Properties

Label 6525.2.a.bu
Level 65256525
Weight 22
Character orbit 6525.a
Self dual yes
Analytic conductor 52.10252.102
Analytic rank 11
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 6525=325229 6525 = 3^{2} \cdot 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 52.102387318952.1023873189
Analytic rank: 11
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x72x610x5+19x4+24x344x23x+14 x^{7} - 2x^{6} - 10x^{5} + 19x^{4} + 24x^{3} - 44x^{2} - 3x + 14 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 2175)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β61,\beta_1,\ldots,\beta_{6} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β2+1)q4+(β6β2+β1)q7+(β3β1)q8+(β4+β3β2)q11+(β6+β4β3+β1)q13++(β6+β4+2β3++8)q98+O(q100) q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + (\beta_{6} - \beta_{2} + \beta_1) q^{7} + ( - \beta_{3} - \beta_1) q^{8} + (\beta_{4} + \beta_{3} - \beta_{2}) q^{11} + (\beta_{6} + \beta_{4} - \beta_{3} + \beta_1) q^{13}+ \cdots + ( - \beta_{6} + \beta_{4} + 2 \beta_{3} + \cdots + 8) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 7q2q2+10q4q73q84q11q1315q14+12q168q17+15q19+3q2214q236q2624q28+7q29+5q3118q32+7q34++59q98+O(q100) 7 q - 2 q^{2} + 10 q^{4} - q^{7} - 3 q^{8} - 4 q^{11} - q^{13} - 15 q^{14} + 12 q^{16} - 8 q^{17} + 15 q^{19} + 3 q^{22} - 14 q^{23} - 6 q^{26} - 24 q^{28} + 7 q^{29} + 5 q^{31} - 18 q^{32} + 7 q^{34}+ \cdots + 59 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x72x610x5+19x4+24x344x23x+14 x^{7} - 2x^{6} - 10x^{5} + 19x^{4} + 24x^{3} - 44x^{2} - 3x + 14 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== ν35ν \nu^{3} - 5\nu Copy content Toggle raw display
β4\beta_{4}== (2ν6+ν5+19ν47ν341ν2+9ν+7)/5 ( -2\nu^{6} + \nu^{5} + 19\nu^{4} - 7\nu^{3} - 41\nu^{2} + 9\nu + 7 ) / 5 Copy content Toggle raw display
β5\beta_{5}== (2ν6+ν5+24ν47ν376ν2+9ν+37)/5 ( -2\nu^{6} + \nu^{5} + 24\nu^{4} - 7\nu^{3} - 76\nu^{2} + 9\nu + 37 ) / 5 Copy content Toggle raw display
β6\beta_{6}== (3ν64ν531ν4+33ν3+84ν256ν38)/5 ( 3\nu^{6} - 4\nu^{5} - 31\nu^{4} + 33\nu^{3} + 84\nu^{2} - 56\nu - 38 ) / 5 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+5β1 \beta_{3} + 5\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β5β4+7β2+15 \beta_{5} - \beta_{4} + 7\beta_{2} + 15 Copy content Toggle raw display
ν5\nu^{5}== 2β6β52β4+9β3+2β2+28β1+1 -2\beta_{6} - \beta_{5} - 2\beta_{4} + 9\beta_{3} + 2\beta_{2} + 28\beta _1 + 1 Copy content Toggle raw display
ν6\nu^{6}== β6+9β513β4+β3+47β2+β1+85 -\beta_{6} + 9\beta_{5} - 13\beta_{4} + \beta_{3} + 47\beta_{2} + \beta _1 + 85 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.66356
2.26695
1.14889
0.792771
−0.560139
−1.83397
−2.47806
−2.66356 0 5.09453 0 0 −0.0170416 −8.24244 0 0
1.2 −2.26695 0 3.13907 0 0 0.159887 −2.58223 0 0
1.3 −1.14889 0 −0.680059 0 0 3.52165 3.07908 0 0
1.4 −0.792771 0 −1.37151 0 0 −2.01830 2.67284 0 0
1.5 0.560139 0 −1.68624 0 0 4.36313 −2.06481 0 0
1.6 1.83397 0 1.36343 0 0 −4.17416 −1.16745 0 0
1.7 2.47806 0 4.14079 0 0 −2.83516 5.30500 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 +1 +1
