Properties

Label 650.6.b.k.599.8
Level $650$
Weight $6$
Character 650.599
Analytic conductor $104.249$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1094x^{6} + 343849x^{4} + 27023076x^{2} + 498182400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.8
Root \(20.3395i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.6.b.k.599.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} +25.3395i q^{3} -16.0000 q^{4} -101.358 q^{6} -154.564i q^{7} -64.0000i q^{8} -399.089 q^{9} -63.7546 q^{11} -405.431i q^{12} -169.000i q^{13} +618.256 q^{14} +256.000 q^{16} -374.136i q^{17} -1596.35i q^{18} +42.3586 q^{19} +3916.57 q^{21} -255.018i q^{22} -1131.66i q^{23} +1621.73 q^{24} +676.000 q^{26} -3955.20i q^{27} +2473.03i q^{28} -2487.62 q^{29} +9742.11 q^{31} +1024.00i q^{32} -1615.51i q^{33} +1496.54 q^{34} +6385.42 q^{36} -5341.14i q^{37} +169.435i q^{38} +4282.37 q^{39} -7131.82 q^{41} +15666.3i q^{42} +6754.09i q^{43} +1020.07 q^{44} +4526.62 q^{46} +14373.8i q^{47} +6486.90i q^{48} -7083.06 q^{49} +9480.40 q^{51} +2704.00i q^{52} +13363.6i q^{53} +15820.8 q^{54} -9892.10 q^{56} +1073.35i q^{57} -9950.47i q^{58} -38502.8 q^{59} +28521.0 q^{61} +38968.4i q^{62} +61684.8i q^{63} -4096.00 q^{64} +6462.03 q^{66} +43953.6i q^{67} +5986.17i q^{68} +28675.6 q^{69} +40991.3 q^{71} +25541.7i q^{72} +68431.1i q^{73} +21364.6 q^{74} -677.738 q^{76} +9854.17i q^{77} +17129.5i q^{78} -20233.0 q^{79} +3244.21 q^{81} -28527.3i q^{82} +63147.4i q^{83} -62665.2 q^{84} -27016.4 q^{86} -63034.9i q^{87} +4080.29i q^{88} +116225. q^{89} -26121.3 q^{91} +18106.5i q^{92} +246860. i q^{93} -57495.1 q^{94} -25947.6 q^{96} -59187.1i q^{97} -28332.2i q^{98} +25443.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 128 q^{4} - 160 q^{6} - 444 q^{9} - 588 q^{11} + 1424 q^{14} + 2048 q^{16} - 928 q^{19} - 2016 q^{21} + 2560 q^{24} + 5408 q^{26} + 9088 q^{29} + 11236 q^{31} + 14448 q^{34} + 7104 q^{36} + 6760 q^{39}+ \cdots - 89060 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 25.3395i 1.62553i 0.582593 + 0.812764i \(0.302038\pi\)
−0.582593 + 0.812764i \(0.697962\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −101.358 −1.14942
\(7\) − 154.564i − 1.19224i −0.802896 0.596120i \(-0.796708\pi\)
0.802896 0.596120i \(-0.203292\pi\)
\(8\) − 64.0000i − 0.353553i
\(9\) −399.089 −1.64234
\(10\) 0 0
\(11\) −63.7546 −0.158866 −0.0794328 0.996840i \(-0.525311\pi\)
−0.0794328 + 0.996840i \(0.525311\pi\)
\(12\) − 405.431i − 0.812764i
\(13\) − 169.000i − 0.277350i
\(14\) 618.256 0.843041
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 374.136i − 0.313984i −0.987600 0.156992i \(-0.949820\pi\)
0.987600 0.156992i \(-0.0501796\pi\)
\(18\) − 1596.35i − 1.16131i
\(19\) 42.3586 0.0269189 0.0134595 0.999909i \(-0.495716\pi\)
0.0134595 + 0.999909i \(0.495716\pi\)
\(20\) 0 0
\(21\) 3916.57 1.93802
\(22\) − 255.018i − 0.112335i
\(23\) − 1131.66i − 0.446062i −0.974811 0.223031i \(-0.928405\pi\)
0.974811 0.223031i \(-0.0715950\pi\)
\(24\) 1621.73 0.574711
\(25\) 0 0
\(26\) 676.000 0.196116
\(27\) − 3955.20i − 1.04414i
\(28\) 2473.03i 0.596120i
\(29\) −2487.62 −0.549273 −0.274637 0.961548i \(-0.588558\pi\)
−0.274637 + 0.961548i \(0.588558\pi\)
\(30\) 0 0
\(31\) 9742.11 1.82074 0.910371 0.413792i \(-0.135796\pi\)
0.910371 + 0.413792i \(0.135796\pi\)
\(32\) 1024.00i 0.176777i
\(33\) − 1615.51i − 0.258240i
\(34\) 1496.54 0.222020
\(35\) 0 0
\(36\) 6385.42 0.821170
\(37\) − 5341.14i − 0.641401i −0.947181 0.320700i \(-0.896082\pi\)
0.947181 0.320700i \(-0.103918\pi\)
\(38\) 169.435i 0.0190346i
\(39\) 4282.37 0.450840
\(40\) 0 0
\(41\) −7131.82 −0.662584 −0.331292 0.943528i \(-0.607485\pi\)
−0.331292 + 0.943528i \(0.607485\pi\)
\(42\) 15666.3i 1.37039i
\(43\) 6754.09i 0.557052i 0.960429 + 0.278526i \(0.0898459\pi\)
−0.960429 + 0.278526i \(0.910154\pi\)
\(44\) 1020.07 0.0794328
\(45\) 0 0
\(46\) 4526.62 0.315413
\(47\) 14373.8i 0.949132i 0.880220 + 0.474566i \(0.157395\pi\)
−0.880220 + 0.474566i \(0.842605\pi\)
\(48\) 6486.90i 0.406382i
\(49\) −7083.06 −0.421435
\(50\) 0 0
\(51\) 9480.40 0.510389
\(52\) 2704.00i 0.138675i
\(53\) 13363.6i 0.653483i 0.945114 + 0.326741i \(0.105951\pi\)
−0.945114 + 0.326741i \(0.894049\pi\)
\(54\) 15820.8 0.738320
\(55\) 0 0
\(56\) −9892.10 −0.421520
\(57\) 1073.35i 0.0437575i
\(58\) − 9950.47i − 0.388395i
\(59\) −38502.8 −1.44000 −0.720000 0.693974i \(-0.755858\pi\)
−0.720000 + 0.693974i \(0.755858\pi\)
\(60\) 0 0
\(61\) 28521.0 0.981388 0.490694 0.871332i \(-0.336743\pi\)
0.490694 + 0.871332i \(0.336743\pi\)
\(62\) 38968.4i 1.28746i
\(63\) 61684.8i 1.95806i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 6462.03 0.182603
\(67\) 43953.6i 1.19621i 0.801418 + 0.598104i \(0.204079\pi\)
−0.801418 + 0.598104i \(0.795921\pi\)
\(68\) 5986.17i 0.156992i
\(69\) 28675.6 0.725085
\(70\) 0 0
\(71\) 40991.3 0.965040 0.482520 0.875885i \(-0.339722\pi\)
0.482520 + 0.875885i \(0.339722\pi\)
\(72\) 25541.7i 0.580655i
\(73\) 68431.1i 1.50296i 0.659758 + 0.751478i \(0.270659\pi\)
−0.659758 + 0.751478i \(0.729341\pi\)
