Properties

Label 6525.2.a.bn.1.2
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.331312.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 7x^{3} - 4x^{2} + 7x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.05608\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.45441 q^{2} +4.02413 q^{4} +2.54244 q^{7} -4.96805 q^{8} -1.37105 q^{11} -0.542444 q^{13} -6.24020 q^{14} +4.14537 q^{16} -0.0592276 q^{17} -0.567929 q^{19} +3.36512 q^{22} -8.45127 q^{23} +1.33138 q^{26} +10.2311 q^{28} +1.00000 q^{29} +7.33003 q^{31} -0.238340 q^{32} +0.145369 q^{34} -5.86600 q^{37} +1.39393 q^{38} +4.87876 q^{41} -7.46121 q^{43} -5.51729 q^{44} +20.7429 q^{46} -10.4950 q^{47} -0.535977 q^{49} -2.18287 q^{52} -7.49495 q^{53} -12.6310 q^{56} -2.45441 q^{58} +2.76839 q^{59} +0.0372209 q^{61} -17.9909 q^{62} -7.70575 q^{64} +12.5232 q^{67} -0.238340 q^{68} +2.45576 q^{71} +8.17238 q^{73} +14.3976 q^{74} -2.28542 q^{76} -3.48582 q^{77} +7.65282 q^{79} -11.9745 q^{82} +6.83127 q^{83} +18.3129 q^{86} +6.81145 q^{88} +10.5888 q^{89} -1.37913 q^{91} -34.0090 q^{92} +25.7589 q^{94} +3.11684 q^{97} +1.31551 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 8 q^{4} + 4 q^{7} - 18 q^{8} + 5 q^{11} + 6 q^{13} + 8 q^{14} + 14 q^{16} - 14 q^{17} + 2 q^{19} + 8 q^{22} - 13 q^{23} - 12 q^{26} - 4 q^{28} + 5 q^{29} + 2 q^{31} - 18 q^{32} - 6 q^{34}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.45441 −1.73553 −0.867765 0.496974i \(-0.834444\pi\)
−0.867765 + 0.496974i \(0.834444\pi\)
\(3\) 0 0
\(4\) 4.02413 2.01207
\(5\) 0 0
\(6\) 0 0
\(7\) 2.54244 0.960954 0.480477 0.877007i \(-0.340464\pi\)
0.480477 + 0.877007i \(0.340464\pi\)
\(8\) −4.96805 −1.75647
\(9\) 0 0
\(10\) 0 0
\(11\) −1.37105 −0.413388 −0.206694 0.978406i \(-0.566270\pi\)
−0.206694 + 0.978406i \(0.566270\pi\)
\(12\) 0 0
\(13\) −0.542444 −0.150447 −0.0752235 0.997167i \(-0.523967\pi\)
−0.0752235 + 0.997167i \(0.523967\pi\)
\(14\) −6.24020 −1.66776
\(15\) 0 0
\(16\) 4.14537 1.03634
\(17\) −0.0592276 −0.0143648 −0.00718240 0.999974i \(-0.502286\pi\)
−0.00718240 + 0.999974i \(0.502286\pi\)
\(18\) 0 0
\(19\) −0.567929 −0.130292 −0.0651459 0.997876i \(-0.520751\pi\)
−0.0651459 + 0.997876i \(0.520751\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.36512 0.717447
\(23\) −8.45127 −1.76221 −0.881105 0.472920i \(-0.843200\pi\)
−0.881105 + 0.472920i \(0.843200\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.33138 0.261105
\(27\) 0 0
\(28\) 10.2311 1.93350
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 7.33003 1.31651 0.658256 0.752794i \(-0.271294\pi\)
0.658256 + 0.752794i \(0.271294\pi\)
\(32\) −0.238340 −0.0421329
\(33\) 0 0
\(34\) 0.145369 0.0249306
\(35\) 0 0
\(36\) 0 0
\(37\) −5.86600 −0.964365 −0.482183 0.876071i \(-0.660156\pi\)
−0.482183 + 0.876071i \(0.660156\pi\)
\(38\) 1.39393 0.226125
\(39\) 0 0
\(40\) 0 0
\(41\) 4.87876 0.761935 0.380967 0.924589i \(-0.375591\pi\)
0.380967 + 0.924589i \(0.375591\pi\)
\(42\) 0 0
\(43\) −7.46121 −1.13782 −0.568912 0.822398i \(-0.692635\pi\)
−0.568912 + 0.822398i \(0.692635\pi\)
\(44\) −5.51729 −0.831763
\(45\) 0 0
\(46\) 20.7429 3.05837
\(47\) −10.4950 −1.53085 −0.765423 0.643527i \(-0.777470\pi\)
−0.765423 + 0.643527i \(0.777470\pi\)
\(48\) 0 0
\(49\) −0.535977 −0.0765682
\(50\) 0 0
\(51\) 0 0
\(52\) −2.18287 −0.302709
\(53\) −7.49495 −1.02951 −0.514755 0.857337i \(-0.672117\pi\)
−0.514755 + 0.857337i \(0.672117\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −12.6310 −1.68789
\(57\) 0 0
\(58\) −2.45441 −0.322280
\(59\) 2.76839 0.360414 0.180207 0.983629i \(-0.442323\pi\)
0.180207 + 0.983629i \(0.442323\pi\)
\(60\) 0 0
\(61\) 0.0372209 0.00476564 0.00238282 0.999997i \(-0.499242\pi\)
0.00238282 + 0.999997i \(0.499242\pi\)
\(62\) −17.9909 −2.28485
\(63\) 0 0
\(64\) −7.70575 −0.963219
\(65\) 0 0
\(66\) 0 0
\(67\) 12.5232 1.52995 0.764977 0.644057i \(-0.222750\pi\)
0.764977 + 0.644057i \(0.222750\pi\)
\(68\) −0.238340 −0.0289029
\(69\) 0 0
\(70\) 0 0
\(71\) 2.45576 0.291446 0.145723 0.989325i \(-0.453449\pi\)
0.145723 + 0.989325i \(0.453449\pi\)
\(72\) 0 0
\(73\) 8.17238 0.956505 0.478253 0.878222i \(-0.341270\pi\)
0.478253 + 0.878222i \(0.341270\pi\)
\(74\) 14.3976 1.67369
\(75\) 0 0
\(76\) −2.28542 −0.262156
\(77\) −3.48582 −0.397246
\(78\) 0 0
