Properties

Label 650.6.b.c.599.3
Level $650$
Weight $6$
Character 650.599
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.3
Root \(-1.87083 - 1.87083i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.6.b.c.599.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} -3.22497i q^{3} -16.0000 q^{4} +12.8999 q^{6} -200.833i q^{7} -64.0000i q^{8} +232.600 q^{9} -530.607 q^{11} +51.5996i q^{12} +169.000i q^{13} +803.333 q^{14} +256.000 q^{16} -15.1196i q^{17} +930.398i q^{18} +392.592 q^{19} -647.681 q^{21} -2122.43i q^{22} -2633.57i q^{23} -206.398 q^{24} -676.000 q^{26} -1533.80i q^{27} +3213.33i q^{28} +7135.52 q^{29} +6828.51 q^{31} +1024.00i q^{32} +1711.19i q^{33} +60.4783 q^{34} -3721.59 q^{36} -13272.7i q^{37} +1570.37i q^{38} +545.020 q^{39} +3210.06 q^{41} -2590.73i q^{42} +11083.4i q^{43} +8489.71 q^{44} +10534.3 q^{46} +9258.69i q^{47} -825.593i q^{48} -23527.0 q^{49} -48.7602 q^{51} -2704.00i q^{52} -3520.99i q^{53} +6135.18 q^{54} -12853.3 q^{56} -1266.10i q^{57} +28542.1i q^{58} -40334.1 q^{59} -44243.3 q^{61} +27314.0i q^{62} -46713.7i q^{63} -4096.00 q^{64} -6844.77 q^{66} +7071.36i q^{67} +241.913i q^{68} -8493.18 q^{69} -36271.3 q^{71} -14886.4i q^{72} +41064.8i q^{73} +53090.8 q^{74} -6281.47 q^{76} +106563. i q^{77} +2180.08i q^{78} +19473.4 q^{79} +51575.2 q^{81} +12840.3i q^{82} -67566.0i q^{83} +10362.9 q^{84} -44333.6 q^{86} -23011.9i q^{87} +33958.9i q^{88} -33319.0 q^{89} +33940.8 q^{91} +42137.1i q^{92} -22021.7i q^{93} -37034.8 q^{94} +3302.37 q^{96} -2206.46i q^{97} -94107.8i q^{98} -123419. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} - 128 q^{6} + 212 q^{9} - 72 q^{11} + 2016 q^{14} + 1024 q^{16} + 2184 q^{19} + 672 q^{21} + 2048 q^{24} - 2704 q^{26} + 9744 q^{29} - 4520 q^{31} + 19040 q^{34} - 3392 q^{36} - 5408 q^{39}+ \cdots - 372072 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) − 3.22497i − 0.206882i −0.994636 0.103441i \(-0.967015\pi\)
0.994636 0.103441i \(-0.0329853\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) 12.8999 0.146288
\(7\) − 200.833i − 1.54914i −0.632489 0.774569i \(-0.717967\pi\)
0.632489 0.774569i \(-0.282033\pi\)
\(8\) − 64.0000i − 0.353553i
\(9\) 232.600 0.957200
\(10\) 0 0
\(11\) −530.607 −1.32218 −0.661091 0.750306i \(-0.729906\pi\)
−0.661091 + 0.750306i \(0.729906\pi\)
\(12\) 51.5996i 0.103441i
\(13\) 169.000i 0.277350i
\(14\) 803.333 1.09541
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 15.1196i − 0.0126887i −0.999980 0.00634435i \(-0.997981\pi\)
0.999980 0.00634435i \(-0.00201948\pi\)
\(18\) 930.398i 0.676842i
\(19\) 392.592 0.249493 0.124746 0.992189i \(-0.460188\pi\)
0.124746 + 0.992189i \(0.460188\pi\)
\(20\) 0 0
\(21\) −647.681 −0.320489
\(22\) − 2122.43i − 0.934924i
\(23\) − 2633.57i − 1.03807i −0.854754 0.519033i \(-0.826292\pi\)
0.854754 0.519033i \(-0.173708\pi\)
\(24\) −206.398 −0.0731439
\(25\) 0 0
\(26\) −676.000 −0.196116
\(27\) − 1533.80i − 0.404910i
\(28\) 3213.33i 0.774569i
\(29\) 7135.52 1.57554 0.787772 0.615966i \(-0.211234\pi\)
0.787772 + 0.615966i \(0.211234\pi\)
\(30\) 0 0
\(31\) 6828.51 1.27621 0.638104 0.769950i \(-0.279719\pi\)
0.638104 + 0.769950i \(0.279719\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 1711.19i 0.273536i
\(34\) 60.4783 0.00897227
\(35\) 0 0
\(36\) −3721.59 −0.478600
\(37\) − 13272.7i − 1.59388i −0.604060 0.796939i \(-0.706451\pi\)
0.604060 0.796939i \(-0.293549\pi\)
\(38\) 1570.37i 0.176418i
\(39\) 545.020 0.0573788
\(40\) 0 0
\(41\) 3210.06 0.298232 0.149116 0.988820i \(-0.452357\pi\)
0.149116 + 0.988820i \(0.452357\pi\)
\(42\) − 2590.73i − 0.226620i
\(43\) 11083.4i 0.914118i 0.889436 + 0.457059i \(0.151097\pi\)
−0.889436 + 0.457059i \(0.848903\pi\)
\(44\) 8489.71 0.661091
\(45\) 0 0
\(46\) 10534.3 0.734023
\(47\) 9258.69i 0.611371i 0.952132 + 0.305686i \(0.0988857\pi\)
−0.952132 + 0.305686i \(0.901114\pi\)
\(48\) − 825.593i − 0.0517205i
\(49\) −23527.0 −1.39983
\(50\) 0 0
\(51\) −48.7602 −0.00262507
\(52\) − 2704.00i − 0.138675i
\(53\) − 3520.99i − 0.172177i −0.996287 0.0860885i \(-0.972563\pi\)
0.996287 0.0860885i \(-0.0274368\pi\)
\(54\) 6135.18 0.286314
\(55\) 0 0
\(56\) −12853.3 −0.547703
\(57\) − 1266.10i − 0.0516155i
\(58\) 28542.1i 1.11408i
\(59\) −40334.1 −1.50849 −0.754245 0.656593i \(-0.771997\pi\)
−0.754245 + 0.656593i \(0.771997\pi\)
\(60\) 0 0
\(61\) −44243.3 −1.52238 −0.761189 0.648530i \(-0.775384\pi\)
−0.761189 + 0.648530i \(0.775384\pi\)
\(62\) 27314.0i 0.902415i
\(63\) − 46713.7i − 1.48284i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) −6844.77 −0.193419
\(67\) 7071.36i 0.192449i 0.995360 + 0.0962246i \(0.0306767\pi\)
−0.995360 + 0.0962246i \(0.969323\pi\)
\(68\) 241.913i 0.00634435i
\(69\) −8493.18 −0.214757
\(70\) 0 0
\(71\) −36271.3 −0.853921 −0.426961 0.904270i \(-0.640416\pi\)
−0.426961 + 0.904270i \(0.640416\pi\)
\(72\) − 14886.4i − 0.338421i
\(73\) 41064.8i 0.901909i 0.892547 + 0.450955i \(0.148916\pi\)
−0.892547 + 0.450955i \(0.851084\pi\)
\(74\) 53090.8 1.12704
\(75\) 0 0
\(76\) −6281.47 −0.124746
