i \(0.284388\pi\)
\(600\) 0 0
\(601\) 1.18989e7 1.34375 0.671877 0.740663i \(-0.265489\pi\)
0.671877 + 0.740663i \(0.265489\pi\)
\(602\) 1.59330e6 0.179187
\(603\) 1.44666e7 1.62021
\(604\) 1.08147e6 0.120621
\(605\) 0 0
\(606\) 4.92473e6 0.544754
\(607\) 8.30894e6 0.915322 0.457661 0.889127i \(-0.348687\pi\)
0.457661 + 0.889127i \(0.348687\pi\)
\(608\) −1.90327e6 −0.208805
\(609\) 7.18081e6 0.784568
\(610\) 0 0
\(611\) 2.15195e6 0.233201
\(612\) 233041. 0.0251509
\(613\) −7.13046e6 −0.766419 −0.383210 0.923661i \(-0.625181\pi\)
−0.383210 + 0.923661i \(0.625181\pi\)
\(614\) −3.01034e6 −0.322252
\(615\) 0 0
\(616\) −570954. −0.0606246
\(617\) −3.60632e6 −0.381374 −0.190687 0.981651i \(-0.561072\pi\)
−0.190687 + 0.981651i \(0.561072\pi\)
\(618\) −1.27295e7 −1.34072
\(619\) −1.83897e6 −0.192907 −0.0964535 0.995337i \(-0.530750\pi\)
−0.0964535 + 0.995337i \(0.530750\pi\)
\(620\) 0 0
\(621\) −6.21825e7 −6.47052
\(622\) −8.97584e6 −0.930249
\(623\) 3.43088e6 0.354148
\(624\) 1.30973e6 0.134655
\(625\) 0 0
\(626\) 8.80595e6 0.898132
\(627\) 1.03174e7 1.04810
\(628\) −3.56760e6 −0.360975
\(629\) −25491.7 −0.00256905
\(630\) 0 0
\(631\) −1.06969e7 −1.06951 −0.534753 0.845009i \(-0.679595\pi\)
−0.534753 + 0.845009i \(0.679595\pi\)
\(632\) −5.63686e6 −0.561364
\(633\) −2.81851e6 −0.279583
\(634\) −9.10681e6 −0.899794
\(635\) 0 0
\(636\) 2.65208e6 0.259982
\(637\) 2.44035e6 0.238289
\(638\) 3.57593e6 0.347806
\(639\) −4.89760e7 −4.74494
\(640\) 0 0
\(641\) 785551. 0.0755143 0.0377571 0.999287i \(-0.487979\pi\)
0.0377571 + 0.999287i \(0.487979\pi\)
\(642\) −8.29880e6 −0.794654
\(643\) 1.56345e7 1.49127 0.745634 0.666356i \(-0.232147\pi\)
0.745634 + 0.666356i \(0.232147\pi\)
\(644\) −3.71457e6 −0.352934
\(645\) 0 0
\(646\) −160791. −0.0151594
\(647\) 7.19435e6 0.675664 0.337832 0.941206i \(-0.390306\pi\)
0.337832 + 0.941206i \(0.390306\pi\)
\(648\) −1.47740e7 −1.38217
\(649\) −1.95258e6 −0.181969
\(650\) 0 0
\(651\) 7.59295e6 0.702195
\(652\) 9.70575e6 0.894149
\(653\) 1.14576e7 1.05150 0.525752 0.850638i \(-0.323784\pi\)
0.525752 + 0.850638i \(0.323784\pi\)
\(654\) 1.93215e7 1.76643
\(655\) 0 0
\(656\) 243923. 0.0221306
\(657\) −5.29920e7 −4.78957
\(658\) −2.47806e6 −0.223124
\(659\) −5.39523e6 −0.483945 −0.241973 0.970283i \(-0.577794\pi\)
−0.241973 + 0.970283i \(0.577794\pi\)
\(660\) 0 0
\(661\) 1.58289e7 1.40912 0.704559 0.709645i \(-0.251145\pi\)
0.704559 + 0.709645i \(0.251145\pi\)