\(79\) 7.65282 0.861009 0.430505 0.902588i \(-0.358336\pi\)
0.430505 + 0.902588i \(0.358336\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −11.9745 −1.32236
\(83\) 6.83127 0.749829 0.374915 0.927059i \(-0.377672\pi\)
0.374915 + 0.927059i \(0.377672\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 18.3129 1.97473
\(87\) 0 0
\(88\) 6.81145 0.726103
\(89\) 10.5888 1.12241 0.561206 0.827676i \(-0.310338\pi\)
0.561206 + 0.827676i \(0.310338\pi\)
\(90\) 0 0
\(91\) −1.37913 −0.144573
\(92\) −34.0090 −3.54568
\(93\) 0 0
\(94\) 25.7589 2.65683
\(95\) 0 0
\(96\) 0 0
\(97\) 3.11684 0.316467 0.158234 0.987402i \(-0.449420\pi\)
0.158234 + 0.987402i \(0.449420\pi\)
\(98\) 1.31551 0.132886
\(99\) 0 0
\(100\) 0 0
\(101\) 7.42866 0.739180 0.369590 0.929195i \(-0.379498\pi\)
0.369590 + 0.929195i \(0.379498\pi\)
\(102\) 0 0
\(103\) −19.2261 −1.89440 −0.947202 0.320639i \(-0.896102\pi\)
−0.947202 + 0.320639i \(0.896102\pi\)
\(104\) 2.69489 0.264256
\(105\) 0 0
\(106\) 18.3957 1.78675
\(107\) 11.9636 1.15656 0.578280 0.815838i \(-0.303724\pi\)
0.578280 + 0.815838i \(0.303724\pi\)
\(108\) 0 0
\(109\) 9.27888 0.888756 0.444378 0.895839i \(-0.353425\pi\)
0.444378 + 0.895839i \(0.353425\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 10.5394 0.995877
\(113\) −7.26814 −0.683729 −0.341864 0.939749i \(-0.611058\pi\)
−0.341864 + 0.939749i \(0.611058\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.02413 0.373631
\(117\) 0 0
\(118\) −6.79476 −0.625509
\(119\) −0.150583 −0.0138039
\(120\) 0 0
\(121\) −9.12022 −0.829111
\(122\) −0.0913553 −0.00827092
\(123\) 0 0
\(124\) 29.4970 2.64891
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0629 1.42535 0.712675 0.701494i \(-0.247483\pi\)
0.712675 + 0.701494i \(0.247483\pi\)
\(128\) 19.3898 1.71383
\(129\) 0 0
\(130\) 0 0
\(131\) 11.7310 1.02494 0.512469 0.858705i \(-0.328731\pi\)
0.512469 + 0.858705i \(0.328731\pi\)
\(132\) 0 0
\(133\) −1.44393 −0.125204
\(134\) −30.7371 −2.65528
\(135\) 0 0
\(136\) 0.294246 0.0252314
\(137\) 12.5832 1.07506 0.537528 0.843246i \(-0.319358\pi\)
0.537528 + 0.843246i \(0.319358\pi\)
\(138\) 0 0
\(139\) −21.5899 −1.83123 −0.915614 0.402058i \(-0.868295\pi\)
−0.915614 + 0.402058i \(0.868295\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.02745 −0.505813
\(143\) 0.743719 0.0621929
\(144\) 0 0
\(145\) 0 0
\(146\) −20.0584 −1.66004
\(147\) 0 0
\(148\) −23.6056 −1.94037
\(149\) 9.80926 0.803606 0.401803 0.915726i \(-0.368384\pi\)
0.401803 + 0.915726i \(0.368384\pi\)
\(150\) 0 0
\(151\) 23.7777 1.93500 0.967501 0.252866i \(-0.0813732\pi\)
0.967501 + 0.252866i \(0.0813732\pi\)
\(152\) 2.82150 0.228854
\(153\) 0 0
\(154\) 8.55564 0.689433
\(155\) 0 0
\(156\) 0 0
\(157\) 8.57059 0.684008 0.342004 0.939699i \(-0.388894\pi\)
0.342004 + 0.939699i \(0.388894\pi\)
\(158\) −18.7832 −1.49431
\(159\) 0 0
\(160\) 0 0
\(161\) −21.4869 −1.69340
\(162\) 0 0
\(163\) 22.1394 1.73409 0.867046 0.498228i \(-0.166016\pi\)
0.867046 + 0.498228i \(0.166016\pi\)
\(164\) 19.6328 1.53306
\(165\) 0 0
\(166\) −16.7667 −1.30135
\(167\) 22.0420 1.70566 0.852829 0.522189i \(-0.174885\pi\)
0.852829 + 0.522189i \(0.174885\pi\)
\(168\) 0 0
\(169\) −12.7058 −0.977366
\(170\) 0 0
\(171\) 0 0
\(172\) −30.0249 −2.28938
\(173\) −7.59608 −0.577519 −0.288760 0.957402i \(-0.593243\pi\)
−0.288760 + 0.957402i \(0.593243\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.68352 −0.428411
\(177\) 0 0
\(178\) −25.9893 −1.94798
\(179\) 16.9100 1.26391 0.631956 0.775004i \(-0.282252\pi\)
0.631956 + 0.775004i \(0.282252\pi\)
\(180\) 0 0
\(181\) −0.792853 −0.0589323 −0.0294661 0.999566i \(-0.509381\pi\)
−0.0294661 + 0.999566i \(0.509381\pi\)
\(182\) 3.38496 0.250910
\(183\) 0 0
\(184\) 41.9863 3.09527
\(185\) 0 0
\(186\) 0 0
\(187\) 0.0812041 0.00593824
\(188\) −42.2331 −3.08016
\(189\) 0 0
\(190\) 0 0
\(191\) −17.0839 −1.23615 −0.618073 0.786121i \(-0.712086\pi\)
−0.618073 + 0.786121i \(0.712086\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) −7.65000 −0.549238
\(195\) 0 0
\(196\) −2.15684 −0.154060
\(197\) −3.76371 −0.268154 −0.134077 0.990971i \(-0.542807\pi\)
−0.134077 + 0.990971i \(0.542807\pi\)
\(198\) 0 0
\(199\) −8.21249 −0.582168 −0.291084 0.956697i \(-0.594016\pi\)
−0.291084 + 0.956697i \(0.594016\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −18.2330 −1.28287