\(74\) 21364.6 0.453539
\(75\) 0 0
\(76\) −677.738 −0.0134595
\(77\) 9854.17i 0.189406i
\(78\) 17129.5i 0.318792i
\(79\) −20233.0 −0.364747 −0.182374 0.983229i \(-0.558378\pi\)
−0.182374 + 0.983229i \(0.558378\pi\)
\(80\) 0 0
\(81\) 3244.21 0.0549409
\(82\) − 28527.3i − 0.468518i
\(83\) 63147.4i 1.00614i 0.864244 + 0.503072i \(0.167797\pi\)
−0.864244 + 0.503072i \(0.832203\pi\)
\(84\) −62665.2 −0.969009
\(85\) 0 0
\(86\) −27016.4 −0.393895
\(87\) − 63034.9i − 0.892859i
\(88\) 4080.29i 0.0561674i
\(89\) 116225. 1.55534 0.777668 0.628675i \(-0.216402\pi\)
0.777668 + 0.628675i \(0.216402\pi\)
\(90\) 0 0
\(91\) −26121.3 −0.330668
\(92\) 18106.5i 0.223031i
\(93\) 246860.i 2.95967i
\(94\) −57495.1 −0.671138
\(95\) 0 0
\(96\) −25947.6 −0.287355
\(97\) − 59187.1i − 0.638701i −0.947637 0.319351i \(-0.896535\pi\)
0.947637 0.319351i \(-0.103465\pi\)
\(98\) − 28332.2i − 0.298000i
\(99\) 25443.7 0.260911
\(100\) 0 0
\(101\) −10761.5 −0.104971 −0.0524856 0.998622i \(-0.516714\pi\)
−0.0524856 + 0.998622i \(0.516714\pi\)
\(102\) 37921.6i 0.360899i
\(103\) 94434.4i 0.877076i 0.898713 + 0.438538i \(0.144504\pi\)
−0.898713 + 0.438538i \(0.855496\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) −53454.4 −0.462082
\(107\) − 81403.2i − 0.687357i −0.939087 0.343678i \(-0.888327\pi\)
0.939087 0.343678i \(-0.111673\pi\)
\(108\) 63283.3i 0.522071i
\(109\) 145882. 1.17607 0.588037 0.808834i \(-0.299901\pi\)
0.588037 + 0.808834i \(0.299901\pi\)
\(110\) 0 0
\(111\) 135342. 1.04261
\(112\) − 39568.4i − 0.298060i
\(113\) − 86838.6i − 0.639760i −0.947458 0.319880i \(-0.896357\pi\)
0.947458 0.319880i \(-0.103643\pi\)
\(114\) −4293.38 −0.0309412
\(115\) 0 0
\(116\) 39801.9 0.274637
\(117\) 67446.0i 0.455503i
\(118\) − 154011.i − 1.01823i
\(119\) −57827.9 −0.374344
\(120\) 0 0
\(121\) −156986. −0.974762
\(122\) 114084.i 0.693946i
\(123\) − 180717.i − 1.07705i
\(124\) −155874. −0.910371
\(125\) 0 0
\(126\) −246739. −1.38456
\(127\) 184919.i 1.01736i 0.860957 + 0.508678i \(0.169866\pi\)
−0.860957 + 0.508678i \(0.830134\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) −171145. −0.905504
\(130\) 0 0
\(131\) −60089.4 −0.305928 −0.152964 0.988232i \(-0.548882\pi\)
−0.152964 + 0.988232i \(0.548882\pi\)
\(132\) 25848.1i 0.129120i
\(133\) − 6547.12i − 0.0320938i
\(134\) −175814. −0.845847
\(135\) 0 0
\(136\) −23944.7 −0.111010
\(137\) − 179721.i − 0.818083i −0.912516 0.409042i \(-0.865863\pi\)
0.912516 0.409042i \(-0.134137\pi\)
\(138\) 114702.i 0.512713i
\(139\) 146077. 0.641276 0.320638 0.947202i \(-0.396103\pi\)
0.320638 + 0.947202i \(0.396103\pi\)
\(140\) 0 0
\(141\) −364224. −1.54284
\(142\) 163965.i 0.682386i
\(143\) 10774.5i 0.0440614i
\(144\) −102167. −0.410585
\(145\) 0 0
\(146\) −273724. −1.06275
\(147\) − 179481.i − 0.685055i
\(148\) 85458.2i 0.320700i
\(149\) 295863. 1.09175 0.545877 0.837865i \(-0.316197\pi\)
0.545877 + 0.837865i \(0.316197\pi\)
\(150\) 0 0
\(151\) −53761.2 −0.191879 −0.0959394 0.995387i \(-0.530585\pi\)
−0.0959394 + 0.995387i \(0.530585\pi\)
\(152\) − 2710.95i − 0.00951728i
\(153\) 149313.i 0.515668i
\(154\) −39416.7 −0.133930
\(155\) 0 0
\(156\) −68517.9 −0.225420
\(157\) − 199374.i − 0.645536i −0.946478 0.322768i \(-0.895387\pi\)
0.946478 0.322768i \(-0.104613\pi\)
\(158\) − 80931.9i − 0.257915i
\(159\) −338627. −1.06225
\(160\) 0 0
\(161\) −174913. −0.531812
\(162\) 12976.8i 0.0388491i
\(163\) 132038.i 0.389253i 0.980877 + 0.194626i \(0.0623494\pi\)
−0.980877 + 0.194626i \(0.937651\pi\)
\(164\) 114109. 0.331292
\(165\) 0 0
\(166\) −252590. −0.711452
\(167\) 125924.i 0.349396i 0.984622 + 0.174698i \(0.0558949\pi\)
−0.984622 + 0.174698i \(0.944105\pi\)
\(168\) − 250661.i − 0.685193i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −16904.9 −0.0442101
\(172\) − 108065.i − 0.278526i
\(173\) − 553428.i − 1.40587i −0.711252 0.702937i \(-0.751872\pi\)
0.711252 0.702937i \(-0.248128\pi\)
\(174\) 252140. 0.631347
\(175\) 0 0
\(176\) −16321.2 −0.0397164
\(177\) − 975641.i − 2.34076i
\(178\) 464900.i 1.09979i
\(179\) 471297. 1.09941 0.549707 0.835357i \(-0.314739\pi\)
0.549707 + 0.835357i \(0.314739\pi\)
\(180\) 0 0
\(181\) 471171. 1.06901 0.534506 0.845165i \(-0.320498\pi\)
0.534506 + 0.845165i \(0.320498\pi\)
\(182\) − 104485.i − 0.233817i
\(183\) 722708.i 1.59527i
\(184\) −72426.0 −0.157707
\(185\) 0 0
\(186\) −987439. −2.09280
\(187\) 23852.9i 0.0498812i
\(188\) − 229981.i − 0.474566i
\(189\) −611332. −1.24487
\(190\) 0 0
\(191\) 319864. 0.634427 0.317214 0.948354i \(-0.397253\pi\)
0.317214 + 0.948354i \(0.397253\pi\)
\(192\) − 103790.i − 0.203191i
\(193\) 655179.i 1.26610i 0.774112 + 0.633048i \(0.218197\pi\)
−0.774112 + 0.633048i \(0.781803\pi\)
\(194\) 236748. 0.451630
\(195\) 0 0
\(196\) 113329. 0.210718
\(197\) − 680349.i − 1.24901i −0.781021 0.624505i \(-0.785301\pi\)
0.781021 0.624505i \(-0.214699\pi\)
\(198\) 101775.i 0.184492i
\(199\) 520113. 0.931033 0.465516 0.885039i \(-0.345869\pi\)
0.465516 + 0.885039i \(0.345869\pi\)
\(200\) 0 0
\(201\) −1.11376e6 −1.94447