\(662\) 1.70678e6 0.151368
\(663\) 110648. 0.00977600
\(664\) −7.58891e6 −0.667973
\(665\) 0 0
\(666\) 3.17516e6 0.277383
\(667\) 2.32647e7 2.02480
\(668\) 5.56227e6 0.482293
\(669\) −1.63554e7 −1.41285
\(670\) 0 0
\(671\) 5.12754e6 0.439646
\(672\) −1.50821e6 −0.128836
\(673\) 4.13517e6 0.351930 0.175965 0.984396i \(-0.443695\pi\)
0.175965 + 0.984396i \(0.443695\pi\)
\(674\) −8.27016e6 −0.701236
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) −4.55672e6 −0.382103 −0.191052 0.981580i \(-0.561190\pi\)
−0.191052 + 0.981580i \(0.561190\pi\)
\(678\) −1.21233e7 −1.01285
\(679\) 547882. 0.0456051
\(680\) 0 0
\(681\) 9.01525e6 0.744921
\(682\) 3.78117e6 0.311290
\(683\) 9.28853e6 0.761895 0.380947 0.924597i \(-0.375598\pi\)
0.380947 + 0.924597i \(0.375598\pi\)
\(684\) 2.00276e7 1.63678
\(685\) 0 0
\(686\) −6.08096e6 −0.493358
\(687\) −2.52901e7 −2.04437
\(688\) 2.09591e6 0.168812
\(689\) 925332. 0.0742590
\(690\) 0 0
\(691\) −1.76099e6 −0.140301 −0.0701507 0.997536i \(-0.522348\pi\)
−0.0701507 + 0.997536i \(0.522348\pi\)
\(692\) −581852. −0.0461899
\(693\) 6.00800e6 0.475222
\(694\) 3.93694e6 0.310284
\(695\) 0 0
\(696\) 9.44602e6 0.739138
\(697\) 20607.0 0.00160669
\(698\) −1.75113e6 −0.136044
\(699\) 2.18130e6 0.168859
\(700\) 0 0
\(701\) 1.20471e7 0.925950 0.462975 0.886371i \(-0.346782\pi\)
0.462975 + 0.886371i \(0.346782\pi\)
\(702\) −8.80909e6 −0.674665
\(703\) −2.19077e6 −0.167189
\(704\) −751062. −0.0571142
\(705\) 0 0
\(706\) −1.09762e7 −0.828783
\(707\) −1.97866e6 −0.148875
\(708\) −5.15784e6 −0.386709
\(709\) 3.45858e6 0.258394 0.129197 0.991619i \(-0.458760\pi\)
0.129197 + 0.991619i \(0.458760\pi\)
\(710\) 0 0
\(711\) 5.93153e7 4.40041
\(712\) 4.51316e6 0.333642
\(713\) 2.45999e7 1.81222
\(714\) −127416. −0.00935357
\(715\) 0 0
\(716\) −2.99021e6 −0.217981
\(717\) 3.42287e7 2.48652
\(718\) 1.46674e7 1.06180
\(719\) −1.66383e7 −1.20029 −0.600146 0.799891i \(-0.704891\pi\)
−0.600146 + 0.799891i \(0.704891\pi\)
\(720\) 0 0
\(721\) 5.11445e6 0.366405
\(722\) −3.91410e6 −0.279440
\(723\) 3.30695e7 2.35278
\(724\) 4.10535e6 0.291074
\(725\) 0 0
\(726\) −1.54306e7 −1.08653
\(727\) 5.70304e6 0.400194 0.200097 0.979776i \(-0.435874\pi\)
0.200097 + 0.979776i \(0.435874\pi\)
\(728\) −526225. −0.0367996
\(729\) 5.96013e7 4.15372
\(730\) 0 0
\(731\) 177066. 0.0122558
\(732\) 1.35447e7 0.934311
\(733\) −1.80882e7 −1.24347 −0.621735 0.783228i \(-0.713572\pi\)
−0.621735 + 0.783228i \(0.713572\pi\)