\(77\) 106563.i 2.04824i
\(78\) 2180.08i 0.0405729i
\(79\) 19473.4 0.351053 0.175527 0.984475i \(-0.443837\pi\)
0.175527 + 0.984475i \(0.443837\pi\)
\(80\) 0 0
\(81\) 51575.2 0.873431
\(82\) 12840.3i 0.210882i
\(83\) − 67566.0i − 1.07655i −0.842770 0.538274i \(-0.819077\pi\)
0.842770 0.538274i \(-0.180923\pi\)
\(84\) 10362.9 0.160245
\(85\) 0 0
\(86\) −44333.6 −0.646379
\(87\) − 23011.9i − 0.325952i
\(88\) 33958.9i 0.467462i
\(89\) −33319.0 −0.445878 −0.222939 0.974832i \(-0.571565\pi\)
−0.222939 + 0.974832i \(0.571565\pi\)
\(90\) 0 0
\(91\) 33940.8 0.429654
\(92\) 42137.1i 0.519033i
\(93\) − 22021.7i − 0.264025i
\(94\) −37034.8 −0.432305
\(95\) 0 0
\(96\) 3302.37 0.0365719
\(97\) − 2206.46i − 0.0238103i −0.999929 0.0119052i \(-0.996210\pi\)
0.999929 0.0119052i \(-0.00378962\pi\)
\(98\) − 94107.8i − 0.989830i
\(99\) −123419. −1.26559
\(100\) 0 0
\(101\) −93675.8 −0.913743 −0.456871 0.889533i \(-0.651030\pi\)
−0.456871 + 0.889533i \(0.651030\pi\)
\(102\) − 195.041i − 0.00185620i
\(103\) − 116473.i − 1.08176i −0.841099 0.540881i \(-0.818091\pi\)
0.841099 0.540881i \(-0.181909\pi\)
\(104\) 10816.0 0.0980581
\(105\) 0 0
\(106\) 14084.0 0.121747
\(107\) − 195303.i − 1.64911i −0.565784 0.824554i \(-0.691426\pi\)
0.565784 0.824554i \(-0.308574\pi\)
\(108\) 24540.7i 0.202455i
\(109\) −173562. −1.39923 −0.699613 0.714522i \(-0.746644\pi\)
−0.699613 + 0.714522i \(0.746644\pi\)
\(110\) 0 0
\(111\) −42804.1 −0.329745
\(112\) − 51413.3i − 0.387285i
\(113\) − 3810.27i − 0.0280711i −0.999901 0.0140356i \(-0.995532\pi\)
0.999901 0.0140356i \(-0.00446781\pi\)
\(114\) 5064.39 0.0364977
\(115\) 0 0
\(116\) −114168. −0.787772
\(117\) 39309.3i 0.265479i
\(118\) − 161336.i − 1.06666i
\(119\) −3036.51 −0.0196566
\(120\) 0 0
\(121\) 120493. 0.748166
\(122\) − 176973.i − 1.07648i
\(123\) − 10352.4i − 0.0616988i
\(124\) −109256. −0.638104
\(125\) 0 0
\(126\) 186855. 1.04852
\(127\) − 19926.1i − 0.109626i −0.998497 0.0548130i \(-0.982544\pi\)
0.998497 0.0548130i \(-0.0174563\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) 35743.7 0.189115
\(130\) 0 0
\(131\) 266895. 1.35882 0.679409 0.733759i \(-0.262236\pi\)
0.679409 + 0.733759i \(0.262236\pi\)
\(132\) − 27379.1i − 0.136768i
\(133\) − 78845.5i − 0.386498i
\(134\) −28285.4 −0.136082
\(135\) 0 0
\(136\) −967.653 −0.00448614
\(137\) 9618.96i 0.0437851i 0.999760 + 0.0218926i \(0.00696918\pi\)
−0.999760 + 0.0218926i \(0.993031\pi\)
\(138\) − 33972.7i − 0.151856i
\(139\) 85185.2 0.373962 0.186981 0.982364i \(-0.440130\pi\)
0.186981 + 0.982364i \(0.440130\pi\)
\(140\) 0 0
\(141\) 29859.0 0.126482
\(142\) − 145085.i − 0.603813i
\(143\) − 89672.6i − 0.366707i
\(144\) 59545.5 0.239300
\(145\) 0 0
\(146\) −164259. −0.637746
\(147\) 75873.8i 0.289600i
\(148\) 212363.i 0.796939i
\(149\) −222940. −0.822663 −0.411332 0.911486i \(-0.634936\pi\)
−0.411332 + 0.911486i \(0.634936\pi\)
\(150\) 0 0
\(151\) −363446. −1.29717 −0.648585 0.761142i \(-0.724639\pi\)
−0.648585 + 0.761142i \(0.724639\pi\)
\(152\) − 25125.9i − 0.0882089i
\(153\) − 3516.81i − 0.0121456i
\(154\) −426254. −1.44833
\(155\) 0 0
\(156\) −8720.32 −0.0286894
\(157\) − 323402.i − 1.04711i −0.851991 0.523556i \(-0.824605\pi\)
0.851991 0.523556i \(-0.175395\pi\)
\(158\) 77893.5i 0.248232i
\(159\) −11355.1 −0.0356203
\(160\) 0 0
\(161\) −528908. −1.60811
\(162\) 206301.i 0.617609i
\(163\) 361691.i 1.06627i 0.846029 + 0.533137i \(0.178987\pi\)
−0.846029 + 0.533137i \(0.821013\pi\)
\(164\) −51361.0 −0.149116
\(165\) 0 0
\(166\) 270264. 0.761234
\(167\) − 535913.i − 1.48697i −0.668751 0.743486i \(-0.733171\pi\)
0.668751 0.743486i \(-0.266829\pi\)
\(168\) 41451.6i 0.113310i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 91316.7 0.238814
\(172\) − 177335.i − 0.457059i
\(173\) 252514.i 0.641462i 0.947170 + 0.320731i \(0.103929\pi\)
−0.947170 + 0.320731i \(0.896071\pi\)
\(174\) 92047.4 0.230483
\(175\) 0 0
\(176\) −135835. −0.330546
\(177\) 130076.i 0.312079i
\(178\) − 133276.i − 0.315284i
\(179\) 499988. 1.16634 0.583172 0.812349i \(-0.301811\pi\)
0.583172 + 0.812349i \(0.301811\pi\)
\(180\) 0 0
\(181\) −607767. −1.37892 −0.689462 0.724322i \(-0.742153\pi\)
−0.689462 + 0.724322i \(0.742153\pi\)
\(182\) 135763.i 0.303811i
\(183\) 142683.i 0.314953i
\(184\) −168548. −0.367012
\(185\) 0 0
\(186\) 88087.0 0.186694
\(187\) 8022.56i 0.0167768i
\(188\) − 148139.i − 0.305686i
\(189\) −308037. −0.627261
\(190\) 0 0
\(191\) 51603.7 0.102352 0.0511762 0.998690i \(-0.483703\pi\)
0.0511762 + 0.998690i \(0.483703\pi\)
\(192\) 13209.5i 0.0258603i
\(193\) 946349.i 1.82877i 0.404851 + 0.914383i \(0.367323\pi\)
−0.404851 + 0.914383i \(0.632677\pi\)
\(194\) 8825.82 0.0168365
\(195\) 0 0
\(196\) 376431. 0.699915
\(197\) − 229033.i − 0.420468i −0.977651 0.210234i \(-0.932577\pi\)
0.977651 0.210234i \(-0.0674226\pi\)
\(198\) − 493676.i − 0.894909i
\(199\) −1.06207e6 −1.90116 −0.950582 0.310473i \(-0.899513\pi\)
−0.950582 + 0.310473i \(0.899513\pi\)
\(200\) 0 0
\(201\) 22804.9 0.0398143
\(202\) − 374703.i − 0.646114i
\(203\) − 1.43305e6i − 2.44074i