\(202\) − 43046.1i − 0.0742259i
\(203\) 384496.i 0.654866i
\(204\) −151686. −0.255194
\(205\) 0 0
\(206\) −377738. −0.620186
\(207\) 451631.i 0.732585i
\(208\) − 43264.0i − 0.0693375i
\(209\) −2700.56 −0.00427649
\(210\) 0 0
\(211\) 121818. 0.188367 0.0941836 0.995555i \(-0.469976\pi\)
0.0941836 + 0.995555i \(0.469976\pi\)
\(212\) − 213818.i − 0.326741i
\(213\) 1.03870e6i 1.56870i
\(214\) 325613. 0.486035
\(215\) 0 0
\(216\) −253133. −0.369160
\(217\) − 1.50578e6i − 2.17076i
\(218\) 583527.i 0.831609i
\(219\) −1.73401e6 −2.44310
\(220\) 0 0
\(221\) −63228.9 −0.0870834
\(222\) 541366.i 0.737240i
\(223\) 826276.i 1.11266i 0.830961 + 0.556331i \(0.187791\pi\)
−0.830961 + 0.556331i \(0.812209\pi\)
\(224\) 158274. 0.210760
\(225\) 0 0
\(226\) 347355. 0.452378
\(227\) − 256788.i − 0.330758i −0.986230 0.165379i \(-0.947115\pi\)
0.986230 0.165379i \(-0.0528848\pi\)
\(228\) − 17173.5i − 0.0218787i
\(229\) −1.19410e6 −1.50470 −0.752351 0.658763i \(-0.771080\pi\)
−0.752351 + 0.658763i \(0.771080\pi\)
\(230\) 0 0
\(231\) −249699. −0.307884
\(232\) 159208.i 0.194197i
\(233\) 1.24372e6i 1.50083i 0.660965 + 0.750416i \(0.270147\pi\)
−0.660965 + 0.750416i \(0.729853\pi\)
\(234\) −269784. −0.322089
\(235\) 0 0
\(236\) 616045. 0.720000
\(237\) − 512693.i − 0.592906i
\(238\) − 231312.i − 0.264701i
\(239\) −450986. −0.510703 −0.255351 0.966848i \(-0.582191\pi\)
−0.255351 + 0.966848i \(0.582191\pi\)
\(240\) 0 0
\(241\) 626635. 0.694979 0.347490 0.937684i \(-0.387034\pi\)
0.347490 + 0.937684i \(0.387034\pi\)
\(242\) − 627945.i − 0.689261i
\(243\) − 878908.i − 0.954834i
\(244\) −456337. −0.490694
\(245\) 0 0
\(246\) 722867. 0.761588
\(247\) − 7158.61i − 0.00746597i
\(248\) − 623495.i − 0.643730i
\(249\) −1.60012e6 −1.63552
\(250\) 0 0
\(251\) −1.70187e6 −1.70507 −0.852533 0.522674i \(-0.824934\pi\)
−0.852533 + 0.522674i \(0.824934\pi\)
\(252\) − 986956.i − 0.979031i
\(253\) 72148.2i 0.0708638i
\(254\) −739677. −0.719379
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) − 64954.5i − 0.0613446i −0.999529 0.0306723i \(-0.990235\pi\)
0.999529 0.0306723i \(-0.00976483\pi\)
\(258\) − 684581.i − 0.640288i
\(259\) −825548. −0.764703
\(260\) 0 0
\(261\) 992780. 0.902094
\(262\) − 240358.i − 0.216324i
\(263\) − 263092.i − 0.234541i −0.993100 0.117270i \(-0.962586\pi\)
0.993100 0.117270i \(-0.0374144\pi\)
\(264\) −103392. −0.0913017
\(265\) 0 0
\(266\) 26188.5 0.0226938
\(267\) 2.94508e6i 2.52824i
\(268\) − 703257.i − 0.598104i
\(269\) 1.13941e6 0.960060 0.480030 0.877252i \(-0.340626\pi\)
0.480030 + 0.877252i \(0.340626\pi\)
\(270\) 0 0
\(271\) 2.28682e6 1.89151 0.945754 0.324884i \(-0.105325\pi\)
0.945754 + 0.324884i \(0.105325\pi\)
\(272\) − 95778.7i − 0.0784959i
\(273\) − 661901.i − 0.537510i
\(274\) 718884. 0.578472
\(275\) 0 0
\(276\) −458809. −0.362543
\(277\) 2.43492e6i 1.90671i 0.301851 + 0.953355i \(0.402395\pi\)
−0.301851 + 0.953355i \(0.597605\pi\)
\(278\) 584308.i 0.453451i
\(279\) −3.88796e6 −2.99028
\(280\) 0 0
\(281\) −466127. −0.352159 −0.176079 0.984376i \(-0.556342\pi\)
−0.176079 + 0.984376i \(0.556342\pi\)
\(282\) − 1.45690e6i − 1.09095i
\(283\) 838973.i 0.622704i 0.950295 + 0.311352i \(0.100782\pi\)
−0.950295 + 0.311352i \(0.899218\pi\)
\(284\) −655860. −0.482520
\(285\) 0 0
\(286\) −43098.1 −0.0311561
\(287\) 1.10232e6i 0.789959i
\(288\) − 408667.i − 0.290327i
\(289\) 1.27988e6 0.901414
\(290\) 0 0
\(291\) 1.49977e6 1.03823
\(292\) − 1.09490e6i − 0.751478i
\(293\) 1.40254e6i 0.954438i 0.878784 + 0.477219i \(0.158355\pi\)
−0.878784 + 0.477219i \(0.841645\pi\)
\(294\) 717924. 0.484407
\(295\) 0 0
\(296\) −341833. −0.226769
\(297\) 252162.i 0.165878i
\(298\) 1.18345e6i 0.771986i
\(299\) −191250. −0.123715
\(300\) 0 0
\(301\) 1.04394e6 0.664140
\(302\) − 215045.i − 0.135679i
\(303\) − 272691.i − 0.170634i
\(304\) 10843.8 0.00672974
\(305\) 0 0
\(306\) −597253. −0.364632
\(307\) 408221.i 0.247200i 0.992332 + 0.123600i \(0.0394440\pi\)
−0.992332 + 0.123600i \(0.960556\pi\)
\(308\) − 157667.i − 0.0947029i
\(309\) −2.39292e6 −1.42571
\(310\) 0 0
\(311\) 2.26426e6 1.32747 0.663735 0.747968i \(-0.268970\pi\)
0.663735 + 0.747968i \(0.268970\pi\)
\(312\) − 274072.i − 0.159396i
\(313\) 2.56466e6i 1.47969i 0.672780 + 0.739843i \(0.265100\pi\)
−0.672780 + 0.739843i \(0.734900\pi\)
\(314\) 797498. 0.456463
\(315\) 0 0
\(316\) 323727. 0.182374
\(317\) 1.85051e6i 1.03429i 0.855897 + 0.517146i \(0.173006\pi\)
−0.855897 + 0.517146i \(0.826994\pi\)
\(318\) − 1.35451e6i − 0.751127i
\(319\) 158597. 0.0872606
\(320\) 0 0
\(321\) 2.06272e6 1.11732
\(322\) − 699653.i − 0.376048i
\(323\) − 15847.9i − 0.00845210i
\(324\) −51907.3 −0.0274705
\(325\) 0 0
\(326\) −528154. −0.275243
\(327\) 3.69656e6i 1.91174i
\(328\) 456437.i 0.234259i
\(329\) 2.22167e6 1.13159
\(330\) 0 0
\(331\) −1.94787e6 −0.977215 −0.488607 0.872504i \(-0.662495\pi\)
−0.488607 + 0.872504i \(0.662495\pi\)
\(332\) − 1.01036e6i − 0.503072i
\(333\) 2.13159e6i 1.05340i
\(334\) −503697. −0.247060
\(335\) 0 0
\(336\) 1.00264e6 0.484505