\(203\) 2.54244 0.178445
\(204\) 0 0
\(205\) 0 0
\(206\) 47.1887 3.28779
\(207\) 0 0
\(208\) −2.24863 −0.155915
\(209\) 0.778660 0.0538610
\(210\) 0 0
\(211\) −17.9980 −1.23903 −0.619515 0.784985i \(-0.712671\pi\)
−0.619515 + 0.784985i \(0.712671\pi\)
\(212\) −30.1607 −2.07144
\(213\) 0 0
\(214\) −29.3635 −2.00725
\(215\) 0 0
\(216\) 0 0
\(217\) 18.6362 1.26511
\(218\) −22.7742 −1.54246
\(219\) 0 0
\(220\) 0 0
\(221\) 0.0321277 0.00216114
\(222\) 0 0
\(223\) −5.81526 −0.389418 −0.194709 0.980861i \(-0.562376\pi\)
−0.194709 + 0.980861i \(0.562376\pi\)
\(224\) −0.605965 −0.0404878
\(225\) 0 0
\(226\) 17.8390 1.18663
\(227\) 15.8357 1.05105 0.525527 0.850777i \(-0.323868\pi\)
0.525527 + 0.850777i \(0.323868\pi\)
\(228\) 0 0
\(229\) 7.89877 0.521965 0.260983 0.965343i \(-0.415953\pi\)
0.260983 + 0.965343i \(0.415953\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.96805 −0.326168
\(233\) −8.85019 −0.579795 −0.289898 0.957058i \(-0.593621\pi\)
−0.289898 + 0.957058i \(0.593621\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.1404 0.725176
\(237\) 0 0
\(238\) 0.369592 0.0239571
\(239\) 12.7957 0.827687 0.413844 0.910348i \(-0.364186\pi\)
0.413844 + 0.910348i \(0.364186\pi\)
\(240\) 0 0
\(241\) −2.32107 −0.149513 −0.0747567 0.997202i \(-0.523818\pi\)
−0.0747567 + 0.997202i \(0.523818\pi\)
\(242\) 22.3848 1.43895
\(243\) 0 0
\(244\) 0.149782 0.00958879
\(245\) 0 0
\(246\) 0 0
\(247\) 0.308070 0.0196020
\(248\) −36.4159 −2.31241
\(249\) 0 0
\(250\) 0 0
\(251\) 23.5133 1.48414 0.742072 0.670320i \(-0.233843\pi\)
0.742072 + 0.670320i \(0.233843\pi\)
\(252\) 0 0
\(253\) 11.5871 0.728476
\(254\) −39.4249 −2.47374
\(255\) 0 0
\(256\) −32.1789 −2.01118
\(257\) 25.8267 1.61103 0.805514 0.592577i \(-0.201889\pi\)
0.805514 + 0.592577i \(0.201889\pi\)
\(258\) 0 0
\(259\) −14.9140 −0.926710
\(260\) 0 0
\(261\) 0 0
\(262\) −28.7926 −1.77881
\(263\) −0.151278 −0.00932820 −0.00466410 0.999989i \(-0.501485\pi\)
−0.00466410 + 0.999989i \(0.501485\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.54399 0.217296
\(267\) 0 0
\(268\) 50.3951 3.07837
\(269\) 16.8704 1.02861 0.514303 0.857608i \(-0.328051\pi\)
0.514303 + 0.857608i \(0.328051\pi\)
\(270\) 0 0
\(271\) −12.2024 −0.741243 −0.370621 0.928784i \(-0.620855\pi\)
−0.370621 + 0.928784i \(0.620855\pi\)
\(272\) −0.245520 −0.0148869
\(273\) 0 0
\(274\) −30.8844 −1.86579
\(275\) 0 0
\(276\) 0 0
\(277\) −19.0681 −1.14569 −0.572844 0.819664i \(-0.694160\pi\)
−0.572844 + 0.819664i \(0.694160\pi\)
\(278\) 52.9904 3.17815
\(279\) 0 0
\(280\) 0 0
\(281\) 22.3949 1.33597 0.667983 0.744176i \(-0.267158\pi\)
0.667983 + 0.744176i \(0.267158\pi\)
\(282\) 0 0
\(283\) −6.66635 −0.396273 −0.198137 0.980174i \(-0.563489\pi\)
−0.198137 + 0.980174i \(0.563489\pi\)
\(284\) 9.88232 0.586408
\(285\) 0 0
\(286\) −1.82539 −0.107938
\(287\) 12.4040 0.732184
\(288\) 0 0
\(289\) −16.9965 −0.999794
\(290\) 0 0
\(291\) 0 0
\(292\) 32.8867 1.92455
\(293\) −3.89339 −0.227454 −0.113727 0.993512i \(-0.536279\pi\)
−0.113727 + 0.993512i \(0.536279\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 29.1426 1.69388
\(297\) 0 0
\(298\) −24.0760 −1.39468
\(299\) 4.58434 0.265119
\(300\) 0 0
\(301\) −18.9697 −1.09340
\(302\) −58.3603 −3.35826
\(303\) 0 0
\(304\) −2.35427 −0.135027
\(305\) 0 0
\(306\) 0 0
\(307\) −11.1295 −0.635192 −0.317596 0.948226i \(-0.602876\pi\)
−0.317596 + 0.948226i \(0.602876\pi\)
\(308\) −14.0274 −0.799286
\(309\) 0 0
\(310\) 0 0
\(311\) 4.62266 0.262127 0.131063 0.991374i \(-0.458161\pi\)
0.131063 + 0.991374i \(0.458161\pi\)
\(312\) 0 0
\(313\) −4.85936 −0.274667 −0.137334 0.990525i \(-0.543853\pi\)
−0.137334 + 0.990525i \(0.543853\pi\)
\(314\) −21.0358 −1.18712
\(315\) 0 0
\(316\) 30.7959 1.73241
\(317\) −21.3076 −1.19675 −0.598377 0.801215i \(-0.704188\pi\)
−0.598377 + 0.801215i \(0.704188\pi\)
\(318\) 0 0
\(319\) −1.37105 −0.0767642
\(320\) 0 0
\(321\) 0 0
\(322\) 52.7376 2.93895
\(323\) 0.0336371 0.00187162
\(324\) 0 0
\(325\) 0 0
\(326\) −54.3392 −3.00957
\(327\) 0 0
\(328\) −24.2379 −1.33832
\(329\) −26.6828 −1.47107
\(330\) 0 0
\(331\) 5.36806 0.295055 0.147528 0.989058i \(-0.452868\pi\)
0.147528 + 0.989058i \(0.452868\pi\)
\(332\) 27.4899 1.50871
\(333\) 0 0
\(334\) −54.1000 −2.96022
\(335\) 0 0
\(336\) 0 0
\(337\) 31.3599 1.70828 0.854142 0.520039i \(-0.174083\pi\)
