Properties

Label 6525.2.a.cb.1.1
Level 65256525
Weight 22
Character 6525.1
Self dual yes
Analytic conductor 52.10252.102
Analytic rank 11
Dimension 99
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 6525=325229 6525 = 3^{2} \cdot 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 52.102387318952.1023873189
Analytic rank: 11
Dimension: 99
Coefficient field: Q[x]/(x9)\mathbb{Q}[x]/(x^{9} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x92x812x7+21x6+48x568x473x3+66x2+40x10 x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.743872.74387 of defining polynomial
Character χ\chi == 6525.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.74387q2+5.52881q41.10432q79.68257q8+0.0961550q11+1.00817q13+3.03012q14+15.5101q161.92647q17+1.36951q190.263836q221.36474q232.76628q266.10559q281.00000q29+2.17445q3123.1924q32+5.28599q34+6.61652q373.75776q38+5.07876q417.53382q43+0.531622q44+3.74467q465.77938q475.78047q49+5.57396q52+2.54747q53+10.6927q56+2.74387q5812.6670q59+7.29508q615.96640q62+32.6168q642.77418q6710.6511q686.05383q71+11.5699q7318.1549q74+7.57176q760.106186q773.01211q7913.9354q82+0.455950q83+20.6718q860.931027q88+7.57581q891.11334q917.54539q92+15.8578q9410.7828q97+15.8608q98+O(q100)q-2.74387 q^{2} +5.52881 q^{4} -1.10432 q^{7} -9.68257 q^{8} +0.0961550 q^{11} +1.00817 q^{13} +3.03012 q^{14} +15.5101 q^{16} -1.92647 q^{17} +1.36951 q^{19} -0.263836 q^{22} -1.36474 q^{23} -2.76628 q^{26} -6.10559 q^{28} -1.00000 q^{29} +2.17445 q^{31} -23.1924 q^{32} +5.28599 q^{34} +6.61652 q^{37} -3.75776 q^{38} +5.07876 q^{41} -7.53382 q^{43} +0.531622 q^{44} +3.74467 q^{46} -5.77938 q^{47} -5.78047 q^{49} +5.57396 q^{52} +2.54747 q^{53} +10.6927 q^{56} +2.74387 q^{58} -12.6670 q^{59} +7.29508 q^{61} -5.96640 q^{62} +32.6168 q^{64} -2.77418 q^{67} -10.6511 q^{68} -6.05383 q^{71} +11.5699 q^{73} -18.1549 q^{74} +7.57176 q^{76} -0.106186 q^{77} -3.01211 q^{79} -13.9354 q^{82} +0.455950 q^{83} +20.6718 q^{86} -0.931027 q^{88} +7.57581 q^{89} -1.11334 q^{91} -7.54539 q^{92} +15.8578 q^{94} -10.7828 q^{97} +15.8608 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q2q2+10q4+q79q82q11+q13+3q14+4q1612q17q19+3q2216q236q264q289q29+5q3120q32+3q3430q38+51q98+O(q100) 9 q - 2 q^{2} + 10 q^{4} + q^{7} - 9 q^{8} - 2 q^{11} + q^{13} + 3 q^{14} + 4 q^{16} - 12 q^{17} - q^{19} + 3 q^{22} - 16 q^{23} - 6 q^{26} - 4 q^{28} - 9 q^{29} + 5 q^{31} - 20 q^{32} + 3 q^{34} - 30 q^{38}+ \cdots - 51 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.74387 −1.94021 −0.970103 0.242692i 0.921970π-0.921970\pi
−0.970103 + 0.242692i 0.921970π0.921970\pi
33 0 0
44 5.52881 2.76440
55 0 0
66 0 0
77 −1.10432 −0.417395 −0.208697 0.977980i 0.566922π-0.566922\pi
−0.208697 + 0.977980i 0.566922π0.566922\pi
88 −9.68257 −3.42331
99 0 0
1010 0 0
1111 0.0961550 0.0289918 0.0144959 0.999895i 0.495386π-0.495386\pi
0.0144959 + 0.999895i 0.495386π0.495386\pi
1212 0 0
1313 1.00817 0.279615 0.139808 0.990179i 0.455352π-0.455352\pi
0.139808 + 0.990179i 0.455352π0.455352\pi
1414 3.03012 0.809832
1515 0 0
1616 15.5101 3.87752