\(734\) 1.59591e7 1.09337
\(735\) 0 0
\(736\) −4.88634e6 −0.332498
\(737\) −3.93887e6 −0.267118
\(738\) −2.56674e6 −0.173476
\(739\) 8.58937e6 0.578563 0.289281 0.957244i \(-0.406584\pi\)
0.289281 + 0.957244i \(0.406584\pi\)
\(740\) 0 0
\(741\) 9.50918e6 0.636205
\(742\) −1.06555e6 −0.0710503
\(743\) −3.77059e6 −0.250575 −0.125287 0.992120i \(-0.539985\pi\)
−0.125287 + 0.992120i \(0.539985\pi\)
\(744\) 9.98816e6 0.661536
\(745\) 0 0
\(746\) −1.36277e7 −0.896554
\(747\) 7.98562e7 5.23609
\(748\) −63451.0 −0.00414653
\(749\) 3.33430e6 0.217170
\(750\) 0 0
\(751\) 69637.4 0.00450549 0.00225275 0.999997i \(-0.499283\pi\)
0.00225275 + 0.999997i \(0.499283\pi\)
\(752\) −3.25976e6 −0.210204
\(753\) −5.75421e7 −3.69827
\(754\) 3.29579e6 0.211121
\(755\) 0 0
\(756\) 1.01440e7 0.645513
\(757\) 1.98883e7 1.26141 0.630706 0.776022i \(-0.282765\pi\)
0.630706 + 0.776022i \(0.282765\pi\)
\(758\) −1.54628e7 −0.977499
\(759\) 2.64884e7 1.66898
\(760\) 0 0
\(761\) −8.37595e6 −0.524291 −0.262146 0.965028i \(-0.584430\pi\)
−0.262146 + 0.965028i \(0.584430\pi\)
\(762\) 3.14684e7 1.96330
\(763\) −7.76300e6 −0.482746
\(764\) −5.99407e6 −0.371525
\(765\) 0 0
\(766\) 1.58006e7 0.972974
\(767\) −1.79961e6 −0.110456
\(768\) −1.98397e6 −0.121376
\(769\) 1.14325e7 0.697148 0.348574 0.937281i \(-0.386666\pi\)
0.348574 + 0.937281i \(0.386666\pi\)
\(770\) 0 0
\(771\) 4.93836e7 2.99190
\(772\) −481704. −0.0290896
\(773\) 1.04075e7 0.626467 0.313234 0.949676i \(-0.398588\pi\)
0.313234 + 0.949676i \(0.398588\pi\)
\(774\) −2.20548e7 −1.32328
\(775\) 0 0
\(776\) 720713. 0.0429644
\(777\) −1.73603e6 −0.103158
\(778\) 1.65580e6 0.0980752
\(779\) 1.77098e6 0.104561
\(780\) 0 0
\(781\) 1.33349e7 0.782280
\(782\) −412806. −0.0241396
\(783\) −6.35327e7 −3.70334
\(784\) −3.69662e6 −0.214791
\(785\) 0 0
\(786\) −2.07856e7 −1.20007
\(787\) −2.60331e7 −1.49827 −0.749134 0.662418i \(-0.769530\pi\)
−0.749134 + 0.662418i \(0.769530\pi\)
\(788\) 1.30227e7 0.747114
\(789\) 1.30329e7 0.745329
\(790\) 0 0
\(791\) 4.87090e6 0.276801
\(792\) 7.90324e6 0.447705
\(793\) 4.72585e6 0.266868
\(794\) 3.58726e6 0.201935
\(795\) 0 0
\(796\) 1.37070e7 0.766763
\(797\) 1.37335e7 0.765837 0.382918 0.923782i \(-0.374919\pi\)
0.382918 + 0.923782i \(0.374919\pi\)
\(798\) −1.09502e7 −0.608715
\(799\) −275390. −0.0152610
\(800\) 0 0
\(801\) −4.74908e7 −2.61534
\(802\) 906680. 0.0497758
\(803\) 1.44284e7 0.789638
\(804\) −1.04048e7 −0.567664
\(805\) 0 0