\(204\) 780.164 0.00131253
\(205\) 0 0
\(206\) 465892. 0.764922
\(207\) − 612567.i − 0.993636i
\(208\) 43264.0i 0.0693375i
\(209\) −208312. −0.329875
\(210\) 0 0
\(211\) −256699. −0.396934 −0.198467 0.980108i \(-0.563596\pi\)
−0.198467 + 0.980108i \(0.563596\pi\)
\(212\) 56335.8i 0.0860885i
\(213\) 116974.i 0.176661i
\(214\) 781211. 1.16610
\(215\) 0 0
\(216\) −98162.9 −0.143157
\(217\) − 1.37139e6i − 1.97702i
\(218\) − 694247.i − 0.989402i
\(219\) 132433. 0.186589
\(220\) 0 0
\(221\) 2555.21 0.00351921
\(222\) − 171216.i − 0.233165i
\(223\) − 809910.i − 1.09062i −0.838233 0.545312i \(-0.816411\pi\)
0.838233 0.545312i \(-0.183589\pi\)
\(224\) 205653. 0.273852
\(225\) 0 0
\(226\) 15241.1 0.0198493
\(227\) − 656318.i − 0.845375i −0.906276 0.422687i \(-0.861087\pi\)
0.906276 0.422687i \(-0.138913\pi\)
\(228\) 20257.6i 0.0258078i
\(229\) −1.19398e6 −1.50456 −0.752280 0.658844i \(-0.771046\pi\)
−0.752280 + 0.658844i \(0.771046\pi\)
\(230\) 0 0
\(231\) 343664. 0.423745
\(232\) − 456673.i − 0.557039i
\(233\) 1.06005e6i 1.27920i 0.768709 + 0.639598i \(0.220899\pi\)
−0.768709 + 0.639598i \(0.779101\pi\)
\(234\) −157237. −0.187722
\(235\) 0 0
\(236\) 645346. 0.754245
\(237\) − 62801.1i − 0.0726267i
\(238\) − 12146.1i − 0.0138993i
\(239\) −456553. −0.517006 −0.258503 0.966010i \(-0.583229\pi\)
−0.258503 + 0.966010i \(0.583229\pi\)
\(240\) 0 0
\(241\) 1.22007e6 1.35314 0.676569 0.736379i \(-0.263466\pi\)
0.676569 + 0.736379i \(0.263466\pi\)
\(242\) 481971.i 0.529033i
\(243\) − 539041.i − 0.585607i
\(244\) 707892. 0.761189
\(245\) 0 0
\(246\) 41409.5 0.0436277
\(247\) 66348.1i 0.0691968i
\(248\) − 437024.i − 0.451208i
\(249\) −217899. −0.222718
\(250\) 0 0
\(251\) 1.44804e6 1.45076 0.725382 0.688347i \(-0.241663\pi\)
0.725382 + 0.688347i \(0.241663\pi\)
\(252\) 747419.i 0.741418i
\(253\) 1.39739e6i 1.37251i
\(254\) 79704.5 0.0775173
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) − 1.21790e6i − 1.15021i −0.818079 0.575106i \(-0.804961\pi\)
0.818079 0.575106i \(-0.195039\pi\)
\(258\) 142975.i 0.133724i
\(259\) −2.66560e6 −2.46914
\(260\) 0 0
\(261\) 1.65972e6 1.50811
\(262\) 1.06758e6i 0.960830i
\(263\) − 1.51165e6i − 1.34760i −0.738915 0.673799i \(-0.764661\pi\)
0.738915 0.673799i \(-0.235339\pi\)
\(264\) 109516. 0.0967095
\(265\) 0 0
\(266\) 315382. 0.273296
\(267\) 107453.i 0.0922443i
\(268\) − 113142.i − 0.0962246i
\(269\) −405154. −0.341381 −0.170691 0.985325i \(-0.554600\pi\)
−0.170691 + 0.985325i \(0.554600\pi\)
\(270\) 0 0
\(271\) 613161. 0.507167 0.253584 0.967313i \(-0.418391\pi\)
0.253584 + 0.967313i \(0.418391\pi\)
\(272\) − 3870.61i − 0.00317218i
\(273\) − 109458.i − 0.0888877i
\(274\) −38475.8 −0.0309608
\(275\) 0 0
\(276\) 135891. 0.107379
\(277\) − 1.14240e6i − 0.894579i −0.894389 0.447289i \(-0.852389\pi\)
0.894389 0.447289i \(-0.147611\pi\)
\(278\) 340741.i 0.264431i
\(279\) 1.58831e6 1.22159
\(280\) 0 0
\(281\) −705223. −0.532795 −0.266398 0.963863i \(-0.585833\pi\)
−0.266398 + 0.963863i \(0.585833\pi\)
\(282\) 119436.i 0.0894361i
\(283\) 205148.i 0.152266i 0.997098 + 0.0761328i \(0.0242573\pi\)
−0.997098 + 0.0761328i \(0.975743\pi\)
\(284\) 580341. 0.426961
\(285\) 0 0
\(286\) 358690. 0.259301
\(287\) − 644687.i − 0.462003i
\(288\) 238182.i 0.169211i
\(289\) 1.41963e6 0.999839
\(290\) 0 0
\(291\) −7115.76 −0.00492593
\(292\) − 657037.i − 0.450955i
\(293\) 2.50408e6i 1.70404i 0.523513 + 0.852018i \(0.324621\pi\)
−0.523513 + 0.852018i \(0.675379\pi\)
\(294\) −303495. −0.204778
\(295\) 0 0
\(296\) −849453. −0.563521
\(297\) 813843.i 0.535364i
\(298\) − 891759.i − 0.581711i
\(299\) 445073. 0.287908
\(300\) 0 0
\(301\) 2.22592e6 1.41610
\(302\) − 1.45378e6i − 0.917238i
\(303\) 302102.i 0.189037i
\(304\) 100504. 0.0623731
\(305\) 0 0
\(306\) 14067.2 0.00858826
\(307\) − 110033.i − 0.0666312i −0.999445 0.0333156i \(-0.989393\pi\)
0.999445 0.0333156i \(-0.0106067\pi\)
\(308\) − 1.70502e6i − 1.02412i
\(309\) −375622. −0.223797
\(310\) 0 0
\(311\) −1.15351e6 −0.676272 −0.338136 0.941097i \(-0.609796\pi\)
−0.338136 + 0.941097i \(0.609796\pi\)
\(312\) − 34881.3i − 0.0202865i
\(313\) − 2.00121e6i − 1.15460i −0.816531 0.577302i \(-0.804106\pi\)
0.816531 0.577302i \(-0.195894\pi\)
\(314\) 1.29361e6 0.740421
\(315\) 0 0
\(316\) −311574. −0.175527
\(317\) 90375.3i 0.0505128i 0.999681 + 0.0252564i \(0.00804022\pi\)
−0.999681 + 0.0252564i \(0.991960\pi\)
\(318\) − 45420.4i − 0.0251874i
\(319\) −3.78616e6 −2.08316
\(320\) 0 0
\(321\) −629846. −0.341171
\(322\) − 2.11563e6i − 1.13710i
\(323\) − 5935.83i − 0.00316574i
\(324\) −825204. −0.436716
\(325\) 0 0
\(326\) −1.44676e6 −0.753970
\(327\) 559732.i 0.289475i
\(328\) − 205444.i − 0.105441i
\(329\) 1.85945e6 0.947099
\(330\) 0 0
\(331\) −3.83957e6 −1.92625 −0.963126 0.269051i \(-0.913290\pi\)
−0.963126 + 0.269051i \(0.913290\pi\)
\(332\) 1.08106e6i 0.538274i
\(333\) − 3.08723e6i − 1.52566i
\(334\) 2.14365e6 1.05145
\(335\) 0 0
\(336\) −165806. −0.0801223
\(337\) 2.29930e6i 1.10286i 0.834221 + 0.551430i \(0.185917\pi\)