1717 −1.92647 −0.467239 −0.233619 0.972328i 0.575057π-0.575057\pi
−0.233619 + 0.972328i 0.575057π0.575057\pi
1818 0 0
1919 1.36951 0.314187 0.157094 0.987584i 0.449788π-0.449788\pi
0.157094 + 0.987584i 0.449788π0.449788\pi
2020 0 0
2121 0 0
2222 −0.263836 −0.0562501
2323 −1.36474 −0.284568 −0.142284 0.989826i 0.545445π-0.545445\pi
−0.142284 + 0.989826i 0.545445π0.545445\pi
2424 0 0
2525 0 0
2626 −2.76628 −0.542512
2727 0 0
2828 −6.10559 −1.15385
2929 −1.00000 −0.185695
3030 0 0
3131 2.17445 0.390543 0.195271 0.980749i 0.437441π-0.437441\pi
0.195271 + 0.980749i 0.437441π0.437441\pi
3232 −23.1924 −4.09988
3333 0 0
3434 5.28599 0.906540
3535 0 0
3636 0 0
3737 6.61652 1.08775 0.543875 0.839166i 0.316957π-0.316957\pi
0.543875 + 0.839166i 0.316957π0.316957\pi
3838 −3.75776 −0.609589
3939 0 0
4040 0 0
4141 5.07876 0.793169 0.396584 0.917998i 0.370195π-0.370195\pi
0.396584 + 0.917998i 0.370195π0.370195\pi
4242 0 0
4343 −7.53382 −1.14890 −0.574448 0.818541i 0.694783π-0.694783\pi
−0.574448 + 0.818541i 0.694783π0.694783\pi
4444 0.531622 0.0801450
4545 0 0
4646 3.74467 0.552121
4747 −5.77938 −0.843009 −0.421504 0.906826i 0.638498π-0.638498\pi
−0.421504 + 0.906826i 0.638498π0.638498\pi
4848 0 0
4949 −5.78047 −0.825782
5050 0 0
5151 0 0
5252 5.57396 0.772970
5353 2.54747 0.349922 0.174961 0.984575i 0.444020π-0.444020\pi
0.174961 + 0.984575i 0.444020π0.444020\pi
5454 0 0
5555 0 0
5656 10.6927 1.42887
5757 0 0
5858 2.74387 0.360287
5959 −12.6670 −1.64910 −0.824548 0.565792i 0.808571π-0.808571\pi
−0.824548 + 0.565792i 0.808571π0.808571\pi
6060 0 0
6161 7.29508 0.934040 0.467020 0.884247i 0.345328π-0.345328\pi
0.467020 + 0.884247i 0.345328π0.345328\pi
6262 −5.96640 −0.757734
6363 0 0
6464 32.6168 4.07710
6565 0 0
6666 0 0
6767 −2.77418 −0.338920 −0.169460 0.985537i 0.554202π-0.554202\pi
−0.169460 + 0.985537i 0.554202π0.554202\pi
6868 −10.6511 −1.29164
6969 0 0
7070 0 0
7171 −6.05383 −0.718457 −0.359229 0.933250i 0.616960π-0.616960\pi
−0.359229 + 0.933250i 0.616960π0.616960\pi
7272 0 0
7373 11.5699 1.35415 0.677077 0.735912i 0.263246π-0.263246\pi
0.677077 + 0.735912i 0.263246π0.263246\pi
7474 −18.1549 −2.11046
7575 0 0
7676 7.57176 0.868541
7777 −0.106186 −0.0121010
7878 0 0
7979 −3.01211 −0.338889 −0.169444 0.985540i 0.554197π-0.554197\pi
−0.169444 + 0.985540i 0.554197π0.554197\pi
8080 0 0
8181 0 0
8282 −13.9354 −1.53891
8383 0.455950 0.0500470 0.0250235 0.999687i 0.492034π-0.492034\pi
0.0250235 + 0.999687i 0.492034π0.492034\pi
8484 0 0
8585 0 0
8686 20.6718 2.22910
8787 0 0
8888 −0.931027 −0.0992478
8989 7.57581 0.803034 0.401517 0.915852i 0.368483π-0.368483\pi
0.401517 + 0.915852i 0.368483π0.368483\pi
9090 0 0
9191 −1.11334 −0.116710
9292 −7.54539 −0.786661
9393 0 0
9494 15.8578 1.63561
9595 0 0
9696 0 0
9797 −10.7828 −1.09483 −0.547415 0.836862i 0.684388π-0.684388\pi
−0.547415 + 0.836862i 0.684388π0.684388\pi
9898 15.8608 1.60219
9999 0 0
100100 0 0
101101 18.8731 1.87794 0.938971 0.343996i 0.111781π-0.111781\pi
0.938971 + 0.343996i 0.111781π0.111781\pi
102102 0 0