0.854142 + 0.520039i \(0.174083\pi\)
\(338\) 31.1851 1.69625
\(339\) 0 0
\(340\) 0 0
\(341\) −10.0498 −0.544230
\(342\) 0 0
\(343\) −19.1598 −1.03453
\(344\) 37.0677 1.99855
\(345\) 0 0
\(346\) 18.6439 1.00230
\(347\) −9.46310 −0.508006 −0.254003 0.967203i \(-0.581747\pi\)
−0.254003 + 0.967203i \(0.581747\pi\)
\(348\) 0 0
\(349\) 3.35186 0.179421 0.0897104 0.995968i \(-0.471406\pi\)
0.0897104 + 0.995968i \(0.471406\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.326776 0.0174172
\(353\) −22.6945 −1.20790 −0.603952 0.797021i \(-0.706408\pi\)
−0.603952 + 0.797021i \(0.706408\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 42.6108 2.25837
\(357\) 0 0
\(358\) −41.5041 −2.19356
\(359\) −27.3201 −1.44190 −0.720949 0.692989i \(-0.756294\pi\)
−0.720949 + 0.692989i \(0.756294\pi\)
\(360\) 0 0
\(361\) −18.6775 −0.983024
\(362\) 1.94599 0.102279
\(363\) 0 0
\(364\) −5.54982 −0.290889
\(365\) 0 0
\(366\) 0 0
\(367\) 1.10003 0.0574212 0.0287106 0.999588i \(-0.490860\pi\)
0.0287106 + 0.999588i \(0.490860\pi\)
\(368\) −35.0336 −1.82625
\(369\) 0 0
\(370\) 0 0
\(371\) −19.0555 −0.989312
\(372\) 0 0
\(373\) 11.2827 0.584195 0.292098 0.956388i \(-0.405647\pi\)
0.292098 + 0.956388i \(0.405647\pi\)
\(374\) −0.199308 −0.0103060
\(375\) 0 0
\(376\) 52.1394 2.68889
\(377\) −0.542444 −0.0279373
\(378\) 0 0
\(379\) −2.56241 −0.131622 −0.0658111 0.997832i \(-0.520963\pi\)
−0.0658111 + 0.997832i \(0.520963\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 41.9308 2.14537
\(383\) −28.6218 −1.46251 −0.731253 0.682106i \(-0.761064\pi\)
−0.731253 + 0.682106i \(0.761064\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −34.3617 −1.74897
\(387\) 0 0
\(388\) 12.5426 0.636753
\(389\) 3.33465 0.169073 0.0845366 0.996420i \(-0.473059\pi\)
0.0845366 + 0.996420i \(0.473059\pi\)
\(390\) 0 0
\(391\) 0.500548 0.0253138
\(392\) 2.66276 0.134490
\(393\) 0 0
\(394\) 9.23770 0.465389
\(395\) 0 0
\(396\) 0 0
\(397\) 4.53377 0.227543 0.113772 0.993507i \(-0.463707\pi\)
0.113772 + 0.993507i \(0.463707\pi\)
\(398\) 20.1568 1.01037
\(399\) 0 0
\(400\) 0 0
\(401\) 23.6097 1.17901 0.589506 0.807764i \(-0.299323\pi\)
0.589506 + 0.807764i \(0.299323\pi\)
\(402\) 0 0
\(403\) −3.97613 −0.198065
\(404\) 29.8939 1.48728
\(405\) 0 0
\(406\) −6.24020 −0.309696
\(407\) 8.04260 0.398657
\(408\) 0 0
\(409\) 13.1652 0.650977 0.325489 0.945546i \(-0.394471\pi\)
0.325489 + 0.945546i \(0.394471\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −77.3683 −3.81166
\(413\) 7.03848 0.346341
\(414\) 0 0
\(415\) 0 0
\(416\) 0.129286 0.00633877
\(417\) 0 0
\(418\) −1.91115 −0.0934774
\(419\) 24.6158 1.20256 0.601280 0.799039i \(-0.294658\pi\)
0.601280 + 0.799039i \(0.294658\pi\)
\(420\) 0 0
\(421\) −8.07455 −0.393529 −0.196765 0.980451i \(-0.563044\pi\)
−0.196765 + 0.980451i \(0.563044\pi\)
\(422\) 44.1744 2.15038
\(423\) 0 0
\(424\) 37.2353 1.80831
\(425\) 0 0
\(426\) 0 0
\(427\) 0.0946320 0.00457956
\(428\) 48.1429 2.32707
\(429\) 0 0
\(430\) 0 0
\(431\) −29.8230 −1.43652 −0.718261 0.695774i \(-0.755062\pi\)
−0.718261 + 0.695774i \(0.755062\pi\)
\(432\) 0 0
\(433\) 31.3189 1.50509 0.752545 0.658541i \(-0.228826\pi\)
0.752545 + 0.658541i \(0.228826\pi\)
\(434\) −45.7409 −2.19563
\(435\) 0 0
\(436\) 37.3394 1.78823
\(437\) 4.79972 0.229602
\(438\) 0 0
\(439\) 6.80628 0.324846 0.162423 0.986721i \(-0.448069\pi\)
0.162423 + 0.986721i \(0.448069\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −0.0788545 −0.00375073
\(443\) 33.3117 1.58268 0.791342 0.611374i \(-0.209383\pi\)
0.791342 + 0.611374i \(0.209383\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 14.2730 0.675847
\(447\) 0 0
\(448\) −19.5915 −0.925609
\(449\) −25.4825 −1.20259 −0.601297 0.799026i \(-0.705349\pi\)
−0.601297 + 0.799026i \(0.705349\pi\)
\(450\) 0 0
\(451\) −6.68904 −0.314974
\(452\) −29.2479 −1.37571
\(453\) 0 0
\(454\) −38.8674 −1.82414
\(455\) 0 0
\(456\) 0 0
\(457\) −25.1265 −1.17537 −0.587685 0.809090i \(-0.699961\pi\)
−0.587685 + 0.809090i \(0.699961\pi\)
\(458\) −19.3868 −0.905887
\(459\) 0 0
\(460\) 0 0
\(461\) −31.0592 −1.44657 −0.723286 0.690548i \(-0.757369\pi\)
−0.723286 + 0.690548i \(0.757369\pi\)
\(462\) 0 0
\(463\) 23.6230 1.09786 0.548928 0.835870i \(-0.315036\pi\)
0.548928 + 0.835870i \(0.315036\pi\)
\(464\) 4.14537 0.192444