−0.834221 + 0.551430i \(0.814083\pi\)
\(338\) − 114244.i − 0.0543928i
\(339\) −12288.0 −0.00580742
\(340\) 0 0
\(341\) −3.62325e6 −1.68738
\(342\) 365267.i 0.168867i
\(343\) 1.34959e6i 0.619393i
\(344\) 709338. 0.323190
\(345\) 0 0
\(346\) −1.01006e6 −0.453582
\(347\) − 1.82848e6i − 0.815204i −0.913160 0.407602i \(-0.866365\pi\)
0.913160 0.407602i \(-0.133635\pi\)
\(348\) 368190.i 0.162976i
\(349\) −2.54054e6 −1.11651 −0.558254 0.829670i \(-0.688528\pi\)
−0.558254 + 0.829670i \(0.688528\pi\)
\(350\) 0 0
\(351\) 259211. 0.112302
\(352\) − 543342.i − 0.233731i
\(353\) 3.67598e6i 1.57013i 0.619412 + 0.785066i \(0.287371\pi\)
−0.619412 + 0.785066i \(0.712629\pi\)
\(354\) −520305. −0.220674
\(355\) 0 0
\(356\) 533103. 0.222939
\(357\) 9792.67i 0.00406659i
\(358\) 1.99995e6i 0.824730i
\(359\) 920537. 0.376969 0.188484 0.982076i \(-0.439643\pi\)
0.188484 + 0.982076i \(0.439643\pi\)
\(360\) 0 0
\(361\) −2.32197e6 −0.937753
\(362\) − 2.43107e6i − 0.975047i
\(363\) − 388586.i − 0.154782i
\(364\) −543053. −0.214827
\(365\) 0 0
\(366\) −570733. −0.222705
\(367\) 2.28316e6i 0.884854i 0.896804 + 0.442427i \(0.145882\pi\)
−0.896804 + 0.442427i \(0.854118\pi\)
\(368\) − 674193.i − 0.259516i
\(369\) 746659. 0.285467
\(370\) 0 0
\(371\) −707131. −0.266726
\(372\) 352348.i 0.132012i
\(373\) − 2.84732e6i − 1.05965i −0.848106 0.529827i \(-0.822257\pi\)
0.848106 0.529827i \(-0.177743\pi\)
\(374\) −32090.2 −0.0118630
\(375\) 0 0
\(376\) 592556. 0.216152
\(377\) 1.20590e6i 0.436977i
\(378\) − 1.23215e6i − 0.443541i
\(379\) −3.75104e6 −1.34139 −0.670693 0.741735i \(-0.734003\pi\)
−0.670693 + 0.741735i \(0.734003\pi\)
\(380\) 0 0
\(381\) −64261.2 −0.0226797
\(382\) 206415.i 0.0723740i
\(383\) 1.81532e6i 0.632349i 0.948701 + 0.316174i \(0.102398\pi\)
−0.948701 + 0.316174i \(0.897602\pi\)
\(384\) −52837.9 −0.0182860
\(385\) 0 0
\(386\) −3.78540e6 −1.29313
\(387\) 2.57800e6i 0.874994i
\(388\) 35303.3i 0.0119052i
\(389\) 4.37154e6 1.46474 0.732371 0.680906i \(-0.238414\pi\)
0.732371 + 0.680906i \(0.238414\pi\)
\(390\) 0 0
\(391\) −39818.4 −0.0131717
\(392\) 1.50573e6i 0.494915i
\(393\) − 860728.i − 0.281115i
\(394\) 916133. 0.297316
\(395\) 0 0
\(396\) 1.97470e6 0.632796
\(397\) − 2.28486e6i − 0.727584i −0.931480 0.363792i \(-0.881482\pi\)
0.931480 0.363792i \(-0.118518\pi\)
\(398\) − 4.24827e6i − 1.34433i
\(399\) −254275. −0.0799596
\(400\) 0 0
\(401\) 5.53357e6 1.71848 0.859240 0.511573i \(-0.170937\pi\)
0.859240 + 0.511573i \(0.170937\pi\)
\(402\) 91219.8i 0.0281529i
\(403\) 1.15402e6i 0.353956i
\(404\) 1.49881e6 0.456871
\(405\) 0 0
\(406\) 5.73220e6 1.72586
\(407\) 7.04259e6i 2.10740i
\(408\) 3120.65i 0 0.000928101i
\(409\) 2.28293e6 0.674815 0.337408 0.941359i \(-0.390450\pi\)
0.337408 + 0.941359i \(0.390450\pi\)
\(410\) 0 0
\(411\) 31020.9 0.00905836
\(412\) 1.86357e6i 0.540881i
\(413\) 8.10043e6i 2.33686i
\(414\) 2.45027e6 0.702607
\(415\) 0 0
\(416\) −173056. −0.0490290
\(417\) − 274720.i − 0.0773660i
\(418\) − 833248.i − 0.233257i
\(419\) −2.75540e6 −0.766741 −0.383371 0.923595i \(-0.625237\pi\)
−0.383371 + 0.923595i \(0.625237\pi\)
\(420\) 0 0
\(421\) −6.19470e6 −1.70339 −0.851697 0.524035i \(-0.824426\pi\)
−0.851697 + 0.524035i \(0.824426\pi\)
\(422\) − 1.02680e6i − 0.280675i
\(423\) 2.15357e6i 0.585204i
\(424\) −225343. −0.0608737
\(425\) 0 0
\(426\) −467896. −0.124918
\(427\) 8.88552e6i 2.35838i
\(428\) 3.12484e6i 0.824554i
\(429\) −289192. −0.0758652
\(430\) 0 0
\(431\) 5.52072e6 1.43154 0.715768 0.698338i \(-0.246077\pi\)
0.715768 + 0.698338i \(0.246077\pi\)
\(432\) − 392652.i − 0.101227i
\(433\) 4.76773e6i 1.22206i 0.791608 + 0.611030i \(0.209244\pi\)
−0.791608 + 0.611030i \(0.790756\pi\)
\(434\) 5.48556e6 1.39797
\(435\) 0 0
\(436\) 2.77699e6 0.699613
\(437\) − 1.03392e6i − 0.258990i
\(438\) 529732.i 0.131938i
\(439\) −275097. −0.0681279 −0.0340639 0.999420i \(-0.510845\pi\)
−0.0340639 + 0.999420i \(0.510845\pi\)
\(440\) 0 0
\(441\) −5.47236e6 −1.33992
\(442\) 10220.8i 0.00248846i
\(443\) 5.89806e6i 1.42791i 0.700194 + 0.713953i \(0.253097\pi\)
−0.700194 + 0.713953i \(0.746903\pi\)
\(444\) 684866. 0.164872
\(445\) 0 0
\(446\) 3.23964e6 0.771187
\(447\) 718975.i 0.170194i
\(448\) 822613.i 0.193642i
\(449\) −2.69527e6 −0.630938 −0.315469 0.948936i \(-0.602162\pi\)
−0.315469 + 0.948936i \(0.602162\pi\)
\(450\) 0 0
\(451\) −1.70328e6 −0.394317
\(452\) 60964.4i 0.0140356i
\(453\) 1.17210e6i 0.268361i
\(454\) 2.62527e6 0.597770
\(455\) 0 0
\(456\) −81030.3 −0.0182488
\(457\) 5.00128e6i 1.12019i 0.828429 + 0.560094i \(0.189235\pi\)
−0.828429 + 0.560094i \(0.810765\pi\)
\(458\) − 4.77593e6i − 1.06388i
\(459\) −23190.3 −0.00513778
\(460\) 0 0
\(461\) 1.31041e6 0.287179 0.143590 0.989637i \(-0.454135\pi\)
0.143590 + 0.989637i \(0.454135\pi\)
\(462\) 1.37466e6i 0.299633i
\(463\) − 4.81314e6i − 1.04346i −0.853110 0.521731i \(-0.825287\pi\)
0.853110 0.521731i \(-0.174713\pi\)
\(464\) 1.82669e6 0.393886
\(465\) 0 0
\(466\) −4.24021e6 −0.904529
\(467\) − 8.29674e6i − 1.76042i −0.474589 0.880208i \(-0.657403\pi\)