\(806\) 3.48495e6 0.188955
\(807\) −894009. −0.0483235
\(808\) −2.60283e6 −0.140255
\(809\) −1.72731e6 −0.0927895 −0.0463947 0.998923i \(-0.514773\pi\)
−0.0463947 + 0.998923i \(0.514773\pi\)
\(810\) 0 0
\(811\) 2.78088e7 1.48467 0.742335 0.670029i \(-0.233718\pi\)
0.742335 + 0.670029i \(0.233718\pi\)
\(812\) −3.79523e6 −0.201998
\(813\) 8.52412e6 0.452297
\(814\) −864515. −0.0457311
\(815\) 0 0
\(816\) −167609. −0.00881197
\(817\) 1.52172e7 0.797588
\(818\) 1.22798e7 0.641663
\(819\) 5.53733e6 0.288464
\(820\) 0 0
\(821\) −1.34763e7 −0.697771 −0.348886 0.937165i \(-0.613440\pi\)
−0.348886 + 0.937165i \(0.613440\pi\)
\(822\) 2.65079e7 1.36835
\(823\) 2.98539e7 1.53639 0.768196 0.640215i \(-0.221155\pi\)
0.768196 + 0.640215i \(0.221155\pi\)
\(824\) 6.72782e6 0.345188
\(825\) 0 0
\(826\) 2.07232e6 0.105683
\(827\) −1.86881e7 −0.950170 −0.475085 0.879940i \(-0.657583\pi\)
−0.475085 + 0.879940i \(0.657583\pi\)
\(828\) 5.14178e7 2.60638
\(829\) 2.92764e7 1.47955 0.739777 0.672852i \(-0.234931\pi\)
0.739777 + 0.672852i \(0.234931\pi\)
\(830\) 0 0
\(831\) 6.28795e7 3.15869
\(832\) −692224. −0.0346688
\(833\) −312297. −0.0155939
\(834\) −4.01143e7 −1.99703
\(835\) 0 0
\(836\) −5.45301e6 −0.269849
\(837\) −6.71791e7 −3.31452
\(838\) 1.10063e7 0.541417
\(839\) 5.09345e6 0.249808 0.124904 0.992169i \(-0.460138\pi\)
0.124904 + 0.992169i \(0.460138\pi\)
\(840\) 0 0
\(841\) 3.25869e6 0.158874
\(842\) −1.16566e7 −0.566619
\(843\) 1.01220e6 0.0490567
\(844\) 1.48965e6 0.0719826
\(845\) 0 0
\(846\) 3.43017e7 1.64774
\(847\) 6.19970e6 0.296936
\(848\) −1.40169e6 −0.0669362
\(849\) −6.82769e7 −3.25091
\(850\) 0 0
\(851\) −5.62446e6 −0.266230
\(852\) 3.52249e7 1.66246
\(853\) −2.71182e7 −1.27611 −0.638056 0.769990i \(-0.720261\pi\)
−0.638056 + 0.769990i \(0.720261\pi\)
\(854\) −5.44199e6 −0.255337
\(855\) 0 0
\(856\) 4.38611e6 0.204595
\(857\) −2.90233e7 −1.34988 −0.674939 0.737873i \(-0.735830\pi\)
−0.674939 + 0.737873i \(0.735830\pi\)
\(858\) 3.75248e6 0.174020
\(859\) 9.21734e6 0.426209 0.213105 0.977029i \(-0.431643\pi\)
0.213105 + 0.977029i \(0.431643\pi\)
\(860\) 0 0
\(861\) 1.40337e6 0.0645156
\(862\) 5.14230e6 0.235716
\(863\) 5.18993e6 0.237211 0.118605 0.992941i \(-0.462158\pi\)
0.118605 + 0.992941i \(0.462158\pi\)
\(864\) 1.33440e7 0.608135
\(865\) 0 0
\(866\) −1.92902e7 −0.874064
\(867\) 4.29692e7 1.94138
\(868\) −4.01305e6 −0.180790
\(869\) −1.61500e7 −0.725478
\(870\) 0 0