\(465\) 0 0
\(466\) 21.7220 1.00625
\(467\) −9.60493 −0.444463 −0.222232 0.974994i \(-0.571334\pi\)
−0.222232 + 0.974994i \(0.571334\pi\)
\(468\) 0 0
\(469\) 31.8396 1.47022
\(470\) 0 0
\(471\) 0 0
\(472\) −13.7535 −0.633056
\(473\) 10.2297 0.470362
\(474\) 0 0
\(475\) 0 0
\(476\) −0.605965 −0.0277744
\(477\) 0 0
\(478\) −31.4060 −1.43648
\(479\) 26.4221 1.20726 0.603628 0.797266i \(-0.293721\pi\)
0.603628 + 0.797266i \(0.293721\pi\)
\(480\) 0 0
\(481\) 3.18198 0.145086
\(482\) 5.69687 0.259485
\(483\) 0 0
\(484\) −36.7009 −1.66822
\(485\) 0 0
\(486\) 0 0
\(487\) −21.1971 −0.960530 −0.480265 0.877123i \(-0.659460\pi\)
−0.480265 + 0.877123i \(0.659460\pi\)
\(488\) −0.184915 −0.00837071
\(489\) 0 0
\(490\) 0 0
\(491\) 32.8715 1.48347 0.741734 0.670694i \(-0.234004\pi\)
0.741734 + 0.670694i \(0.234004\pi\)
\(492\) 0 0
\(493\) −0.0592276 −0.00266748
\(494\) −0.756129 −0.0340199
\(495\) 0 0
\(496\) 30.3857 1.36436
\(497\) 6.24364 0.280066
\(498\) 0 0
\(499\) 29.7674 1.33257 0.666286 0.745696i \(-0.267883\pi\)
0.666286 + 0.745696i \(0.267883\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −57.7112 −2.57578
\(503\) 1.39376 0.0621447 0.0310723 0.999517i \(-0.490108\pi\)
0.0310723 + 0.999517i \(0.490108\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −28.4396 −1.26429
\(507\) 0 0
\(508\) 64.6391 2.86790
\(509\) −3.84413 −0.170388 −0.0851940 0.996364i \(-0.527151\pi\)
−0.0851940 + 0.996364i \(0.527151\pi\)
\(510\) 0 0
\(511\) 20.7778 0.919157
\(512\) 40.2008 1.77664
\(513\) 0 0
\(514\) −63.3894 −2.79599
\(515\) 0 0
\(516\) 0 0
\(517\) 14.3891 0.632833
\(518\) 36.6051 1.60833
\(519\) 0 0
\(520\) 0 0
\(521\) −40.2368 −1.76281 −0.881403 0.472365i \(-0.843400\pi\)
−0.881403 + 0.472365i \(0.843400\pi\)
\(522\) 0 0
\(523\) −7.45091 −0.325806 −0.162903 0.986642i \(-0.552086\pi\)
−0.162903 + 0.986642i \(0.552086\pi\)
\(524\) 47.2069 2.06224
\(525\) 0 0
\(526\) 0.371298 0.0161894
\(527\) −0.434140 −0.0189114
\(528\) 0 0
\(529\) 48.4239 2.10539
\(530\) 0 0
\(531\) 0 0
\(532\) −5.81055 −0.251919
\(533\) −2.64646 −0.114631
\(534\) 0 0
\(535\) 0 0
\(536\) −62.2160 −2.68732
\(537\) 0 0
\(538\) −41.4069 −1.78518
\(539\) 0.734853 0.0316523
\(540\) 0 0
\(541\) −0.126885 −0.00545520 −0.00272760 0.999996i \(-0.500868\pi\)
−0.00272760 + 0.999996i \(0.500868\pi\)
\(542\) 29.9497 1.28645
\(543\) 0 0
\(544\) 0.0141163 0.000605231 0
\(545\) 0 0
\(546\) 0 0
\(547\) 16.5950 0.709549 0.354775 0.934952i \(-0.384558\pi\)
0.354775 + 0.934952i \(0.384558\pi\)
\(548\) 50.6365 2.16309
\(549\) 0 0
\(550\) 0 0
\(551\) −0.567929 −0.0241946
\(552\) 0 0
\(553\) 19.4569 0.827390
\(554\) 46.8008 1.98838
\(555\) 0 0
\(556\) −86.8804 −3.68455
\(557\) 4.14372 0.175575 0.0877875 0.996139i \(-0.472020\pi\)
0.0877875 + 0.996139i \(0.472020\pi\)
\(558\) 0 0
\(559\) 4.04729 0.171182
\(560\) 0 0
\(561\) 0 0
\(562\) −54.9662 −2.31861
\(563\) 24.5690 1.03546 0.517730 0.855544i \(-0.326777\pi\)
0.517730 + 0.855544i \(0.326777\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 16.3619 0.687744
\(567\) 0 0
\(568\) −12.2004 −0.511916
\(569\) −5.82478 −0.244187 −0.122094 0.992519i \(-0.538961\pi\)
−0.122094 + 0.992519i \(0.538961\pi\)
\(570\) 0 0
\(571\) 29.3945 1.23012 0.615061 0.788480i \(-0.289132\pi\)
0.615061 + 0.788480i \(0.289132\pi\)
\(572\) 2.99282 0.125136
\(573\) 0 0
\(574\) −30.4445 −1.27073
\(575\) 0 0
\(576\) 0 0
\(577\) 17.4531 0.726583 0.363292 0.931675i \(-0.381653\pi\)
0.363292 + 0.931675i \(0.381653\pi\)
\(578\) 41.7164 1.73517
\(579\) 0 0
\(580\) 0 0
\(581\) 17.3681 0.720551
\(582\) 0 0
\(583\) 10.2760 0.425587
\(584\) −40.6008 −1.68007
\(585\) 0 0
\(586\) 9.55597 0.394754
\(587\) −28.4914 −1.17597 −0.587983 0.808873i \(-0.700078\pi\)
−0.587983 + 0.808873i \(0.700078\pi\)
\(588\) 0 0
\(589\) −4.16293 −0.171531
\(590\) 0 0
\(591\) 0 0
\(592\) −24.3168 −0.999412
\(593\) 29.6729 1.21852 0.609259 0.792971i \(-0.291467\pi\)
0.609259 + 0.792971i \(0.291467\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 39.4738 1.61691
\(597\) 0 0
\(598\) −11.2519 −0.460122
\(599\) −23.6421 −0.965990 −0.482995 0.875623i \(-0.660451\pi\)
−0.482995 + 0.875623i \(0.660451\pi\)
\(600\) 0 0
\(601\) −3.78887 −0.154551 −0.0772757 0.997010i \(-0.524622\pi\)
−0.0772757 + 0.997010i \(0.524622\pi\)
\(602\) 46.5595 1.89762
\(603\) 0 0