103103 12.0872 1.19098 0.595491 0.803362i 0.296957π-0.296957\pi
0.595491 + 0.803362i 0.296957π0.296957\pi
104104 −9.76166 −0.957209
105105 0 0
106106 −6.98991 −0.678920
107107 10.8319 1.04716 0.523578 0.851977i 0.324597π-0.324597\pi
0.523578 + 0.851977i 0.324597π0.324597\pi
108108 0 0
109109 13.2131 1.26558 0.632790 0.774323i 0.281910π-0.281910\pi
0.632790 + 0.774323i 0.281910π0.281910\pi
110110 0 0
111111 0 0
112112 −17.1281 −1.61846
113113 −2.20594 −0.207517 −0.103758 0.994603i 0.533087π-0.533087\pi
−0.103758 + 0.994603i 0.533087π0.533087\pi
114114 0 0
115115 0 0
116116 −5.52881 −0.513337
117117 0 0
118118 34.7564 3.19959
119119 2.12745 0.195023
120120 0 0
121121 −10.9908 −0.999159
122122 −20.0167 −1.81223
123123 0 0
124124 12.0221 1.07962
125125 0 0
126126 0 0
127127 −16.8893 −1.49868 −0.749340 0.662185i 0.769629π-0.769629\pi
−0.749340 + 0.662185i 0.769629π0.769629\pi
128128 −43.1113 −3.81054
129129 0 0
130130 0 0
131131 8.43970 0.737380 0.368690 0.929552i 0.379806π-0.379806\pi
0.368690 + 0.929552i 0.379806π0.379806\pi
132132 0 0
133133 −1.51238 −0.131140
134134 7.61198 0.657575
135135 0 0
136136 18.6532 1.59950
137137 −8.80002 −0.751836 −0.375918 0.926653i 0.622673π-0.622673\pi
−0.375918 + 0.926653i 0.622673π0.622673\pi
138138 0 0
139139 1.93520 0.164142 0.0820709 0.996626i 0.473847π-0.473847\pi
0.0820709 + 0.996626i 0.473847π0.473847\pi
140140 0 0
141141 0 0
142142 16.6109 1.39396
143143 0.0969403 0.00810656
144144 0 0
145145 0 0
146146 −31.7463 −2.62734
147147 0 0
148148 36.5815 3.00698
149149 −19.4823 −1.59605 −0.798025 0.602624i 0.794122π-0.794122\pi
−0.798025 + 0.602624i 0.794122π0.794122\pi
150150 0 0
151151 −19.0946 −1.55390 −0.776949 0.629563i 0.783234π-0.783234\pi
−0.776949 + 0.629563i 0.783234π0.783234\pi
152152 −13.2604 −1.07556
153153 0 0
154154 0.291361 0.0234785
155155 0 0
156156 0 0
157157 11.1697 0.891438 0.445719 0.895173i 0.352948π-0.352948\pi
0.445719 + 0.895173i 0.352948π0.352948\pi
158158 8.26483 0.657515
159159 0 0
160160 0 0
161161 1.50711 0.118777
162162 0 0
163163 6.15583 0.482161 0.241081 0.970505i 0.422498π-0.422498\pi
0.241081 + 0.970505i 0.422498π0.422498\pi
164164 28.0795 2.19264
165165 0 0
166166 −1.25106 −0.0971015
167167 −14.4540 −1.11849 −0.559244 0.829003i 0.688908π-0.688908\pi
−0.559244 + 0.829003i 0.688908π0.688908\pi
168168 0 0
169169 −11.9836 −0.921815
170170 0 0
171171 0 0
172172 −41.6530 −3.17601
173173 −19.0331 −1.44706 −0.723531 0.690292i 0.757482π-0.757482\pi
−0.723531 + 0.690292i 0.757482π0.757482\pi
174174 0 0
175175 0 0
176176 1.49137 0.112416
177177 0 0
178178 −20.7870 −1.55805
179179 3.15556 0.235857 0.117929 0.993022i 0.462375π-0.462375\pi
0.117929 + 0.993022i 0.462375π0.462375\pi
180180 0 0
181181 −21.9375 −1.63060 −0.815301 0.579037i 0.803429π-0.803429\pi
−0.815301 + 0.579037i 0.803429π0.803429\pi
182182 3.05487 0.226442
183183 0 0
184184 13.2142 0.974164
185185 0 0
186186 0 0
187187 −0.185240 −0.0135461
188188 −31.9530 −2.33042
189189 0 0
190190 0 0
191191 −22.8151 −1.65084 −0.825422 0.564517i 0.809063π-0.809063\pi
−0.825422 + 0.564517i 0.809063π0.809063\pi