\(871\) −3.63030e6 −0.162143
\(872\) −1.02119e7 −0.454793
\(873\) −7.58389e6 −0.336788
\(874\) −3.54768e7 −1.57096
\(875\) 0 0
\(876\) 3.81133e7 1.67810
\(877\) −1.62757e6 −0.0714563 −0.0357281 0.999362i \(-0.511375\pi\)
−0.0357281 + 0.999362i \(0.511375\pi\)
\(878\) −2.74736e6 −0.120276
\(879\) −4.53420e7 −1.97938
\(880\) 0 0
\(881\) −1.51075e6 −0.0655771 −0.0327885 0.999462i \(-0.510439\pi\)
−0.0327885 + 0.999462i \(0.510439\pi\)
\(882\) 3.88986e7 1.68369
\(883\) 4.23022e7 1.82583 0.912917 0.408144i \(-0.133824\pi\)
0.912917 + 0.408144i \(0.133824\pi\)
\(884\) −58480.2 −0.00251697
\(885\) 0 0
\(886\) −1.43741e7 −0.615171
\(887\) −4.11822e7 −1.75752 −0.878759 0.477265i \(-0.841628\pi\)
−0.878759 + 0.477265i \(0.841628\pi\)
\(888\) −2.28366e6 −0.0971852
\(889\) −1.26434e7 −0.536549
\(890\) 0 0
\(891\) −4.23287e7 −1.78624
\(892\) 8.64419e6 0.363758
\(893\) −2.36672e7 −0.993157
\(894\) −6.88402e6 −0.288070
\(895\) 0 0
\(896\) 797122. 0.0331707
\(897\) 2.44133e7 1.01308
\(898\) 1.51070e7 0.625155
\(899\) 2.51341e7 1.03720
\(900\) 0 0
\(901\) −118417. −0.00485961
\(902\) 698857. 0.0286004
\(903\) 1.20585e7 0.492124
\(904\) 6.40744e6 0.260774
\(905\) 0 0
\(906\) 8.18485e6 0.331276
\(907\) 8.04757e6 0.324823 0.162411 0.986723i \(-0.448073\pi\)
0.162411 + 0.986723i \(0.448073\pi\)
\(908\) −4.76477e6 −0.191791
\(909\) 2.73890e7 1.09943
\(910\) 0 0
\(911\) 4.68266e7 1.86938 0.934688 0.355468i \(-0.115679\pi\)
0.934688 + 0.355468i \(0.115679\pi\)
\(912\) −1.44044e7 −0.573468
\(913\) −2.17428e7 −0.863254
\(914\) −1.94506e7 −0.770134
\(915\) 0 0
\(916\) 1.33664e7 0.526352
\(917\) 8.35123e6 0.327965
\(918\) 1.12732e6 0.0441510
\(919\) 4.47821e7 1.74910 0.874552 0.484931i \(-0.161155\pi\)
0.874552 + 0.484931i \(0.161155\pi\)
\(920\) 0 0
\(921\) −2.27831e7 −0.885040
\(922\) 9.29885e6 0.360248
\(923\) 1.22902e7 0.474850
\(924\) −4.32112e6 −0.166501
\(925\) 0 0
\(926\) −1.79387e7 −0.687487
\(927\) −7.07951e7 −2.70585
\(928\) −4.99244e6 −0.190302
\(929\) 2.24234e7 0.852439 0.426219 0.904620i \(-0.359845\pi\)
0.426219 + 0.904620i \(0.359845\pi\)
\(930\) 0 0
\(931\) −2.68390e7 −1.01483
\(932\) −1.15287e6 −0.0434751
\(933\) −6.79315e7 −2.55486
\(934\) 1.49340e6 0.0560155
\(935\) 0 0
\(936\) 7.28410e6 0.271760
\(937\) −9.70701e6 −0.361191 −0.180595 0.983557i \(-0.557802\pi\)
−0.180595 + 0.983557i \(0.557802\pi\)
\(938\) 4.18043e6 0.155136
\(939\) 6.66456e7 2.46665
\(940\) 0 0
\(941\) 3.83951e7 1.41352 0.706760 0.707453i \(-0.250156\pi\)