0.474589 0.880208i \(-0.342597\pi\)
\(468\) − 628949.i − 0.132740i
\(469\) 1.42016e6 0.298130
\(470\) 0 0
\(471\) −1.04296e6 −0.216629
\(472\) 2.58138e6i 0.533332i
\(473\) − 5.88094e6i − 1.20863i
\(474\) 251204. 0.0513548
\(475\) 0 0
\(476\) 48584.2 0.00982828
\(477\) − 818980.i − 0.164808i
\(478\) − 1.82621e6i − 0.365579i
\(479\) 1.37501e6 0.273821 0.136910 0.990583i \(-0.456283\pi\)
0.136910 + 0.990583i \(0.456283\pi\)
\(480\) 0 0
\(481\) 2.24309e6 0.442062
\(482\) 4.88028e6i 0.956813i
\(483\) 1.70571e6i 0.332689i
\(484\) −1.92789e6 −0.374083
\(485\) 0 0
\(486\) 2.15616e6 0.414087
\(487\) − 3.68612e6i − 0.704283i −0.935947 0.352142i \(-0.885454\pi\)
0.935947 0.352142i \(-0.114546\pi\)
\(488\) 2.83157e6i 0.538242i
\(489\) 1.16644e6 0.220593
\(490\) 0 0
\(491\) −4.43125e6 −0.829512 −0.414756 0.909933i \(-0.636133\pi\)
−0.414756 + 0.909933i \(0.636133\pi\)
\(492\) 165638.i 0.0308494i
\(493\) − 107886.i − 0.0199916i
\(494\) −265392. −0.0489295
\(495\) 0 0
\(496\) 1.74810e6 0.319052
\(497\) 7.28449e6i 1.32284i
\(498\) − 871595.i − 0.157486i
\(499\) −8.78314e6 −1.57906 −0.789529 0.613713i \(-0.789675\pi\)
−0.789529 + 0.613713i \(0.789675\pi\)
\(500\) 0 0
\(501\) −1.72830e6 −0.307628
\(502\) 5.79216e6i 1.02584i
\(503\) 8.16254e6i 1.43849i 0.694759 + 0.719243i \(0.255511\pi\)
−0.694759 + 0.719243i \(0.744489\pi\)
\(504\) −2.98968e6 −0.524261
\(505\) 0 0
\(506\) −5.58956e6 −0.970512
\(507\) 92108.4i 0.0159140i
\(508\) 318818.i 0.0548130i
\(509\) −1.76886e6 −0.302621 −0.151310 0.988486i \(-0.548349\pi\)
−0.151310 + 0.988486i \(0.548349\pi\)
\(510\) 0 0
\(511\) 8.24718e6 1.39718
\(512\) 262144.i 0.0441942i
\(513\) − 602156.i − 0.101022i
\(514\) 4.87159e6 0.813322
\(515\) 0 0
\(516\) −571899. −0.0945573
\(517\) − 4.91273e6i − 0.808344i
\(518\) − 1.06624e7i − 1.74594i
\(519\) 814352. 0.132707
\(520\) 0 0
\(521\) −1.12965e6 −0.182327 −0.0911634 0.995836i \(-0.529059\pi\)
−0.0911634 + 0.995836i \(0.529059\pi\)
\(522\) 6.63888e6i 1.06640i
\(523\) − 3.65785e6i − 0.584753i −0.956303 0.292376i \(-0.905554\pi\)
0.956303 0.292376i \(-0.0944460\pi\)
\(524\) −4.27031e6 −0.679409
\(525\) 0 0
\(526\) 6.04658e6 0.952896
\(527\) − 103244.i − 0.0161934i
\(528\) 438065.i 0.0683839i
\(529\) −499332. −0.0775801
\(530\) 0 0
\(531\) −9.38169e6 −1.44393
\(532\) 1.26153e6i 0.193249i
\(533\) 542501.i 0.0827146i
\(534\) −429811. −0.0652265
\(535\) 0 0
\(536\) 452567. 0.0680411
\(537\) − 1.61245e6i − 0.241296i
\(538\) − 1.62062e6i − 0.241393i
\(539\) 1.24836e7 1.85083
\(540\) 0 0
\(541\) −4.32623e6 −0.635502 −0.317751 0.948174i \(-0.602928\pi\)
−0.317751 + 0.948174i \(0.602928\pi\)
\(542\) 2.45264e6i 0.358621i
\(543\) 1.96003e6i 0.285275i
\(544\) 15482.5 0.00224307
\(545\) 0 0
\(546\) 437833. 0.0628531
\(547\) 7.59075e6i 1.08472i 0.840147 + 0.542359i \(0.182469\pi\)
−0.840147 + 0.542359i \(0.817531\pi\)
\(548\) − 153903.i − 0.0218926i
\(549\) −1.02910e7 −1.45722
\(550\) 0 0
\(551\) 2.80135e6 0.393087
\(552\) 543564.i 0.0759281i
\(553\) − 3.91090e6i − 0.543830i
\(554\) 4.56960e6 0.632563
\(555\) 0 0
\(556\) −1.36296e6 −0.186981
\(557\) 1.04397e7i 1.42577i 0.701280 + 0.712886i \(0.252612\pi\)
−0.701280 + 0.712886i \(0.747388\pi\)
\(558\) 6.35323e6i 0.863792i
\(559\) −1.87310e6 −0.253531
\(560\) 0 0
\(561\) 25872.5 0.00347082
\(562\) − 2.82089e6i − 0.376743i
\(563\) 3.38176e6i 0.449646i 0.974400 + 0.224823i \(0.0721805\pi\)
−0.974400 + 0.224823i \(0.927820\pi\)
\(564\) −477744. −0.0632409
\(565\) 0 0
\(566\) −820593. −0.107668
\(567\) − 1.03580e7i − 1.35307i
\(568\) 2.32137e6i 0.301907i
\(569\) 1.09186e7 1.41380 0.706900 0.707313i \(-0.250093\pi\)
0.706900 + 0.707313i \(0.250093\pi\)
\(570\) 0 0
\(571\) 1.15547e7 1.48310 0.741549 0.670899i \(-0.234092\pi\)
0.741549 + 0.670899i \(0.234092\pi\)
\(572\) 1.43476e6i 0.183354i
\(573\) − 166421.i − 0.0211749i
\(574\) 2.57875e6 0.326685
\(575\) 0 0
\(576\) −952728. −0.119650
\(577\) 1.71415e6i 0.214343i 0.994241 + 0.107171i \(0.0341793\pi\)
−0.994241 + 0.107171i \(0.965821\pi\)
\(578\) 5.67851e6i 0.706993i
\(579\) 3.05195e6 0.378339
\(580\) 0 0
\(581\) −1.35695e7 −1.66772
\(582\) − 28463.0i − 0.00348316i
\(583\) 1.86826e6i 0.227649i
\(584\) 2.62815e6 0.318873
\(585\) 0 0
\(586\) −1.00163e7 −1.20494
\(587\) − 2.85910e6i − 0.342479i −0.985229 0.171239i \(-0.945223\pi\)
0.985229 0.171239i \(-0.0547771\pi\)
\(588\) − 1.21398e6i − 0.144800i
\(589\) 2.68082e6 0.318404
\(590\) 0 0
\(591\) −738626. −0.0869873
\(592\) − 3.39781e6i − 0.398470i
\(593\) − 4.96085e6i − 0.579321i −0.957129 0.289661i \(-0.906458\pi\)
0.957129 0.289661i \(-0.0935424\pi\)
\(594\) −3.25537e6 −0.378560
\(595\) 0 0
\(596\) 3.56704e6 0.411332
\(597\) 3.42514e6i 0.393317i
\(598\) 1.78029e6i 0.203581i
\(599\) 1.24276e7 1.41520 0.707601 0.706612i \(-0.249777\pi\)
0.707601 + 0.706612i \(0.249777\pi\)
\(600\) 0 0
\(601\) 3.58410e6 0.404757 0.202378 0.979307i \(-0.435133\pi\)
0.202378 + 0.979307i \(0.435133\pi\)
\(602\) 8.90366e6i 1.00133i
\(603\) 1.64480e6i 0.184212i
\(604\) 5.81513e6 0.648585
\(605\) 0 0
\(606\) −1.20841e6 −0.133669