\(337\) 3.42580e6i 1.64319i 0.570073 + 0.821594i \(0.306915\pi\)
−0.570073 + 0.821594i \(0.693085\pi\)
\(338\) − 114244.i − 0.0543928i
\(339\) 2.20044e6 1.03995
\(340\) 0 0
\(341\) −621104. −0.289253
\(342\) − 67619.4i − 0.0312612i
\(343\) − 1.50297e6i − 0.689788i
\(344\) 432262. 0.196948
\(345\) 0 0
\(346\) 2.21371e6 0.994103
\(347\) − 3.01951e6i − 1.34621i −0.739547 0.673105i \(-0.764960\pi\)
0.739547 0.673105i \(-0.235040\pi\)
\(348\) 1.00856e6i 0.446430i
\(349\) −1.99404e6 −0.876335 −0.438168 0.898893i \(-0.644372\pi\)
−0.438168 + 0.898893i \(0.644372\pi\)
\(350\) 0 0
\(351\) −668429. −0.289593
\(352\) − 65284.7i − 0.0280837i
\(353\) − 383180.i − 0.163669i −0.996646 0.0818344i \(-0.973922\pi\)
0.996646 0.0818344i \(-0.0260779\pi\)
\(354\) 3.90256e6 1.65517
\(355\) 0 0
\(356\) −1.85960e6 −0.777668
\(357\) − 1.46533e6i − 0.608506i
\(358\) 1.88519e6i 0.777404i
\(359\) 3.75111e6 1.53612 0.768058 0.640381i \(-0.221223\pi\)
0.768058 + 0.640381i \(0.221223\pi\)
\(360\) 0 0
\(361\) −2.47430e6 −0.999275
\(362\) 1.88469e6i 0.755905i
\(363\) − 3.97795e6i − 1.58450i
\(364\) 417941. 0.165334
\(365\) 0 0
\(366\) −2.89083e6 −1.12803
\(367\) 391556.i 0.151750i 0.997117 + 0.0758750i \(0.0241750\pi\)
−0.997117 + 0.0758750i \(0.975825\pi\)
\(368\) − 289704.i − 0.111515i
\(369\) 2.84623e6 1.08819
\(370\) 0 0
\(371\) 2.06553e6 0.779108
\(372\) − 3.94976e6i − 1.47983i
\(373\) 9831.94i 0.00365904i 0.999998 + 0.00182952i \(0.000582355\pi\)
−0.999998 + 0.00182952i \(0.999418\pi\)
\(374\) −95411.4 −0.0352713
\(375\) 0 0
\(376\) 919922. 0.335569
\(377\) 420407.i 0.152341i
\(378\) − 2.44533e6i − 0.880254i
\(379\) −1.87968e6 −0.672180 −0.336090 0.941830i \(-0.609105\pi\)
−0.336090 + 0.941830i \(0.609105\pi\)
\(380\) 0 0
\(381\) −4.68576e6 −1.65374
\(382\) 1.27946e6i 0.448608i
\(383\) − 2.14234e6i − 0.746263i −0.927778 0.373132i \(-0.878284\pi\)
0.927778 0.373132i \(-0.121716\pi\)
\(384\) 415162. 0.143678
\(385\) 0 0
\(386\) −2.62072e6 −0.895265
\(387\) − 2.69548e6i − 0.914869i
\(388\) 946994.i 0.319351i
\(389\) −1.86897e6 −0.626220 −0.313110 0.949717i \(-0.601371\pi\)
−0.313110 + 0.949717i \(0.601371\pi\)
\(390\) 0 0
\(391\) −423393. −0.140056
\(392\) 453316.i 0.149000i
\(393\) − 1.52263e6i − 0.497295i
\(394\) 2.72139e6 0.883184
\(395\) 0 0
\(396\) −407100. −0.130456
\(397\) 1.49951e6i 0.477499i 0.971081 + 0.238750i \(0.0767375\pi\)
−0.971081 + 0.238750i \(0.923263\pi\)
\(398\) 2.08045e6i 0.658339i
\(399\) 165901. 0.0521694
\(400\) 0 0
\(401\) 2.26959e6 0.704833 0.352416 0.935843i \(-0.385360\pi\)
0.352416 + 0.935843i \(0.385360\pi\)
\(402\) − 4.45504e6i − 1.37495i
\(403\) − 1.64642e6i − 0.504983i
\(404\) 172184. 0.0524856
\(405\) 0 0
\(406\) −1.53799e6 −0.463060
\(407\) 340522.i 0.101896i
\(408\) − 606746.i − 0.180450i
\(409\) −4.88657e6 −1.44443 −0.722214 0.691669i \(-0.756876\pi\)
−0.722214 + 0.691669i \(0.756876\pi\)
\(410\) 0 0
\(411\) 4.55404e6 1.32982
\(412\) − 1.51095e6i − 0.438538i
\(413\) 5.95115e6i 1.71682i
\(414\) −1.80652e6 −0.518016
\(415\) 0 0
\(416\) 173056. 0.0490290
\(417\) 3.70151e6i 1.04241i
\(418\) − 10802.2i − 0.00302394i
\(419\) 3.07655e6 0.856110 0.428055 0.903753i \(-0.359199\pi\)
0.428055 + 0.903753i \(0.359199\pi\)
\(420\) 0 0
\(421\) 991694. 0.272692 0.136346 0.990661i \(-0.456464\pi\)
0.136346 + 0.990661i \(0.456464\pi\)
\(422\) 487272.i 0.133196i
\(423\) − 5.73642e6i − 1.55880i
\(424\) 855271. 0.231041
\(425\) 0 0
\(426\) −4.15479e6 −1.10924
\(427\) − 4.40833e6i − 1.17005i
\(428\) 1.30245e6i 0.343678i
\(429\) −273021. −0.0716230
\(430\) 0 0
\(431\) −4.97181e6 −1.28920 −0.644602 0.764519i \(-0.722977\pi\)
−0.644602 + 0.764519i \(0.722977\pi\)
\(432\) − 1.01253e6i − 0.261035i
\(433\) 929752.i 0.238313i 0.992875 + 0.119156i \(0.0380190\pi\)
−0.992875 + 0.119156i \(0.961981\pi\)
\(434\) 6.02312e6 1.53496
\(435\) 0 0
\(436\) −2.33411e6 −0.588037
\(437\) − 47935.4i − 0.0120075i
\(438\) − 6.93603e6i − 1.72753i
\(439\) 6.24276e6 1.54602 0.773011 0.634393i \(-0.218750\pi\)
0.773011 + 0.634393i \(0.218750\pi\)
\(440\) 0 0
\(441\) 2.82677e6 0.692140
\(442\) − 252916.i − 0.0615772i
\(443\) − 6.12191e6i − 1.48210i −0.671449 0.741051i \(-0.734328\pi\)
0.671449 0.741051i \(-0.265672\pi\)
\(444\) −2.16547e6 −0.521307
\(445\) 0 0
\(446\) −3.30510e6 −0.786771
\(447\) 7.49701e6i 1.77468i
\(448\) 633095.i 0.149030i
\(449\) −6.81454e6 −1.59522 −0.797611 0.603173i \(-0.793903\pi\)
−0.797611 + 0.603173i \(0.793903\pi\)
\(450\) 0 0
\(451\) 454686. 0.105262
\(452\) 1.38942e6i 0.319880i
\(453\) − 1.36228e6i − 0.311904i
\(454\) 1.02715e6 0.233881
\(455\) 0 0
\(456\) 68694.1 0.0154706
\(457\) 1.15462e6i 0.258611i 0.991605 + 0.129306i \(0.0412749\pi\)
−0.991605 + 0.129306i \(0.958725\pi\)
\(458\) − 4.77638e6i − 1.06398i
\(459\) −1.47978e6 −0.327843
\(460\) 0 0
\(461\) 4.66540e6 1.02244 0.511218 0.859451i \(-0.329194\pi\)
0.511218 + 0.859451i \(0.329194\pi\)
\(462\) − 998798.i − 0.217707i
\(463\) 7.33891e6i 1.59103i 0.605932 + 0.795517i \(0.292800\pi\)
−0.605932 + 0.795517i \(0.707200\pi\)
\(464\) −636830. −0.137318