\(604\) 95.6846 3.89335
\(605\) 0 0
\(606\) 0 0
\(607\) −17.1052 −0.694280 −0.347140 0.937813i \(-0.612847\pi\)
−0.347140 + 0.937813i \(0.612847\pi\)
\(608\) 0.135360 0.00548957
\(609\) 0 0
\(610\) 0 0
\(611\) 5.69293 0.230311
\(612\) 0 0
\(613\) −29.7465 −1.20145 −0.600724 0.799457i \(-0.705121\pi\)
−0.600724 + 0.799457i \(0.705121\pi\)
\(614\) 27.3163 1.10240
\(615\) 0 0
\(616\) 17.3177 0.697752
\(617\) 41.7590 1.68115 0.840577 0.541692i \(-0.182216\pi\)
0.840577 + 0.541692i \(0.182216\pi\)
\(618\) 0 0
\(619\) 25.3412 1.01855 0.509274 0.860605i \(-0.329914\pi\)
0.509274 + 0.860605i \(0.329914\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −11.3459 −0.454929
\(623\) 26.9215 1.07859
\(624\) 0 0
\(625\) 0 0
\(626\) 11.9269 0.476694
\(627\) 0 0
\(628\) 34.4892 1.37627
\(629\) 0.347430 0.0138529
\(630\) 0 0
\(631\) −4.21796 −0.167914 −0.0839572 0.996469i \(-0.526756\pi\)
−0.0839572 + 0.996469i \(0.526756\pi\)
\(632\) −38.0196 −1.51234
\(633\) 0 0
\(634\) 52.2976 2.07700
\(635\) 0 0
\(636\) 0 0
\(637\) 0.290738 0.0115195
\(638\) 3.36512 0.133227
\(639\) 0 0
\(640\) 0 0
\(641\) 3.89870 0.153989 0.0769947 0.997032i \(-0.475468\pi\)
0.0769947 + 0.997032i \(0.475468\pi\)
\(642\) 0 0
\(643\) 37.3426 1.47265 0.736325 0.676628i \(-0.236560\pi\)
0.736325 + 0.676628i \(0.236560\pi\)
\(644\) −86.4660 −3.40724
\(645\) 0 0
\(646\) −0.0825592 −0.00324825
\(647\) −18.2131 −0.716033 −0.358016 0.933715i \(-0.616547\pi\)
−0.358016 + 0.933715i \(0.616547\pi\)
\(648\) 0 0
\(649\) −3.79561 −0.148991
\(650\) 0 0
\(651\) 0 0
\(652\) 89.0919 3.48911
\(653\) 11.0156 0.431073 0.215537 0.976496i \(-0.430850\pi\)
0.215537 + 0.976496i \(0.430850\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 20.2243 0.789625
\(657\) 0 0
\(658\) 65.4906 2.55309
\(659\) −7.67341 −0.298913 −0.149457 0.988768i \(-0.547752\pi\)
−0.149457 + 0.988768i \(0.547752\pi\)
\(660\) 0 0
\(661\) 27.1870 1.05745 0.528725 0.848793i \(-0.322670\pi\)
0.528725 + 0.848793i \(0.322670\pi\)
\(662\) −13.1754 −0.512078
\(663\) 0 0
\(664\) −33.9381 −1.31705
\(665\) 0 0
\(666\) 0 0
\(667\) −8.45127 −0.327234
\(668\) 88.6998 3.43190
\(669\) 0 0
\(670\) 0 0
\(671\) −0.0510318 −0.00197006
\(672\) 0 0
\(673\) 12.1400 0.467963 0.233981 0.972241i \(-0.424825\pi\)
0.233981 + 0.972241i \(0.424825\pi\)
\(674\) −76.9702 −2.96478
\(675\) 0 0
\(676\) −51.1296 −1.96652
\(677\) 28.1655 1.08249 0.541243 0.840866i \(-0.317954\pi\)
0.541243 + 0.840866i \(0.317954\pi\)
\(678\) 0 0
\(679\) 7.92439 0.304110
\(680\) 0 0
\(681\) 0 0
\(682\) 24.6665 0.944527
\(683\) −12.4109 −0.474889 −0.237445 0.971401i \(-0.576310\pi\)
−0.237445 + 0.971401i \(0.576310\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 47.0260 1.79546
\(687\) 0 0
\(688\) −30.9295 −1.17917
\(689\) 4.06559 0.154887
\(690\) 0 0
\(691\) 39.1802 1.49048 0.745242 0.666794i \(-0.232334\pi\)
0.745242 + 0.666794i \(0.232334\pi\)
\(692\) −30.5676 −1.16201
\(693\) 0 0
\(694\) 23.2263 0.881660
\(695\) 0 0
\(696\) 0 0
\(697\) −0.288958 −0.0109450
\(698\) −8.22684 −0.311390
\(699\) 0 0
\(700\) 0 0
\(701\) −11.4674 −0.433118 −0.216559 0.976270i \(-0.569483\pi\)
−0.216559 + 0.976270i \(0.569483\pi\)
\(702\) 0 0
\(703\) 3.33147 0.125649
\(704\) 10.5650 0.398183
\(705\) 0 0
\(706\) 55.7015 2.09635
\(707\) 18.8870 0.710317
\(708\) 0 0
\(709\) −0.356326 −0.0133821 −0.00669106 0.999978i \(-0.502130\pi\)
−0.00669106 + 0.999978i \(0.502130\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −52.6057 −1.97148
\(713\) −61.9480 −2.31997
\(714\) 0 0
\(715\) 0 0
\(716\) 68.0480 2.54307
\(717\) 0 0
\(718\) 67.0546 2.50246
\(719\) 15.7129 0.585992 0.292996 0.956114i \(-0.405348\pi\)
0.292996 + 0.956114i \(0.405348\pi\)
\(720\) 0 0
\(721\) −48.8813 −1.82043
\(722\) 45.8421 1.70607
\(723\) 0 0
\(724\) −3.19054 −0.118576
\(725\) 0 0
\(726\) 0 0
\(727\) −19.6645 −0.729315 −0.364658 0.931142i \(-0.618814\pi\)
−0.364658 + 0.931142i \(0.618814\pi\)
\(728\) 6.85161 0.253937
\(729\) 0 0
\(730\) 0 0
\(731\) 0.441910 0.0163446
\(732\) 0 0
\(733\) 49.9707 1.84571 0.922855 0.385147i \(-0.125849\pi\)
0.922855 + 0.385147i \(0.125849\pi\)
\(734\) −2.69993 −0.0996563
\(735\) 0 0
\(736\) 2.01427 0.0742471
\(737\) −17.1700 −0.632464
\(738\) 0 0
\(739\) 28.3068 1.04128 0.520640 0.853776i \(-0.325693\pi\)