\(607\) − 3.78467e6i − 0.416923i −0.978031 0.208462i \(-0.933154\pi\)
0.978031 0.208462i \(-0.0668456\pi\)
\(608\) 402014.i 0.0441045i
\(609\) −4.62154e6 −0.504945
\(610\) 0 0
\(611\) −1.56472e6 −0.169564
\(612\) 56268.9i 0.00607281i
\(613\) − 1.54450e7i − 1.66011i −0.557685 0.830053i \(-0.688310\pi\)
0.557685 0.830053i \(-0.311690\pi\)
\(614\) 440133. 0.0471154
\(615\) 0 0
\(616\) 6.82006e6 0.724163
\(617\) 6.78866e6i 0.717912i 0.933355 + 0.358956i \(0.116867\pi\)
−0.933355 + 0.358956i \(0.883133\pi\)
\(618\) − 1.50249e6i − 0.158249i
\(619\) 1.31549e7 1.37994 0.689970 0.723838i \(-0.257624\pi\)
0.689970 + 0.723838i \(0.257624\pi\)
\(620\) 0 0
\(621\) −4.03935e6 −0.420323
\(622\) − 4.61405e6i − 0.478197i
\(623\) 6.69155e6i 0.690728i
\(624\) 139525. 0.0143447
\(625\) 0 0
\(626\) 8.00486e6 0.816428
\(627\) 671801.i 0.0682451i
\(628\) 5.17443e6i 0.523556i
\(629\) −200678. −0.0202243
\(630\) 0 0
\(631\) 9.46150e6 0.945990 0.472995 0.881065i \(-0.343173\pi\)
0.472995 + 0.881065i \(0.343173\pi\)
\(632\) − 1.24630e6i − 0.124116i
\(633\) 827849.i 0.0821186i
\(634\) −361501. −0.0357179
\(635\) 0 0
\(636\) 181681. 0.0178102
\(637\) − 3.97606e6i − 0.388243i
\(638\) − 1.51446e7i − 1.47301i
\(639\) −8.43670e6 −0.817373
\(640\) 0 0
\(641\) −1.66495e7 −1.60050 −0.800250 0.599666i \(-0.795300\pi\)
−0.800250 + 0.599666i \(0.795300\pi\)
\(642\) − 2.51938e6i − 0.241244i
\(643\) 1.31070e7i 1.25019i 0.780548 + 0.625096i \(0.214940\pi\)
−0.780548 + 0.625096i \(0.785060\pi\)
\(644\) 8.46252e6 0.804054
\(645\) 0 0
\(646\) 23743.3 0.00223851
\(647\) − 1.08998e7i − 1.02366i −0.859086 0.511832i \(-0.828967\pi\)
0.859086 0.511832i \(-0.171033\pi\)
\(648\) − 3.30082e6i − 0.308805i
\(649\) 2.14016e7 1.99450
\(650\) 0 0
\(651\) −4.42270e6 −0.409011
\(652\) − 5.78706e6i − 0.533137i
\(653\) 1.18879e7i 1.09099i 0.838113 + 0.545497i \(0.183659\pi\)
−0.838113 + 0.545497i \(0.816341\pi\)
\(654\) −2.23893e6 −0.204689
\(655\) 0 0
\(656\) 821776. 0.0745580
\(657\) 9.55166e6i 0.863307i
\(658\) 7.43781e6i 0.669700i
\(659\) −5.65451e6 −0.507203 −0.253601 0.967309i \(-0.581615\pi\)
−0.253601 + 0.967309i \(0.581615\pi\)
\(660\) 0 0
\(661\) 8.05716e6 0.717263 0.358631 0.933479i \(-0.383243\pi\)
0.358631 + 0.933479i \(0.383243\pi\)
\(662\) − 1.53583e7i − 1.36207i
\(663\) − 8240.48i 0 0.000728062i
\(664\) −4.32423e6 −0.380617
\(665\) 0 0
\(666\) 1.23489e7 1.07880
\(667\) − 1.87919e7i − 1.63552i
\(668\) 8.57461e6i 0.743486i
\(669\) −2.61194e6 −0.225630
\(670\) 0 0
\(671\) 2.34758e7 2.01286
\(672\) − 663226.i − 0.0566550i
\(673\) 8.86976e6i 0.754874i 0.926035 + 0.377437i \(0.123194\pi\)
−0.926035 + 0.377437i \(0.876806\pi\)
\(674\) −9.19718e6 −0.779839
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) − 1.86550e7i − 1.56431i −0.623083 0.782156i \(-0.714120\pi\)
0.623083 0.782156i \(-0.285880\pi\)
\(678\) − 49152.1i − 0.00410646i
\(679\) −443129. −0.0368855
\(680\) 0 0
\(681\) −2.11661e6 −0.174893
\(682\) − 1.44930e7i − 1.19316i
\(683\) − 1.79463e7i − 1.47205i −0.676952 0.736027i \(-0.736700\pi\)
0.676952 0.736027i \(-0.263300\pi\)
\(684\) −1.46107e6 −0.119407
\(685\) 0 0
\(686\) −5.39836e6 −0.437977
\(687\) 3.85056e6i 0.311266i
\(688\) 2.83735e6i 0.228530i
\(689\) 595047. 0.0477533
\(690\) 0 0
\(691\) 1.39282e7 1.10969 0.554844 0.831954i \(-0.312778\pi\)
0.554844 + 0.831954i \(0.312778\pi\)
\(692\) − 4.04023e6i − 0.320731i
\(693\) 2.47866e7i 1.96058i
\(694\) 7.31391e6 0.576436
\(695\) 0 0
\(696\) −1.47276e6 −0.115241
\(697\) − 48534.8i − 0.00378418i
\(698\) − 1.01621e7i − 0.789490i
\(699\) 3.41864e6 0.264643
\(700\) 0 0
\(701\) 2.29331e7 1.76265 0.881326 0.472508i \(-0.156651\pi\)
0.881326 + 0.472508i \(0.156651\pi\)
\(702\) 1.03685e6i 0.0794093i
\(703\) − 5.21076e6i − 0.397661i
\(704\) 2.17337e6 0.165273
\(705\) 0 0
\(706\) −1.47039e7 −1.11025
\(707\) 1.88132e7i 1.41551i
\(708\) − 2.08122e6i − 0.156040i
\(709\) −2.11865e7 −1.58286 −0.791430 0.611260i \(-0.790663\pi\)
−0.791430 + 0.611260i \(0.790663\pi\)
\(710\) 0 0
\(711\) 4.52950e6 0.336028
\(712\) 2.13241e6i 0.157642i
\(713\) − 1.79833e7i − 1.32479i
\(714\) −39170.7 −0.00287551
\(715\) 0 0
\(716\) −7.99980e6 −0.583172
\(717\) 1.47237e6i 0.106959i
\(718\) 3.68215e6i 0.266557i
\(719\) −2.03595e7 −1.46874 −0.734371 0.678749i \(-0.762523\pi\)
−0.734371 + 0.678749i \(0.762523\pi\)
\(720\) 0 0
\(721\) −2.33916e7 −1.67580
\(722\) − 9.28788e6i − 0.663092i
\(723\) − 3.93469e6i − 0.279940i
\(724\) 9.72426e6 0.689462
\(725\) 0 0
\(726\) 1.55434e6 0.109447
\(727\) 3.11392e6i 0.218510i 0.994014 + 0.109255i \(0.0348465\pi\)
−0.994014 + 0.109255i \(0.965153\pi\)
\(728\) − 2.17221e6i − 0.151906i
\(729\) 1.07944e7 0.752280
\(730\) 0 0
\(731\) 167577. 0.0115990
\(732\) − 2.28293e6i − 0.157476i
\(733\) − 2.20488e7i − 1.51574i −0.652405 0.757871i \(-0.726240\pi\)
0.652405 0.757871i \(-0.273760\pi\)
\(734\) −9.13265e6 −0.625686
\(735\) 0 0
\(736\) 2.69677e6 0.183506
\(737\) − 3.75211e6i − 0.254453i
\(738\) 2.98664e6i 0.201856i
\(739\) −2.29831e6 −0.154809 −0.0774046 0.997000i \(-0.524663\pi\)