\(465\) 0 0
\(466\) −4.97487e6 −1.06125
\(467\) 1.40701e6i 0.298541i 0.988796 + 0.149270i \(0.0476925\pi\)
−0.988796 + 0.149270i \(0.952307\pi\)
\(468\) − 1.07914e6i − 0.227752i
\(469\) 6.79364e6 1.42617
\(470\) 0 0
\(471\) 5.05204e6 1.04934
\(472\) 2.46418e6i 0.509117i
\(473\) − 430604.i − 0.0884964i
\(474\) 2.05077e6 0.419248
\(475\) 0 0
\(476\) 925247. 0.187172
\(477\) − 5.33327e6i − 1.07324i
\(478\) − 1.80394e6i − 0.361121i
\(479\) 8.02191e6 1.59749 0.798746 0.601668i \(-0.205497\pi\)
0.798746 + 0.601668i \(0.205497\pi\)
\(480\) 0 0
\(481\) −902652. −0.177893
\(482\) 2.50654e6i 0.491425i
\(483\) − 4.43221e6i − 0.864475i
\(484\) 2.51178e6 0.487381
\(485\) 0 0
\(486\) 3.51563e6 0.675169
\(487\) 5.05570e6i 0.965960i 0.875632 + 0.482980i \(0.160446\pi\)
−0.875632 + 0.482980i \(0.839554\pi\)
\(488\) − 1.82535e6i − 0.346973i
\(489\) −3.34579e6 −0.632741
\(490\) 0 0
\(491\) −7.01316e6 −1.31284 −0.656418 0.754398i \(-0.727929\pi\)
−0.656418 + 0.754398i \(0.727929\pi\)
\(492\) 2.89147e6i 0.538524i
\(493\) 930706.i 0.172463i
\(494\) 28634.4 0.00527924
\(495\) 0 0
\(496\) 2.49398e6 0.455186
\(497\) − 6.33578e6i − 1.15056i
\(498\) − 6.40049e6i − 1.15648i
\(499\) 9.64773e6 1.73450 0.867249 0.497875i \(-0.165886\pi\)
0.867249 + 0.497875i \(0.165886\pi\)
\(500\) 0 0
\(501\) −3.19085e6 −0.567953
\(502\) − 6.80746e6i − 1.20566i
\(503\) − 9.27398e6i − 1.63435i −0.576386 0.817177i \(-0.695538\pi\)
0.576386 0.817177i \(-0.304462\pi\)
\(504\) 3.94783e6 0.692280
\(505\) 0 0
\(506\) −288593. −0.0501083
\(507\) − 723721.i − 0.125041i
\(508\) − 2.95871e6i − 0.508678i
\(509\) 1.79545e6 0.307170 0.153585 0.988135i \(-0.450918\pi\)
0.153585 + 0.988135i \(0.450918\pi\)
\(510\) 0 0
\(511\) 1.05770e7 1.79188
\(512\) 262144.i 0.0441942i
\(513\) − 167537.i − 0.0281072i
\(514\) 259818. 0.0433772
\(515\) 0 0
\(516\) 2.73832e6 0.452752
\(517\) − 916395.i − 0.150784i
\(518\) − 3.30219e6i − 0.540727i
\(519\) 1.40236e7 2.28529
\(520\) 0 0
\(521\) 1.04699e7 1.68986 0.844928 0.534880i \(-0.179643\pi\)
0.844928 + 0.534880i \(0.179643\pi\)
\(522\) 3.97112e6i 0.637877i
\(523\) − 239742.i − 0.0383257i −0.999816 0.0191628i \(-0.993900\pi\)
0.999816 0.0191628i \(-0.00610009\pi\)
\(524\) 961431. 0.152964
\(525\) 0 0
\(526\) 1.05237e6 0.165845
\(527\) − 3.64487e6i − 0.571683i
\(528\) − 413570.i − 0.0645601i
\(529\) 5.15570e6 0.801029
\(530\) 0 0
\(531\) 1.53660e7 2.36497
\(532\) 104754.i 0.0160469i
\(533\) 1.20528e6i 0.183768i
\(534\) −1.17803e7 −1.78774
\(535\) 0 0
\(536\) 2.81303e6 0.422924
\(537\) 1.19424e7i 1.78713i
\(538\) 4.55763e6i 0.678865i
\(539\) 451578. 0.0669515
\(540\) 0 0
\(541\) −9.72501e6 −1.42855 −0.714277 0.699863i \(-0.753244\pi\)
−0.714277 + 0.699863i \(0.753244\pi\)
\(542\) 9.14727e6i 1.33750i
\(543\) 1.19392e7i 1.73771i
\(544\) 383115. 0.0555050
\(545\) 0 0
\(546\) 2.64760e6 0.380077
\(547\) − 7.17342e6i − 1.02508i −0.858663 0.512540i \(-0.828705\pi\)
0.858663 0.512540i \(-0.171295\pi\)
\(548\) 2.87554e6i 0.409042i
\(549\) −1.13824e7 −1.61177
\(550\) 0 0
\(551\) −105372. −0.0147859
\(552\) − 1.83524e6i − 0.256356i
\(553\) 3.12729e6i 0.434866i
\(554\) −9.73967e6 −1.34825
\(555\) 0 0
\(556\) −2.33723e6 −0.320638
\(557\) − 4.85134e6i − 0.662558i −0.943533 0.331279i \(-0.892520\pi\)
0.943533 0.331279i \(-0.107480\pi\)
\(558\) − 1.55519e7i − 2.11445i
\(559\) 1.14144e6 0.154498
\(560\) 0 0
\(561\) −604419. −0.0810832
\(562\) − 1.86451e6i − 0.249014i
\(563\) 2.46602e6i 0.327888i 0.986470 + 0.163944i \(0.0524217\pi\)
−0.986470 + 0.163944i \(0.947578\pi\)
\(564\) 5.82759e6 0.771420
\(565\) 0 0
\(566\) −3.35589e6 −0.440318
\(567\) − 501438.i − 0.0655028i
\(568\) − 2.62344e6i − 0.341193i
\(569\) 1.04367e7 1.35139 0.675697 0.737179i \(-0.263843\pi\)
0.675697 + 0.737179i \(0.263843\pi\)
\(570\) 0 0
\(571\) 4.39937e6 0.564677 0.282338 0.959315i \(-0.408890\pi\)
0.282338 + 0.959315i \(0.408890\pi\)
\(572\) − 172392.i − 0.0220307i
\(573\) 8.10518e6i 1.03128i
\(574\) −4.40930e6 −0.558585
\(575\) 0 0
\(576\) 1.63467e6 0.205293
\(577\) − 2.03897e6i − 0.254959i −0.991841 0.127480i \(-0.959311\pi\)
0.991841 0.127480i \(-0.0406887\pi\)
\(578\) 5.11952e6i 0.637396i
\(579\) −1.66019e7 −2.05807
\(580\) 0 0
\(581\) 9.76032e6 1.19957
\(582\) 5.99908e6i 0.734137i
\(583\) − 851991.i − 0.103816i
\(584\) 4.37959e6 0.531376
\(585\) 0 0
\(586\) −5.61018e6 −0.674890
\(587\) 9.19255e6i 1.10113i 0.834791 + 0.550567i \(0.185589\pi\)
−0.834791 + 0.550567i \(0.814411\pi\)
\(588\) 2.87170e6i 0.342527i
\(589\) 412662. 0.0490125
\(590\) 0 0
\(591\) 1.72397e7 2.03030
\(592\) − 1.36733e6i − 0.160350i
\(593\) 7.34348e6i 0.857561i 0.903409 + 0.428780i \(0.141057\pi\)
−0.903409 + 0.428780i \(0.858943\pi\)
\(594\) −1.00865e6 −0.117294
\(595\) 0 0
\(596\) −4.73380e6 −0.545877
\(597\) 1.31794e7i 1.51342i
\(598\) − 764999.i − 0.0874799i
\(599\) 1.04212e7 1.18672 0.593361 0.804937i \(-0.297801\pi\)
0.593361 + 0.804937i \(0.297801\pi\)
\(600\) 0 0
\(601\) 7.92846e6 0.895370 0.447685 0.894191i \(-0.352249\pi\)
0.447685 + 0.894191i \(0.352249\pi\)