0.520640 + 0.853776i \(0.325693\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 46.7700 1.71698
\(743\) −0.243853 −0.00894609 −0.00447305 0.999990i \(-0.501424\pi\)
−0.00447305 + 0.999990i \(0.501424\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −27.6923 −1.01389
\(747\) 0 0
\(748\) 0.326776 0.0119481
\(749\) 30.4167 1.11140
\(750\) 0 0
\(751\) 26.9186 0.982275 0.491137 0.871082i \(-0.336581\pi\)
0.491137 + 0.871082i \(0.336581\pi\)
\(752\) −43.5055 −1.58648
\(753\) 0 0
\(754\) 1.33138 0.0484860
\(755\) 0 0
\(756\) 0 0
\(757\) 53.3150 1.93776 0.968882 0.247521i \(-0.0796160\pi\)
0.968882 + 0.247521i \(0.0796160\pi\)
\(758\) 6.28920 0.228434
\(759\) 0 0
\(760\) 0 0
\(761\) −32.8369 −1.19034 −0.595169 0.803601i \(-0.702915\pi\)
−0.595169 + 0.803601i \(0.702915\pi\)
\(762\) 0 0
\(763\) 23.5910 0.854053
\(764\) −68.7477 −2.48721
\(765\) 0 0
\(766\) 70.2497 2.53822
\(767\) −1.50170 −0.0542231
\(768\) 0 0
\(769\) 33.5045 1.20820 0.604101 0.796908i \(-0.293532\pi\)
0.604101 + 0.796908i \(0.293532\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 56.3378 2.02764
\(773\) 18.7198 0.673305 0.336653 0.941629i \(-0.390705\pi\)
0.336653 + 0.941629i \(0.390705\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −15.4846 −0.555865
\(777\) 0 0
\(778\) −8.18459 −0.293432
\(779\) −2.77079 −0.0992738
\(780\) 0 0
\(781\) −3.36698 −0.120480
\(782\) −1.22855 −0.0439329
\(783\) 0 0
\(784\) −2.22182 −0.0793509
\(785\) 0 0
\(786\) 0 0
\(787\) −29.4652 −1.05032 −0.525160 0.851003i \(-0.675995\pi\)
−0.525160 + 0.851003i \(0.675995\pi\)
\(788\) −15.1457 −0.539543
\(789\) 0 0
\(790\) 0 0
\(791\) −18.4788 −0.657032
\(792\) 0 0
\(793\) −0.0201902 −0.000716977 0
\(794\) −11.1277 −0.394908
\(795\) 0 0
\(796\) −33.0481 −1.17136
\(797\) −22.9951 −0.814529 −0.407264 0.913310i \(-0.633517\pi\)
−0.407264 + 0.913310i \(0.633517\pi\)
\(798\) 0 0
\(799\) 0.621591 0.0219903
\(800\) 0 0
\(801\) 0 0
\(802\) −57.9478 −2.04621
\(803\) −11.2048 −0.395407
\(804\) 0 0
\(805\) 0 0
\(806\) 9.75906 0.343748
\(807\) 0 0
\(808\) −36.9060 −1.29835
\(809\) −3.12325 −0.109808 −0.0549038 0.998492i \(-0.517485\pi\)
−0.0549038 + 0.998492i \(0.517485\pi\)
\(810\) 0 0
\(811\) 6.22609 0.218628 0.109314 0.994007i \(-0.465135\pi\)
0.109314 + 0.994007i \(0.465135\pi\)
\(812\) 10.2311 0.359042
\(813\) 0 0
\(814\) −19.7398 −0.691881
\(815\) 0 0
\(816\) 0 0
\(817\) 4.23743 0.148249
\(818\) −32.3128 −1.12979
\(819\) 0 0
\(820\) 0 0
\(821\) −44.1951 −1.54242 −0.771211 0.636580i \(-0.780348\pi\)
−0.771211 + 0.636580i \(0.780348\pi\)
\(822\) 0 0
\(823\) 6.19976 0.216110 0.108055 0.994145i \(-0.465538\pi\)
0.108055 + 0.994145i \(0.465538\pi\)
\(824\) 95.5162 3.32746
\(825\) 0 0
\(826\) −17.2753 −0.601085
\(827\) −21.8002 −0.758066 −0.379033 0.925383i \(-0.623743\pi\)
−0.379033 + 0.925383i \(0.623743\pi\)
\(828\) 0 0
\(829\) −3.45115 −0.119863 −0.0599316 0.998202i \(-0.519088\pi\)
−0.0599316 + 0.998202i \(0.519088\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 4.17994 0.144913
\(833\) 0.0317447 0.00109989
\(834\) 0 0
\(835\) 0 0
\(836\) 3.13343 0.108372
\(837\) 0 0
\(838\) −60.4172 −2.08708
\(839\) −22.2149 −0.766945 −0.383473 0.923552i \(-0.625272\pi\)
−0.383473 + 0.923552i \(0.625272\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 19.8183 0.682982
\(843\) 0 0
\(844\) −72.4261 −2.49301
\(845\) 0 0
\(846\) 0 0
\(847\) −23.1876 −0.796737
\(848\) −31.0693 −1.06693
\(849\) 0 0
\(850\) 0 0
\(851\) 49.5752 1.69941
\(852\) 0 0
\(853\) −19.3683 −0.663157 −0.331578 0.943428i \(-0.607581\pi\)
−0.331578 + 0.943428i \(0.607581\pi\)
\(854\) −0.232266 −0.00794797
\(855\) 0 0
\(856\) −59.4355 −2.03146
\(857\) 3.29114 0.112423 0.0562117 0.998419i \(-0.482098\pi\)
0.0562117 + 0.998419i \(0.482098\pi\)
\(858\) 0 0
\(859\) −34.5765 −1.17974 −0.589868 0.807500i \(-0.700820\pi\)
−0.589868 + 0.807500i \(0.700820\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 73.1978 2.49313
\(863\) 40.2651 1.37064 0.685320 0.728243i \(-0.259663\pi\)
0.685320 + 0.728243i \(0.259663\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −76.8694 −2.61213
\(867\) 0 0
\(868\) 74.9945 2.54548
\(869\) −10.4924 −0.355931
\(870\) 0 0
\(871\) −6.79315 −0.230177
\(872\) −46.0979 −1.56107
\(873\) 0 0
\(874\) −11.7805 −0.398480
\(875\) 0 0
\(876\) 0 0
\(877\) 47.7366 1.61195 0.805975 0.591949i \(-0.201641\pi\)