2929 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6525.2.a.bu 7
3.b odd 2 1 2175.2.a.bb yes 7
5.b even 2 1 6525.2.a.bx 7
15.d odd 2 1 2175.2.a.ba 7
15.e even 4 2 2175.2.c.o 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2175.2.a.ba 7 15.d odd 2 1
2175.2.a.bb yes 7 3.b odd 2 1
2175.2.c.o 14 15.e even 4 2
6525.2.a.bu 7 1.a even 1 1 trivial
6525.2.a.bx 7 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(6525))S_{2}^{\mathrm{new}}(\Gamma_0(6525)):

T27+2T2610T2519T24+24T23+44T223T214 T_{2}^{7} + 2T_{2}^{6} - 10T_{2}^{5} - 19T_{2}^{4} + 24T_{2}^{3} + 44T_{2}^{2} - 3T_{2} - 14 Copy content Toggle raw display
T77+T7630T7538T74+217T73+337T7253T71 T_{7}^{7} + T_{7}^{6} - 30T_{7}^{5} - 38T_{7}^{4} + 217T_{7}^{3} + 337T_{7}^{2} - 53T_{7} - 1 Copy content Toggle raw display
T117+4T11660T115190T114+1105T113+2448T1125733T1110746 T_{11}^{7} + 4T_{11}^{6} - 60T_{11}^{5} - 190T_{11}^{4} + 1105T_{11}^{3} + 2448T_{11}^{2} - 5733T_{11} - 10746 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T7+2T6+14 T^{7} + 2 T^{6} + \cdots - 14 Copy content Toggle raw display
33 T7 T^{7} Copy content Toggle raw display
55 T7 T^{7} Copy content Toggle raw display
77 T7+T630T5+1 T^{7} + T^{6} - 30 T^{5} + \cdots - 1 Copy content Toggle raw display
1111 T7+4T6+10746 T^{7} + 4 T^{6} + \cdots - 10746 Copy content Toggle raw display
1313 T7+T6+6803 T^{7} + T^{6} + \cdots - 6803 Copy content Toggle raw display
1717 T7+8T6+86134 T^{7} + 8 T^{6} + \cdots - 86134 Copy content Toggle raw display
1919 T715T6+15680 T^{7} - 15 T^{6} + \cdots - 15680 Copy content Toggle raw display
2323 T7+14T6++27008 T^{7} + 14 T^{6} + \cdots + 27008 Copy content Toggle raw display
2929 (T1)7 (T - 1)^{7} Copy content Toggle raw display
3131 T75T6+12096 T^{7} - 5 T^{6} + \cdots - 12096 Copy content Toggle raw display
3737 T7+6T6+13696 T^{7} + 6 T^{6} + \cdots - 13696 Copy content Toggle raw display
4141 T7+22T6++626632 T^{7} + 22 T^{6} + \cdots + 626632 Copy content Toggle raw display
4343 T7+19T6+42304 T^{7} + 19 T^{6} + \cdots - 42304 Copy content Toggle raw display
4747 T7+22T6++2842 T^{7} + 22 T^{6} + \cdots + 2842 Copy content Toggle raw display
5353 T7+10T6++1229824 T^{7} + 10 T^{6} + \cdots + 1229824 Copy content Toggle raw display
5959 T7+6T6++87680 T^{7} + 6 T^{6} + \cdots + 87680 Copy content Toggle raw display
6161 T723T6++51776 T^{7} - 23 T^{6} + \cdots + 51776 Copy content Toggle raw display
6767 T7+13T6++37259 T^{7} + 13 T^{6} + \cdots + 37259 Copy content Toggle raw display
7171 T7+26T6++34048 T^{7} + 26 T^{6} + \cdots + 34048 Copy content Toggle raw display
7373 T7+24T6++1658752 T^{7} + 24 T^{6} + \cdots + 1658752 Copy content Toggle raw display
7979 T714T6++2560 T^{7} - 14 T^{6} + \cdots + 2560 Copy content Toggle raw display
8383 T7+10T6++5248 T^{7} + 10 T^{6} + \cdots + 5248 Copy content Toggle raw display
8989 T7+14T6+231800 T^{7} + 14 T^{6} + \cdots - 231800 Copy content Toggle raw display
9797 T7+31T6++6565312 T^{7} + 31 T^{6} + \cdots + 6565312 Copy content Toggle raw display
show more
show less