\(602\) 4.17576e6i 0.469618i
\(603\) − 1.75414e7i − 1.96458i
\(604\) 860180. 0.0959394
\(605\) 0 0
\(606\) 1.09077e6 0.120656
\(607\) 6.56441e6i 0.723143i 0.932344 + 0.361572i \(0.117760\pi\)
−0.932344 + 0.361572i \(0.882240\pi\)
\(608\) 43375.2i 0.00475864i
\(609\) −9.74293e6 −1.06450
\(610\) 0 0
\(611\) 2.42917e6 0.263242
\(612\) − 2.38901e6i − 0.257834i
\(613\) 9.93845e6i 1.06824i 0.845410 + 0.534118i \(0.179356\pi\)
−0.845410 + 0.534118i \(0.820644\pi\)
\(614\) −1.63288e6 −0.174797
\(615\) 0 0
\(616\) 630667. 0.0669650
\(617\) 1.49986e7i 1.58613i 0.609138 + 0.793064i \(0.291516\pi\)
−0.609138 + 0.793064i \(0.708484\pi\)
\(618\) − 9.57167e6i − 1.00813i
\(619\) −6.67132e6 −0.699818 −0.349909 0.936784i \(-0.613788\pi\)
−0.349909 + 0.936784i \(0.613788\pi\)
\(620\) 0 0
\(621\) −4.47593e6 −0.465751
\(622\) 9.05703e6i 0.938663i
\(623\) − 1.79642e7i − 1.85433i
\(624\) 1.09629e6 0.112710
\(625\) 0 0
\(626\) −1.02587e7 −1.04630
\(627\) − 68430.7i − 0.00695156i
\(628\) 3.18999e6i 0.322768i
\(629\) −1.99831e6 −0.201389
\(630\) 0 0
\(631\) −1.43883e7 −1.43859 −0.719295 0.694705i \(-0.755535\pi\)
−0.719295 + 0.694705i \(0.755535\pi\)
\(632\) 1.29491e6i 0.128958i
\(633\) 3.08680e6i 0.306196i
\(634\) −7.40204e6 −0.731355
\(635\) 0 0
\(636\) 5.41803e6 0.531127
\(637\) 1.19704e6i 0.116885i
\(638\) 634388.i 0.0617026i
\(639\) −1.63591e7 −1.58492
\(640\) 0 0
\(641\) −5.54650e6 −0.533180 −0.266590 0.963810i \(-0.585897\pi\)
−0.266590 + 0.963810i \(0.585897\pi\)
\(642\) 8.25086e6i 0.790063i
\(643\) − 1.56374e7i − 1.49155i −0.666199 0.745774i \(-0.732080\pi\)
0.666199 0.745774i \(-0.267920\pi\)
\(644\) 2.79861e6 0.265906
\(645\) 0 0
\(646\) 63391.5 0.00597654
\(647\) − 9.51432e6i − 0.893546i −0.894647 0.446773i \(-0.852573\pi\)
0.894647 0.446773i \(-0.147427\pi\)
\(648\) − 207629.i − 0.0194246i
\(649\) 2.45473e6 0.228766
\(650\) 0 0
\(651\) 3.81557e7 3.52863
\(652\) − 2.11262e6i − 0.194626i
\(653\) 4.66400e6i 0.428032i 0.976830 + 0.214016i \(0.0686544\pi\)
−0.976830 + 0.214016i \(0.931346\pi\)
\(654\) −1.47863e7 −1.35180
\(655\) 0 0
\(656\) −1.82575e6 −0.165646
\(657\) − 2.73101e7i − 2.46837i
\(658\) 8.88669e6i 0.800157i
\(659\) −3.19305e6 −0.286413 −0.143206 0.989693i \(-0.545741\pi\)
−0.143206 + 0.989693i \(0.545741\pi\)
\(660\) 0 0
\(661\) −2.20448e7 −1.96246 −0.981232 0.192829i \(-0.938234\pi\)
−0.981232 + 0.192829i \(0.938234\pi\)
\(662\) − 7.79148e6i − 0.690995i
\(663\) − 1.60219e6i − 0.141556i
\(664\) 4.04143e6 0.355726
\(665\) 0 0
\(666\) −8.52635e6 −0.744865
\(667\) 2.81513e6i 0.245010i
\(668\) − 2.01479e6i − 0.174698i
\(669\) −2.09374e7 −1.80866
\(670\) 0 0
\(671\) −1.81835e6 −0.155909
\(672\) 4.01057e6i 0.342596i
\(673\) 1.75530e7i 1.49387i 0.664896 + 0.746936i \(0.268476\pi\)
−0.664896 + 0.746936i \(0.731524\pi\)
\(674\) −1.37032e7 −1.16191
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) 4.12340e6i 0.345767i 0.984942 + 0.172883i \(0.0553084\pi\)
−0.984942 + 0.172883i \(0.944692\pi\)
\(678\) 8.80178e6i 0.735354i
\(679\) −9.14820e6 −0.761485
\(680\) 0 0
\(681\) 6.50688e6 0.537657
\(682\) − 2.48442e6i − 0.204533i
\(683\) 1.68043e7i 1.37838i 0.724581 + 0.689190i \(0.242034\pi\)
−0.724581 + 0.689190i \(0.757966\pi\)
\(684\) 270478. 0.0221050
\(685\) 0 0
\(686\) 6.01189e6 0.487754
\(687\) − 3.02577e7i − 2.44593i
\(688\) 1.72905e6i 0.139263i
\(689\) 2.25845e6 0.181244
\(690\) 0 0
\(691\) 5.42208e6 0.431987 0.215994 0.976395i \(-0.430701\pi\)
0.215994 + 0.976395i \(0.430701\pi\)
\(692\) 8.85486e6i 0.702937i
\(693\) − 3.93269e6i − 0.311069i
\(694\) 1.20780e7 0.951915
\(695\) 0 0
\(696\) −4.03423e6 −0.315673
\(697\) 2.66827e6i 0.208040i
\(698\) − 7.97616e6i − 0.619662i
\(699\) −3.15152e7 −2.43965
\(700\) 0 0
\(701\) −1.78689e7 −1.37342 −0.686710 0.726932i \(-0.740946\pi\)
−0.686710 + 0.726932i \(0.740946\pi\)
\(702\) − 2.67372e6i − 0.204773i
\(703\) − 226243.i − 0.0172658i
\(704\) 261139. 0.0198582
\(705\) 0 0
\(706\) 1.53272e6 0.115731
\(707\) 1.66335e6i 0.125151i
\(708\) 1.56103e7i 1.17038i
\(709\) 7.86353e6 0.587492 0.293746 0.955884i \(-0.405098\pi\)
0.293746 + 0.955884i \(0.405098\pi\)
\(710\) 0 0
\(711\) 8.07475e6 0.599039
\(712\) − 7.43840e6i − 0.549894i
\(713\) − 1.10247e7i − 0.812163i
\(714\) 5.86132e6 0.430279
\(715\) 0 0
\(716\) −7.54074e6 −0.549707
\(717\) − 1.14277e7i − 0.830161i
\(718\) 1.50044e7i 1.08620i
\(719\) 1.54686e7 1.11591 0.557956 0.829870i \(-0.311586\pi\)
0.557956 + 0.829870i \(0.311586\pi\)
\(720\) 0 0
\(721\) 1.45962e7 1.04568
\(722\) − 9.89722e6i − 0.706594i
\(723\) 1.58786e7i 1.12971i
\(724\) −7.53874e6 −0.534506
\(725\) 0 0
\(726\) 1.59118e7 1.12041
\(727\) 6.05401e6i 0.424822i 0.977180 + 0.212411i \(0.0681316\pi\)
−0.977180 + 0.212411i \(0.931868\pi\)
\(728\) 1.67177e6i 0.116909i
\(729\) 2.30594e7 1.60705
\(730\) 0 0
\(731\) 2.52695e6 0.174905
\(732\) − 1.15633e7i − 0.797637i
\(733\) − 1.88061e7i − 1.29282i −0.762989 0.646412i \(-0.776269\pi\)
0.762989 0.646412i \(-0.223731\pi\)
\(734\) −1.56622e6 −0.107303
\(735\) 0 0
\(736\) 1.15882e6 0.0788533