192192 0 0
193193 7.27135 0.523403 0.261702 0.965149i 0.415716π-0.415716\pi
0.261702 + 0.965149i 0.415716π0.415716\pi
194194 29.5866 2.12420
195195 0 0
196196 −31.9591 −2.28279
197197 13.6506 0.972563 0.486282 0.873802i 0.338353π-0.338353\pi
0.486282 + 0.873802i 0.338353π0.338353\pi
198198 0 0
199199 −9.81861 −0.696023 −0.348011 0.937490i 0.613143π-0.613143\pi
−0.348011 + 0.937490i 0.613143π0.613143\pi
200200 0 0
201201 0 0
202202 −51.7852 −3.64360
203203 1.10432 0.0775083
204204 0 0
205205 0 0
206206 −33.1655 −2.31075
207207 0 0
208208 15.6368 1.08421
209209 0.131685 0.00910886
210210 0 0
211211 −13.3349 −0.918009 −0.459004 0.888434i 0.651794π-0.651794\pi
−0.459004 + 0.888434i 0.651794π0.651794\pi
212212 14.0845 0.967324
213213 0 0
214214 −29.7212 −2.03170
215215 0 0
216216 0 0
217217 −2.40130 −0.163011
218218 −36.2549 −2.45549
219219 0 0
220220 0 0
221221 −1.94221 −0.130647
222222 0 0
223223 8.60466 0.576211 0.288105 0.957599i 0.406975π-0.406975\pi
0.288105 + 0.957599i 0.406975π0.406975\pi
224224 25.6120 1.71127
225225 0 0
226226 6.05279 0.402626
227227 14.6273 0.970846 0.485423 0.874279i 0.338666π-0.338666\pi
0.485423 + 0.874279i 0.338666π0.338666\pi
228228 0 0
229229 9.64412 0.637301 0.318651 0.947872i 0.396770π-0.396770\pi
0.318651 + 0.947872i 0.396770π0.396770\pi
230230 0 0
231231 0 0
232232 9.68257 0.635692
233233 17.9885 1.17847 0.589233 0.807963i 0.299430π-0.299430\pi
0.589233 + 0.807963i 0.299430π0.299430\pi
234234 0 0
235235 0 0
236236 −70.0331 −4.55877
237237 0 0
238238 −5.83744 −0.378385
239239 −7.74493 −0.500978 −0.250489 0.968120i 0.580591π-0.580591\pi
−0.250489 + 0.968120i 0.580591π0.580591\pi
240240 0 0
241241 5.30756 0.341890 0.170945 0.985281i 0.445318π-0.445318\pi
0.170945 + 0.985281i 0.445318π0.445318\pi
242242 30.1572 1.93858
243243 0 0
244244 40.3331 2.58206
245245 0 0
246246 0 0
247247 1.38070 0.0878517
248248 −21.0543 −1.33695
249249 0 0
250250 0 0
251251 13.0470 0.823518 0.411759 0.911293i 0.364915π-0.364915\pi
0.411759 + 0.911293i 0.364915π0.364915\pi
252252 0 0
253253 −0.131227 −0.00825015
254254 46.3419 2.90775
255255 0 0
256256 53.0581 3.31613
257257 −15.4865 −0.966024 −0.483012 0.875614i 0.660457π-0.660457\pi
−0.483012 + 0.875614i 0.660457π0.660457\pi
258258 0 0
259259 −7.30678 −0.454021
260260 0 0
261261 0 0
262262 −23.1574 −1.43067
263263 −5.90216 −0.363943 −0.181971 0.983304i 0.558248π-0.558248\pi
−0.181971 + 0.983304i 0.558248π0.558248\pi
264264 0 0
265265 0 0
266266 4.14978 0.254439
267267 0 0
268268 −15.3379 −0.936911
269269 26.1012 1.59142 0.795710 0.605678i 0.207098π-0.207098\pi
0.795710 + 0.605678i 0.207098π0.207098\pi
270270 0 0
271271 3.68372 0.223770 0.111885 0.993721i 0.464311π-0.464311\pi
0.111885 + 0.993721i 0.464311π0.464311\pi
272272 −29.8798 −1.81173
273273 0 0
274274 24.1461 1.45872
275275 0 0
276276 0 0
277277 −24.6901 −1.48349 −0.741743 0.670684i 0.766001π-0.766001\pi
−0.741743 + 0.670684i 0.766001π0.766001\pi
278278 −5.30994 −0.318469
279279 0 0
280280 0 0
281281 22.8059 1.36049 0.680243 0.732986i 0.261874π-0.261874\pi