−0.0774046 + 0.997000i \(0.524663\pi\)
\(740\) 0 0
\(741\) 213971. 0.0143156
\(742\) − 2.82852e6i − 0.188604i
\(743\) − 711970.i − 0.0473140i −0.999720 0.0236570i \(-0.992469\pi\)
0.999720 0.0236570i \(-0.00753096\pi\)
\(744\) −1.40939e6 −0.0933468
\(745\) 0 0
\(746\) 1.13893e7 0.749288
\(747\) − 1.57158e7i − 1.03047i
\(748\) − 128361.i − 0.00838839i
\(749\) −3.92233e7 −2.55470
\(750\) 0 0
\(751\) −3.24479e6 −0.209936 −0.104968 0.994476i \(-0.533474\pi\)
−0.104968 + 0.994476i \(0.533474\pi\)
\(752\) 2.37023e6i 0.152843i
\(753\) − 4.66989e6i − 0.300137i
\(754\) −4.82361e6 −0.308990
\(755\) 0 0
\(756\) 4.92859e6 0.313631
\(757\) 2.38887e7i 1.51514i 0.652756 + 0.757569i \(0.273613\pi\)
−0.652756 + 0.757569i \(0.726387\pi\)
\(758\) − 1.50042e7i − 0.948504i
\(759\) 4.50654e6 0.283948
\(760\) 0 0
\(761\) 2340.75 0.000146519 0 7.32593e−5 1.00000i \(-0.499977\pi\)
7.32593e−5 1.00000i \(0.499977\pi\)
\(762\) − 257045.i − 0.0160369i
\(763\) 3.48569e7i 2.16759i
\(764\) −825660. −0.0511762
\(765\) 0 0
\(766\) −7.26128e6 −0.447138
\(767\) − 6.81646e6i − 0.418380i
\(768\) − 211352.i − 0.0129301i
\(769\) 365454. 0.0222852 0.0111426 0.999938i \(-0.496453\pi\)
0.0111426 + 0.999938i \(0.496453\pi\)
\(770\) 0 0
\(771\) −3.92768e6 −0.237958
\(772\) − 1.51416e7i − 0.914383i
\(773\) − 2.76260e7i − 1.66291i −0.555589 0.831457i \(-0.687507\pi\)
0.555589 0.831457i \(-0.312493\pi\)
\(774\) −1.03120e7 −0.618714
\(775\) 0 0
\(776\) −141213. −0.00841823
\(777\) 8.59648e6i 0.510820i
\(778\) 1.74862e7i 1.03573i
\(779\) 1.26025e6 0.0744066
\(780\) 0 0
\(781\) 1.92458e7 1.12904
\(782\) − 159274.i − 0.00931381i
\(783\) − 1.09444e7i − 0.637953i
\(784\) −6.02290e6 −0.349958
\(785\) 0 0
\(786\) 3.44291e6 0.198779
\(787\) 9.92420e6i 0.571161i 0.958355 + 0.285580i \(0.0921864\pi\)
−0.958355 + 0.285580i \(0.907814\pi\)
\(788\) 3.66453e6i 0.210234i
\(789\) −4.87501e6 −0.278794
\(790\) 0 0
\(791\) −765229. −0.0434861
\(792\) 7.89881e6i 0.447455i
\(793\) − 7.47711e6i − 0.422232i
\(794\) 9.13944e6 0.514480
\(795\) 0 0
\(796\) 1.69931e7 0.950582
\(797\) − 1.49499e6i − 0.0833668i −0.999131 0.0416834i \(-0.986728\pi\)
0.999131 0.0416834i \(-0.0132721\pi\)
\(798\) − 1.01710e6i − 0.0565400i
\(799\) 139988. 0.00775751
\(800\) 0 0
\(801\) −7.74998e6 −0.426795
\(802\) 2.21343e7i 1.21515i
\(803\) − 2.17893e7i − 1.19249i
\(804\) −364879. −0.0199071
\(805\) 0 0
\(806\) −4.61607e6 −0.250285
\(807\) 1.30661e6i 0.0706257i
\(808\) 5.99525e6i 0.323057i
\(809\) 2.85707e6 0.153479 0.0767396 0.997051i \(-0.475549\pi\)
0.0767396 + 0.997051i \(0.475549\pi\)
\(810\) 0 0
\(811\) −9.42188e6 −0.503020 −0.251510 0.967855i \(-0.580927\pi\)
−0.251510 + 0.967855i \(0.580927\pi\)
\(812\) 2.29288e7i 1.22037i
\(813\) − 1.97743e6i − 0.104924i
\(814\) −2.81704e7 −1.49016
\(815\) 0 0
\(816\) −12482.6 −0.000656267 0
\(817\) 4.35126e6i 0.228066i
\(818\) 9.13173e6i 0.477167i
\(819\) 7.89462e6 0.411265
\(820\) 0 0
\(821\) 1.54084e7 0.797809 0.398904 0.916992i \(-0.369390\pi\)
0.398904 + 0.916992i \(0.369390\pi\)
\(822\) 124084.i 0.00640523i
\(823\) − 4.13964e6i − 0.213041i −0.994311 0.106520i \(-0.966029\pi\)
0.994311 0.106520i \(-0.0339710\pi\)
\(824\) −7.45427e6 −0.382461
\(825\) 0 0
\(826\) −3.24017e7 −1.65241
\(827\) − 1.01580e7i − 0.516470i −0.966082 0.258235i \(-0.916859\pi\)
0.966082 0.258235i \(-0.0831409\pi\)
\(828\) 9.80106e6i 0.496818i
\(829\) −3.45331e7 −1.74521 −0.872607 0.488423i \(-0.837572\pi\)
−0.872607 + 0.488423i \(0.837572\pi\)
\(830\) 0 0
\(831\) −3.68421e6 −0.185072
\(832\) − 692224.i − 0.0346688i
\(833\) 355718.i 0.0177620i
\(834\) 1.09888e6 0.0547060
\(835\) 0 0
\(836\) 3.33299e6 0.164937
\(837\) − 1.04735e7i − 0.516749i
\(838\) − 1.10216e7i − 0.542168i
\(839\) 2.33327e7 1.14435 0.572177 0.820130i \(-0.306099\pi\)
0.572177 + 0.820130i \(0.306099\pi\)
\(840\) 0 0
\(841\) 3.04045e7 1.48234
\(842\) − 2.47788e7i − 1.20448i
\(843\) 2.27432e6i 0.110226i
\(844\) 4.10719e6 0.198467
\(845\) 0 0
\(846\) −8.61427e6 −0.413802
\(847\) − 2.41990e7i − 1.15901i
\(848\) − 901373.i − 0.0430442i
\(849\) 661597. 0.0315010
\(850\) 0 0
\(851\) −3.49546e7 −1.65455
\(852\) − 1.87158e6i − 0.0883305i
\(853\) 1.80270e7i 0.848304i 0.905591 + 0.424152i \(0.139428\pi\)
−0.905591 + 0.424152i \(0.860572\pi\)
\(854\) −3.55421e7 −1.66762
\(855\) 0 0
\(856\) −1.24994e7 −0.583048
\(857\) 1.82132e7i 0.847100i 0.905873 + 0.423550i \(0.139216\pi\)
−0.905873 + 0.423550i \(0.860784\pi\)
\(858\) − 1.15677e6i − 0.0536448i
\(859\) −728581. −0.0336895 −0.0168448 0.999858i \(-0.505362\pi\)
−0.0168448 + 0.999858i \(0.505362\pi\)
\(860\) 0 0
\(861\) −2.07910e6 −0.0955800
\(862\) 2.20829e7i 1.01225i
\(863\) − 4.10201e7i − 1.87486i −0.348168 0.937432i \(-0.613196\pi\)
0.348168 0.937432i \(-0.386804\pi\)
\(864\) 1.57061e6 0.0715786
\(865\) 0 0
\(866\) −1.90709e7 −0.864127
\(867\) − 4.57826e6i − 0.206849i
\(868\) 2.19422e7i 0.988511i
\(869\) −1.03327e7 −0.464157
\(870\) 0 0
\(871\) −1.19506e6 −0.0533758
\(872\) 1.11079e7i 0.494701i
\(873\) − 513220.i − 0.0227913i
\(874\) 4.13567e6 0.183133