\(737\) − 2.80224e6i − 0.190036i
\(738\) 1.13849e7i 0.769465i
\(739\) 1.12832e7 0.760011 0.380006 0.924984i \(-0.375922\pi\)
0.380006 + 0.924984i \(0.375922\pi\)
\(740\) 0 0
\(741\) 181395. 0.0121361
\(742\) 8.26214e6i 0.550913i
\(743\) 1.08397e6i 0.0720351i 0.999351 + 0.0360175i \(0.0114672\pi\)
−0.999351 + 0.0360175i \(0.988533\pi\)
\(744\) 1.57990e7 1.04640
\(745\) 0 0
\(746\) −39327.8 −0.00258733
\(747\) − 2.52014e7i − 1.65243i
\(748\) − 381646.i − 0.0249406i
\(749\) −1.25820e7 −0.819494
\(750\) 0 0
\(751\) −1.03591e7 −0.670230 −0.335115 0.942177i \(-0.608775\pi\)
−0.335115 + 0.942177i \(0.608775\pi\)
\(752\) 3.67969e6i 0.237283i
\(753\) − 4.31244e7i − 2.77163i
\(754\) −1.68163e6 −0.107721
\(755\) 0 0
\(756\) 9.78132e6 0.622433
\(757\) 1.53049e7i 0.970710i 0.874317 + 0.485355i \(0.161310\pi\)
−0.874317 + 0.485355i \(0.838690\pi\)
\(758\) − 7.51871e6i − 0.475303i
\(759\) −1.82820e6 −0.115191
\(760\) 0 0
\(761\) −2.78390e7 −1.74258 −0.871289 0.490771i \(-0.836715\pi\)
−0.871289 + 0.490771i \(0.836715\pi\)
\(762\) − 1.87430e7i − 1.16937i
\(763\) − 2.25481e7i − 1.40216i
\(764\) −5.11782e6 −0.317214
\(765\) 0 0
\(766\) 8.56937e6 0.527688
\(767\) 6.50698e6i 0.399384i
\(768\) 1.66065e6i 0.101595i
\(769\) 1.88871e7 1.15173 0.575864 0.817545i \(-0.304666\pi\)
0.575864 + 0.817545i \(0.304666\pi\)
\(770\) 0 0
\(771\) 1.64591e6 0.0997173
\(772\) − 1.04829e7i − 0.633048i
\(773\) 1.66647e7i 1.00311i 0.865125 + 0.501556i \(0.167239\pi\)
−0.865125 + 0.501556i \(0.832761\pi\)
\(774\) 1.07819e7 0.646910
\(775\) 0 0
\(776\) −3.78798e6 −0.225815
\(777\) − 2.09190e7i − 1.24305i
\(778\) − 7.47586e6i − 0.442805i
\(779\) −302094. −0.0178361
\(780\) 0 0
\(781\) −2.61338e6 −0.153312
\(782\) − 1.69357e6i − 0.0990345i
\(783\) 9.83903e6i 0.573519i
\(784\) −1.81326e6 −0.105359
\(785\) 0 0
\(786\) 6.09054e6 0.351641
\(787\) − 1.30313e7i − 0.749984i −0.927028 0.374992i \(-0.877645\pi\)
0.927028 0.374992i \(-0.122355\pi\)
\(788\) 1.08856e7i 0.624505i
\(789\) 6.66661e6 0.381252
\(790\) 0 0
\(791\) −1.34221e7 −0.762747
\(792\) − 1.62840e6i − 0.0922460i
\(793\) − 4.82005e6i − 0.272188i
\(794\) −5.99803e6 −0.337643
\(795\) 0 0
\(796\) −8.32180e6 −0.465516
\(797\) 2.29513e6i 0.127986i 0.997950 + 0.0639929i \(0.0203835\pi\)
−0.997950 + 0.0639929i \(0.979617\pi\)
\(798\) 663603.i 0.0368893i
\(799\) 5.37775e6 0.298012
\(800\) 0 0
\(801\) −4.63841e7 −2.55439
\(802\) 9.07835e6i 0.498392i
\(803\) − 4.36280e6i − 0.238768i
\(804\) 1.78202e7 0.972235
\(805\) 0 0
\(806\) 6.58566e6 0.357077
\(807\) 2.88720e7i 1.56060i
\(808\) 688738.i 0.0371129i
\(809\) 8.57148e6 0.460452 0.230226 0.973137i \(-0.426053\pi\)
0.230226 + 0.973137i \(0.426053\pi\)
\(810\) 0 0
\(811\) −3.45545e6 −0.184481 −0.0922407 0.995737i \(-0.529403\pi\)
−0.0922407 + 0.995737i \(0.529403\pi\)
\(812\) − 6.15194e6i − 0.327433i
\(813\) 5.79467e7i 3.07470i
\(814\) −1.36209e6 −0.0720517
\(815\) 0 0
\(816\) 2.42698e6 0.127597
\(817\) 286094.i 0.0149953i
\(818\) − 1.95463e7i − 1.02137i
\(819\) 1.04247e7 0.543069
\(820\) 0 0
\(821\) −2.35363e7 −1.21866 −0.609328 0.792918i \(-0.708561\pi\)
−0.609328 + 0.792918i \(0.708561\pi\)
\(822\) 1.82161e7i 0.940323i
\(823\) 1.60053e7i 0.823693i 0.911253 + 0.411846i \(0.135116\pi\)
−0.911253 + 0.411846i \(0.864884\pi\)
\(824\) 6.04380e6 0.310093
\(825\) 0 0
\(826\) −2.38046e7 −1.21398
\(827\) − 6.11399e6i − 0.310857i −0.987847 0.155429i \(-0.950324\pi\)
0.987847 0.155429i \(-0.0496758\pi\)
\(828\) − 7.22610e6i − 0.366292i
\(829\) −2.09598e7 −1.05925 −0.529627 0.848231i \(-0.677668\pi\)
−0.529627 + 0.848231i \(0.677668\pi\)
\(830\) 0 0
\(831\) −6.16995e7 −3.09941
\(832\) 692224.i 0.0346688i
\(833\) 2.65003e6i 0.132324i
\(834\) −1.48061e7 −0.737097
\(835\) 0 0
\(836\) 43208.9 0.00213825
\(837\) − 3.85320e7i − 1.90111i
\(838\) 1.23062e7i 0.605361i
\(839\) 2.39998e7 1.17707 0.588536 0.808471i \(-0.299704\pi\)
0.588536 + 0.808471i \(0.299704\pi\)
\(840\) 0 0
\(841\) −1.43229e7 −0.698299
\(842\) 3.96678e6i 0.192822i
\(843\) − 1.18114e7i − 0.572444i
\(844\) −1.94909e6 −0.0941836
\(845\) 0 0
\(846\) 2.29457e7 1.10224
\(847\) 2.42645e7i 1.16215i
\(848\) 3.42108e6i 0.163371i
\(849\) −2.12591e7 −1.01222
\(850\) 0 0
\(851\) −6.04433e6 −0.286104
\(852\) − 1.66191e7i − 0.784350i
\(853\) 8.22205e6i 0.386908i 0.981109 + 0.193454i \(0.0619690\pi\)
−0.981109 + 0.193454i \(0.938031\pi\)
\(854\) 1.76333e7 0.827350
\(855\) 0 0
\(856\) −5.20981e6 −0.243017
\(857\) 1.68142e7i 0.782032i 0.920384 + 0.391016i \(0.127876\pi\)
−0.920384 + 0.391016i \(0.872124\pi\)
\(858\) − 1.09208e6i − 0.0506451i
\(859\) 3.26713e6 0.151072 0.0755360 0.997143i \(-0.475933\pi\)
0.0755360 + 0.997143i \(0.475933\pi\)
\(860\) 0 0
\(861\) −2.79323e7 −1.28410
\(862\) − 1.98872e7i − 0.911604i
\(863\) − 3.42932e7i − 1.56741i −0.621136 0.783703i \(-0.713329\pi\)
0.621136 0.783703i \(-0.286671\pi\)
\(864\) 4.05013e6 0.184580
\(865\) 0 0
\(866\) −3.71901e6 −0.168513
\(867\) 3.24315e7i 1.46527i
\(868\) 2.40925e7i 1.08538i
\(869\) 1.28994e6 0.0579457
\(870\) 0 0
\(871\) 7.42815e6 0.331769