0.805975 + 0.591949i \(0.201641\pi\)
\(878\) −16.7054 −0.563780
\(879\) 0 0
\(880\) 0 0
\(881\) 31.8103 1.07172 0.535858 0.844308i \(-0.319988\pi\)
0.535858 + 0.844308i \(0.319988\pi\)
\(882\) 0 0
\(883\) 6.64800 0.223723 0.111861 0.993724i \(-0.464319\pi\)
0.111861 + 0.993724i \(0.464319\pi\)
\(884\) 0.129286 0.00434836
\(885\) 0 0
\(886\) −81.7605 −2.74680
\(887\) 40.4341 1.35764 0.678822 0.734303i \(-0.262491\pi\)
0.678822 + 0.734303i \(0.262491\pi\)
\(888\) 0 0
\(889\) 40.8390 1.36970
\(890\) 0 0
\(891\) 0 0
\(892\) −23.4014 −0.783535
\(893\) 5.96038 0.199457
\(894\) 0 0
\(895\) 0 0
\(896\) 49.2974 1.64691
\(897\) 0 0
\(898\) 62.5445 2.08714
\(899\) 7.33003 0.244470
\(900\) 0 0
\(901\) 0.443908 0.0147887
\(902\) 16.4176 0.546648
\(903\) 0 0
\(904\) 36.1085 1.20095
\(905\) 0 0
\(906\) 0 0
\(907\) −35.9572 −1.19394 −0.596969 0.802264i \(-0.703629\pi\)
−0.596969 + 0.802264i \(0.703629\pi\)
\(908\) 63.7251 2.11479
\(909\) 0 0
\(910\) 0 0
\(911\) −11.4775 −0.380265 −0.190132 0.981758i \(-0.560892\pi\)
−0.190132 + 0.981758i \(0.560892\pi\)
\(912\) 0 0
\(913\) −9.36603 −0.309970
\(914\) 61.6708 2.03989
\(915\) 0 0
\(916\) 31.7857 1.05023
\(917\) 29.8253 0.984919
\(918\) 0 0
\(919\) 18.2956 0.603517 0.301758 0.953384i \(-0.402426\pi\)
0.301758 + 0.953384i \(0.402426\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 76.2321 2.51057
\(923\) −1.33211 −0.0438471
\(924\) 0 0
\(925\) 0 0
\(926\) −57.9806 −1.90536
\(927\) 0 0
\(928\) −0.238340 −0.00782389
\(929\) 3.99065 0.130929 0.0654645 0.997855i \(-0.479147\pi\)
0.0654645 + 0.997855i \(0.479147\pi\)
\(930\) 0 0
\(931\) 0.304397 0.00997621
\(932\) −35.6143 −1.16659
\(933\) 0 0
\(934\) 23.5744 0.771379
\(935\) 0 0
\(936\) 0 0
\(937\) −28.6617 −0.936337 −0.468169 0.883639i \(-0.655086\pi\)
−0.468169 + 0.883639i \(0.655086\pi\)
\(938\) −78.1474 −2.55160
\(939\) 0 0
\(940\) 0 0
\(941\) −3.82741 −0.124770 −0.0623850 0.998052i \(-0.519871\pi\)
−0.0623850 + 0.998052i \(0.519871\pi\)
\(942\) 0 0
\(943\) −41.2317 −1.34269
\(944\) 11.4760 0.373512
\(945\) 0 0
\(946\) −25.1079 −0.816328
\(947\) 7.63690 0.248166 0.124083 0.992272i \(-0.460401\pi\)
0.124083 + 0.992272i \(0.460401\pi\)
\(948\) 0 0
\(949\) −4.43306 −0.143903
\(950\) 0 0
\(951\) 0 0
\(952\) 0.748103 0.0242462
\(953\) 20.4244 0.661610 0.330805 0.943699i \(-0.392680\pi\)
0.330805 + 0.943699i \(0.392680\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 51.4917 1.66536
\(957\) 0 0
\(958\) −64.8506 −2.09523
\(959\) 31.9921 1.03308
\(960\) 0 0
\(961\) 22.7293 0.733203
\(962\) −7.80989 −0.251801
\(963\) 0 0
\(964\) −9.34030 −0.300831
\(965\) 0 0
\(966\) 0 0
\(967\) −6.70817 −0.215720 −0.107860 0.994166i \(-0.534400\pi\)
−0.107860 + 0.994166i \(0.534400\pi\)
\(968\) 45.3097 1.45631
\(969\) 0 0
\(970\) 0 0
\(971\) −28.0632 −0.900590 −0.450295 0.892880i \(-0.648681\pi\)
−0.450295 + 0.892880i \(0.648681\pi\)
\(972\) 0 0
\(973\) −54.8910 −1.75973
\(974\) 52.0263 1.66703
\(975\) 0 0
\(976\) 0.154294 0.00493884
\(977\) 23.0313 0.736835 0.368418 0.929660i \(-0.379900\pi\)
0.368418 + 0.929660i \(0.379900\pi\)
\(978\) 0 0
\(979\) −14.5178 −0.463991
\(980\) 0 0
\(981\) 0 0
\(982\) −80.6800 −2.57460
\(983\) −49.7645 −1.58724 −0.793620 0.608414i \(-0.791806\pi\)
−0.793620 + 0.608414i \(0.791806\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.145369 0.00462949
\(987\) 0 0
\(988\) 1.23971 0.0394405
\(989\) 63.0567 2.00509
\(990\) 0 0
\(991\) 25.8862 0.822303 0.411152 0.911567i \(-0.365127\pi\)
0.411152 + 0.911567i \(0.365127\pi\)
\(992\) −1.74704 −0.0554685
\(993\) 0 0
\(994\) −15.3245 −0.486062
\(995\) 0 0
\(996\) 0 0
\(997\) 53.1804 1.68424 0.842120 0.539290i \(-0.181307\pi\)
0.842120 + 0.539290i \(0.181307\pi\)
\(998\) −73.0615 −2.31272
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bn.1.2 5
3.2 odd 2 2175.2.a.y.1.4 5
5.2 odd 4 1305.2.c.i.784.2 10
5.3 odd 4 1305.2.c.i.784.9 10
5.4 even 2 6525.2.a.br.1.4 5
15.2 even 4 435.2.c.d.349.9 yes 10
15.8 even 4 435.2.c.d.349.2 10
15.14 odd 2 2175.2.a.x.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.c.d.349.2 10 15.8 even 4
435.2.c.d.349.9 yes 10 15.2 even 4
1305.2.c.i.784.2 10 5.2 odd 4
1305.2.c.i.784.9 10 5.3 odd 4
2175.2.a.x.1.2 5 15.14 odd 2
2175.2.a.y.1.4 5 3.2 odd 2
6525.2.a.bn.1.2 5 1.1 even 1 trivial
6525.2.a.br.1.4 5 5.4 even 2