0.706760 + 0.707453i \(0.250156\pi\)
\(942\) −2.70005e7 −0.991391
\(943\) 4.54670e6 0.166501
\(944\) 2.72604e6 0.0995639
\(945\) 0 0
\(946\) 6.00495e6 0.218163
\(947\) −2.96988e7 −1.07613 −0.538064 0.842904i \(-0.680844\pi\)
−0.538064 + 0.842904i \(0.680844\pi\)
\(948\) −4.26612e7 −1.54174
\(949\) 1.32980e7 0.479316
\(950\) 0 0
\(951\) −6.89226e7 −2.47122
\(952\) 67342.2 0.00240821
\(953\) −3.29694e7 −1.17592 −0.587961 0.808889i \(-0.700069\pi\)
−0.587961 + 0.808889i \(0.700069\pi\)
\(954\) 1.47496e7 0.524697
\(955\) 0 0
\(956\) −1.80907e7 −0.640191
\(957\) 2.70636e7 0.955224
\(958\) −2.03316e7 −0.715744
\(959\) −1.06504e7 −0.373954
\(960\) 0 0
\(961\) −2.05255e6 −0.0716943
\(962\) −796789. −0.0277591
\(963\) −4.61540e7 −1.60377
\(964\) −1.74780e7 −0.605758
\(965\) 0 0
\(966\) −2.81128e7 −0.969308
\(967\) 3.22700e6 0.110977 0.0554885 0.998459i \(-0.482328\pi\)
0.0554885 + 0.998459i \(0.482328\pi\)
\(968\) 8.15541e6 0.279742
\(969\) −1.21691e6 −0.0416341
\(970\) 0 0
\(971\) −3.78306e7 −1.28764 −0.643822 0.765176i \(-0.722652\pi\)
−0.643822 + 0.765176i \(0.722652\pi\)
\(972\) −6.11483e7 −2.07596
\(973\) 1.61172e7 0.545766
\(974\) −2.02348e7 −0.683441
\(975\) 0 0
\(976\) −7.15869e6 −0.240552
\(977\) −2.42424e7 −0.812529 −0.406265 0.913755i \(-0.633169\pi\)
−0.406265 + 0.913755i \(0.633169\pi\)
\(978\) 7.34556e7 2.45571
\(979\) 1.29305e7 0.431181
\(980\) 0 0
\(981\) 1.07457e8 3.56502
\(982\) 1.17551e7 0.389000
\(983\) −4.25830e6 −0.140557 −0.0702785 0.997527i \(-0.522389\pi\)
−0.0702785 + 0.997527i \(0.522389\pi\)
\(984\) 1.84607e6 0.0607799
\(985\) 0 0
\(986\) −421770. −0.0138160
\(987\) −1.87546e7 −0.612793
\(988\) −5.02582e6 −0.163800
\(989\) 3.90677e7 1.27007
\(990\) 0 0
\(991\) 1.84537e6 0.0596897 0.0298448 0.999555i \(-0.490499\pi\)
0.0298448 + 0.999555i \(0.490499\pi\)
\(992\) −5.27898e6 −0.170322
\(993\) 1.29174e7 0.415720
\(994\) −1.41527e7 −0.454331
\(995\) 0 0
\(996\) −5.74348e7 −1.83454
\(997\) −9.84877e6 −0.313794 −0.156897 0.987615i \(-0.550149\pi\)
−0.156897 + 0.987615i \(0.550149\pi\)
\(998\) −3.77930e6 −0.120112
\(999\) 1.53596e7 0.486931
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.v.1.1 9
5.2 odd 4 130.6.b.b.79.9 18
5.3 odd 4 130.6.b.b.79.10 yes 18
5.4 even 2 650.6.a.w.1.9 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.b.b.79.9 18 5.2 odd 4
130.6.b.b.79.10 yes 18 5.3 odd 4
650.6.a.v.1.1 9 1.1 even 1 trivial
650.6.a.w.1.9 9 5.4 even 2