\(872\) − 9.33642e6i − 0.415805i
\(873\) 2.36209e7i 1.04896i
\(874\) 191742. 0.00849059
\(875\) 0 0
\(876\) 2.77441e7 1.22155
\(877\) 3.93564e6i 0.172789i 0.996261 + 0.0863946i \(0.0275346\pi\)
−0.996261 + 0.0863946i \(0.972465\pi\)
\(878\) 2.49711e7i 1.09320i
\(879\) −3.55397e7 −1.55147
\(880\) 0 0
\(881\) −4.25403e7 −1.84655 −0.923274 0.384141i \(-0.874498\pi\)
−0.923274 + 0.384141i \(0.874498\pi\)
\(882\) 1.13071e7i 0.489417i
\(883\) 1.48855e7i 0.642482i 0.946998 + 0.321241i \(0.104100\pi\)
−0.946998 + 0.321241i \(0.895900\pi\)
\(884\) 1.01166e6 0.0435417
\(885\) 0 0
\(886\) 2.44877e7 1.04800
\(887\) 3.89095e7i 1.66053i 0.557370 + 0.830264i \(0.311811\pi\)
−0.557370 + 0.830264i \(0.688189\pi\)
\(888\) − 8.66186e6i − 0.368620i
\(889\) 2.85819e7 1.21293
\(890\) 0 0
\(891\) −206833. −0.00872822
\(892\) − 1.32204e7i − 0.556331i
\(893\) 608854.i 0.0255496i
\(894\) −2.99880e7 −1.25489
\(895\) 0 0
\(896\) −2.53238e6 −0.105380
\(897\) − 4.84617e6i − 0.201102i
\(898\) − 2.72582e7i − 1.12799i
\(899\) −2.42346e7 −1.00009
\(900\) 0 0
\(901\) 4.99980e6 0.205183
\(902\) 1.81875e6i 0.0744313i
\(903\) 2.64529e7i 1.07958i
\(904\) −5.55767e6 −0.226189
\(905\) 0 0
\(906\) 5.44912e6 0.220550
\(907\) − 4.26154e6i − 0.172008i −0.996295 0.0860039i \(-0.972590\pi\)
0.996295 0.0860039i \(-0.0274098\pi\)
\(908\) 4.10861e6i 0.165379i
\(909\) 4.29480e6 0.172399
\(910\) 0 0
\(911\) −2.52991e7 −1.00997 −0.504985 0.863128i \(-0.668502\pi\)
−0.504985 + 0.863128i \(0.668502\pi\)
\(912\) 274776.i 0.0109394i
\(913\) − 4.02594e6i − 0.159842i
\(914\) −4.61847e6 −0.182866
\(915\) 0 0
\(916\) 1.91055e7 0.752351
\(917\) 9.28767e6i 0.364740i
\(918\) − 5.91913e6i − 0.231820i
\(919\) 2.20112e7 0.859717 0.429858 0.902896i \(-0.358563\pi\)
0.429858 + 0.902896i \(0.358563\pi\)
\(920\) 0 0
\(921\) −1.03441e7 −0.401831
\(922\) 1.86616e7i 0.722972i
\(923\) − 6.92752e6i − 0.267654i
\(924\) 3.99519e6 0.153942
\(925\) 0 0
\(926\) −2.93557e7 −1.12503
\(927\) − 3.76877e7i − 1.44046i
\(928\) − 2.54732e6i − 0.0970987i
\(929\) 1.80352e6 0.0685615 0.0342808 0.999412i \(-0.489086\pi\)
0.0342808 + 0.999412i \(0.489086\pi\)
\(930\) 0 0
\(931\) −300029. −0.0113446
\(932\) − 1.98995e7i − 0.750416i
\(933\) 5.73751e7i 2.15784i
\(934\) −5.62803e6 −0.211100
\(935\) 0 0
\(936\) 4.31654e6 0.161045
\(937\) − 3.06903e7i − 1.14196i −0.820963 0.570981i \(-0.806563\pi\)
0.820963 0.570981i \(-0.193437\pi\)
\(938\) 2.71746e7i 1.00845i
\(939\) −6.49872e7 −2.40527
\(940\) 0 0
\(941\) 4.83823e7 1.78120 0.890600 0.454788i \(-0.150285\pi\)
0.890600 + 0.454788i \(0.150285\pi\)
\(942\) 2.02082e7i 0.741993i
\(943\) 8.07077e6i 0.295553i
\(944\) −9.85672e6 −0.360000
\(945\) 0 0
\(946\) 1.72242e6 0.0625764
\(947\) − 3.69874e7i − 1.34023i −0.742259 0.670114i \(-0.766245\pi\)
0.742259 0.670114i \(-0.233755\pi\)
\(948\) 8.20308e6i 0.296453i
\(949\) 1.15649e7 0.416845
\(950\) 0 0
\(951\) −4.68910e7 −1.68127
\(952\) 3.70099e6i 0.132350i
\(953\) − 2.30839e7i − 0.823335i −0.911334 0.411668i \(-0.864946\pi\)
0.911334 0.411668i \(-0.135054\pi\)
\(954\) 2.13331e7 0.758896
\(955\) 0 0
\(956\) 7.21577e6 0.255351
\(957\) 4.01876e6i 0.141845i
\(958\) 3.20876e7i 1.12960i
\(959\) −2.77784e7 −0.975351
\(960\) 0 0
\(961\) 6.62795e7 2.31510
\(962\) − 3.61061e6i − 0.125789i
\(963\) 3.24871e7i 1.12887i
\(964\) −1.00262e7 −0.347490
\(965\) 0 0
\(966\) 1.77288e7 0.611276
\(967\) − 2.85570e7i − 0.982079i −0.871137 0.491040i \(-0.836617\pi\)
0.871137 0.491040i \(-0.163383\pi\)
\(968\) 1.00471e7i 0.344630i
\(969\) 401577. 0.0137391
\(970\) 0 0
\(971\) −1.99121e7 −0.677748 −0.338874 0.940832i \(-0.610046\pi\)
−0.338874 + 0.940832i \(0.610046\pi\)
\(972\) 1.40625e7i 0.477417i
\(973\) − 2.25783e7i − 0.764555i
\(974\) −2.02228e7 −0.683037
\(975\) 0 0
\(976\) 7.30138e6 0.245347
\(977\) − 9.96441e6i − 0.333976i −0.985959 0.166988i \(-0.946596\pi\)
0.985959 0.166988i \(-0.0534041\pi\)
\(978\) − 1.33831e7i − 0.447415i
\(979\) −7.40987e6 −0.247089
\(980\) 0 0
\(981\) −5.82197e7 −1.93151
\(982\) − 2.80527e7i − 0.928315i
\(983\) 3.94695e7i 1.30280i 0.758734 + 0.651400i \(0.225818\pi\)
−0.758734 + 0.651400i \(0.774182\pi\)
\(984\) −1.15659e7 −0.380794
\(985\) 0 0
\(986\) −3.72283e6 −0.121950
\(987\) 5.62960e7i 1.83943i
\(988\) 114538.i 0.00373299i
\(989\) 7.64331e6 0.248480
\(990\) 0 0
\(991\) 4.25424e7 1.37606 0.688031 0.725682i \(-0.258475\pi\)
0.688031 + 0.725682i \(0.258475\pi\)
\(992\) 9.97592e6i 0.321865i
\(993\) − 4.93580e7i − 1.58849i
\(994\) 2.53431e7 0.813568
\(995\) 0 0
\(996\) 2.56019e7 0.817758
\(997\) − 1.32492e6i − 0.0422136i −0.999777 0.0211068i \(-0.993281\pi\)
0.999777 0.0211068i \(-0.00671900\pi\)
\(998\) 3.85909e7i 1.22647i
\(999\) −2.11253e7 −0.669713
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.b.k.599.8 8
5.2 odd 4 650.6.a.l.1.4 4
5.3 odd 4 650.6.a.m.1.1 yes 4
5.4 even 2 inner 650.6.b.k.599.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.6.a.l.1.4 4 5.2 odd 4
650.6.a.m.1.1 yes 4 5.3 odd 4
650.6.b.k.599.1 8 5.4 even 2 inner
650.6.b.k.599.8 8 1.1 even 1 trivial