\(875\) 0 0
\(876\) −2.11893e6 −0.0932944
\(877\) − 9.34651e6i − 0.410346i −0.978726 0.205173i \(-0.934224\pi\)
0.978726 0.205173i \(-0.0657758\pi\)
\(878\) − 1.10039e6i − 0.0481737i
\(879\) 8.07558e6 0.352534
\(880\) 0 0
\(881\) 2.76158e7 1.19872 0.599361 0.800479i \(-0.295422\pi\)
0.599361 + 0.800479i \(0.295422\pi\)
\(882\) − 2.18894e7i − 0.947465i
\(883\) 1.71751e7i 0.741305i 0.928772 + 0.370652i \(0.120866\pi\)
−0.928772 + 0.370652i \(0.879134\pi\)
\(884\) −40883.3 −0.00175961
\(885\) 0 0
\(886\) −2.35922e7 −1.00968
\(887\) 5.13121e6i 0.218983i 0.993988 + 0.109492i \(0.0349222\pi\)
−0.993988 + 0.109492i \(0.965078\pi\)
\(888\) 2.73946e6i 0.116582i
\(889\) −4.00183e6 −0.169826
\(890\) 0 0
\(891\) −2.73662e7 −1.15484
\(892\) 1.29586e7i 0.545312i
\(893\) 3.63489e6i 0.152533i
\(894\) −2.87590e6 −0.120346
\(895\) 0 0
\(896\) −3.29045e6 −0.136926
\(897\) − 1.43535e6i − 0.0595629i
\(898\) − 1.07811e7i − 0.446140i
\(899\) 4.87249e7 2.01072
\(900\) 0 0
\(901\) −53235.9 −0.00218470
\(902\) − 6.81313e6i − 0.278824i
\(903\) − 7.17852e6i − 0.292965i
\(904\) −243858. −0.00992465
\(905\) 0 0
\(906\) −4.68841e6 −0.189760
\(907\) − 4.53644e7i − 1.83104i −0.402275 0.915519i \(-0.631780\pi\)
0.402275 0.915519i \(-0.368220\pi\)
\(908\) 1.05011e7i 0.422687i
\(909\) −2.17889e7 −0.874634
\(910\) 0 0
\(911\) 3.56713e7 1.42404 0.712021 0.702158i \(-0.247780\pi\)
0.712021 + 0.702158i \(0.247780\pi\)
\(912\) − 324121.i − 0.0129039i
\(913\) 3.58510e7i 1.42339i
\(914\) −2.00051e7 −0.792093
\(915\) 0 0
\(916\) 1.91037e7 0.752280
\(917\) − 5.36013e7i − 2.10500i
\(918\) − 92761.4i − 0.00363296i
\(919\) −1.32697e6 −0.0518289 −0.0259144 0.999664i \(-0.508250\pi\)
−0.0259144 + 0.999664i \(0.508250\pi\)
\(920\) 0 0
\(921\) −354854. −0.0137848
\(922\) 5.24162e6i 0.203066i
\(923\) − 6.12986e6i − 0.236835i
\(924\) −5.49863e6 −0.211872
\(925\) 0 0
\(926\) 1.92526e7 0.737838
\(927\) − 2.70916e7i − 1.03546i
\(928\) 7.30677e6i 0.278520i
\(929\) −1.87784e7 −0.713869 −0.356935 0.934129i \(-0.616178\pi\)
−0.356935 + 0.934129i \(0.616178\pi\)
\(930\) 0 0
\(931\) −9.23649e6 −0.349247
\(932\) − 1.69608e7i − 0.639598i
\(933\) 3.72005e6i 0.139909i
\(934\) 3.31870e7 1.24480
\(935\) 0 0
\(936\) 2.51580e6 0.0938612
\(937\) − 2.71600e7i − 1.01060i −0.862942 0.505302i \(-0.831381\pi\)
0.862942 0.505302i \(-0.168619\pi\)
\(938\) 5.68066e6i 0.210810i
\(939\) −6.45386e6 −0.238867
\(940\) 0 0
\(941\) −3.93036e7 −1.44696 −0.723482 0.690343i \(-0.757460\pi\)
−0.723482 + 0.690343i \(0.757460\pi\)
\(942\) − 4.17185e6i − 0.153180i
\(943\) − 8.45392e6i − 0.309584i
\(944\) −1.03255e7 −0.377122
\(945\) 0 0
\(946\) 2.35237e7 0.854631
\(947\) − 1.05666e7i − 0.382877i −0.981505 0.191439i \(-0.938685\pi\)
0.981505 0.191439i \(-0.0613153\pi\)
\(948\) 1.00482e6i 0.0363133i
\(949\) −6.93996e6 −0.250145
\(950\) 0 0
\(951\) 291458. 0.0104502
\(952\) 194337.i 0.00694965i
\(953\) − 1.99531e7i − 0.711667i −0.934549 0.355834i \(-0.884197\pi\)
0.934549 0.355834i \(-0.115803\pi\)
\(954\) 3.27592e6 0.116537
\(955\) 0 0
\(956\) 7.30484e6 0.258503
\(957\) 1.22103e7i 0.430968i
\(958\) 5.50004e6i 0.193621i
\(959\) 1.93181e6 0.0678293
\(960\) 0 0
\(961\) 1.79993e7 0.628706
\(962\) 8.97235e6i 0.312585i
\(963\) − 4.54273e7i − 1.57853i
\(964\) −1.95211e7 −0.676569
\(965\) 0 0
\(966\) −6.82285e6 −0.235246
\(967\) − 2.42835e6i − 0.0835113i −0.999128 0.0417556i \(-0.986705\pi\)
0.999128 0.0417556i \(-0.0132951\pi\)
\(968\) − 7.71154e6i − 0.264517i
\(969\) −19142.9 −0.000654934 0
\(970\) 0 0
\(971\) 1.43525e7 0.488517 0.244259 0.969710i \(-0.421455\pi\)
0.244259 + 0.969710i \(0.421455\pi\)
\(972\) 8.62466e6i 0.292803i
\(973\) − 1.71080e7i − 0.579319i
\(974\) 1.47445e7 0.498004
\(975\) 0 0
\(976\) −1.13263e7 −0.380595
\(977\) 2.56112e7i 0.858409i 0.903207 + 0.429205i \(0.141206\pi\)
−0.903207 + 0.429205i \(0.858794\pi\)
\(978\) 4.66578e6i 0.155983i
\(979\) 1.76793e7 0.589533
\(980\) 0 0
\(981\) −4.03704e7 −1.33934
\(982\) − 1.77250e7i − 0.586554i
\(983\) 2.23389e6i 0.0737356i 0.999320 + 0.0368678i \(0.0117381\pi\)
−0.999320 + 0.0368678i \(0.988262\pi\)
\(984\) −662551. −0.0218138
\(985\) 0 0
\(986\) 431544. 0.0141362
\(987\) − 5.99668e6i − 0.195938i
\(988\) − 1.06157e6i − 0.0345984i
\(989\) 2.91889e7 0.948914
\(990\) 0 0
\(991\) −5.77025e6 −0.186643 −0.0933213 0.995636i \(-0.529748\pi\)
−0.0933213 + 0.995636i \(0.529748\pi\)
\(992\) 6.99239e6i 0.225604i
\(993\) 1.23825e7i 0.398507i
\(994\) −2.91379e7 −0.935391
\(995\) 0 0
\(996\) 3.48638e6 0.111359
\(997\) 1.12116e7i 0.357216i 0.983920 + 0.178608i \(0.0571594\pi\)
−0.983920 + 0.178608i \(0.942841\pi\)
\(998\) − 3.51325e7i − 1.11656i
\(999\) −2.03576e7 −0.645377
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.b.c.599.3 4
5.2 odd 4 650.6.a.c.1.1 2
5.3 odd 4 130.6.a.e.1.2 2
5.4 even 2 inner 650.6.b.c.599.2 4
20.3 even 4 1040.6.a.h.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.e.1.2 2 5.3 odd 4
650.6.a.c.1.1 2 5.2 odd 4
650.6.b.c.599.2 4 5.4 even 2 inner
650.6.b.c.599.3 4 1.1 even 1 trivial
1040.6.a.h.1.1 2 20.3 even 4