0.680243 + 0.732986i 0.261874π0.261874\pi
282282 0 0
283283 5.95693 0.354103 0.177051 0.984202i 0.443344π-0.443344\pi
0.177051 + 0.984202i 0.443344π0.443344\pi
284284 −33.4704 −1.98610
285285 0 0
286286 −0.265991 −0.0157284
287287 −5.60859 −0.331065
288288 0 0
289289 −13.2887 −0.781688
290290 0 0
291291 0 0
292292 63.9677 3.74343
293293 16.9708 0.991443 0.495721 0.868482i 0.334904π-0.334904\pi
0.495721 + 0.868482i 0.334904π0.334904\pi
294294 0 0
295295 0 0
296296 −64.0650 −3.72370
297297 0 0
298298 53.4568 3.09667
299299 −1.37589 −0.0795697
300300 0 0
301301 8.31977 0.479543
302302 52.3931 3.01488
303303 0 0
304304 21.2412 1.21827
305305 0 0
306306 0 0
307307 −2.13874 −0.122064 −0.0610321 0.998136i 0.519439π-0.519439\pi
−0.0610321 + 0.998136i 0.519439π0.519439\pi
308308 −0.587082 −0.0334521
309309 0 0
310310 0 0
311311 13.6680 0.775044 0.387522 0.921861i 0.373331π-0.373331\pi
0.387522 + 0.921861i 0.373331π0.373331\pi
312312 0 0
313313 5.07682 0.286959 0.143480 0.989653i 0.454171π-0.454171\pi
0.143480 + 0.989653i 0.454171π0.454171\pi
314314 −30.6481 −1.72957
315315 0 0
316316 −16.6534 −0.936825
317317 −7.29420 −0.409683 −0.204842 0.978795i 0.565668π-0.565668\pi
−0.204842 + 0.978795i 0.565668π0.565668\pi
318318 0 0
319319 −0.0961550 −0.00538364
320320 0 0
321321 0 0
322322 −4.13532 −0.230452
323323 −2.63833 −0.146801
324324 0 0
325325 0 0
326326 −16.8908 −0.935493
327327 0 0
328328 −49.1755 −2.71526
329329 6.38230 0.351867
330330 0 0
331331 −15.6728 −0.861454 −0.430727 0.902482i 0.641743π-0.641743\pi
−0.430727 + 0.902482i 0.641743π0.641743\pi
332332 2.52086 0.138350
333333 0 0
334334 39.6600 2.17010
335335 0 0
336336 0 0
337337 −27.1038 −1.47644 −0.738219 0.674562i 0.764333π-0.764333\pi
−0.738219 + 0.674562i 0.764333π0.764333\pi
338338 32.8814 1.78851
339339 0 0
340340 0 0
341341 0.209084 0.0113225
342342 0 0
343343 14.1138 0.762072
344344 72.9467 3.93302
345345 0 0
346346 52.2243 2.80760
347347 19.8312 1.06460 0.532298 0.846557i 0.321329π-0.321329\pi
0.532298 + 0.846557i 0.321329π0.321329\pi
348348 0 0
349349 −25.5566 −1.36802 −0.684008 0.729475i 0.739765π-0.739765\pi
−0.684008 + 0.729475i 0.739765π0.739765\pi
350350 0 0
351351 0 0
352352 −2.23007 −0.118863
353353 7.94312 0.422770 0.211385 0.977403i 0.432203π-0.432203\pi
0.211385 + 0.977403i 0.432203π0.432203\pi
354354 0 0
355355 0 0
356356 41.8852 2.21991
357357 0 0
358358 −8.65843 −0.457612
359359 −5.79924 −0.306072 −0.153036 0.988221i 0.548905π-0.548905\pi
−0.153036 + 0.988221i 0.548905π0.548905\pi
360360 0 0
361361 −17.1244 −0.901286
362362 60.1936 3.16371
363363 0 0
364364 −6.15546 −0.322634
365365 0 0
366366 0 0
367367 22.6318 1.18137 0.590686 0.806901i 0.298857π-0.298857\pi
0.590686 + 0.806901i 0.298857π0.298857\pi
368368 −21.1672 −1.10342
369369 0 0
370370 0 0
371371 −2.81323 −0.146056
372372 0 0
373373 −23.3987 −1.21154 −0.605769 0.795641i 0.707134π-0.707134\pi
−0.605769 + 0.795641i 0.707134π0.707134\pi
374374 0.508274 0.0262822
375375 0 0
376376 55.9592 2.88588
377377 −1.00817 −0.0519233
378378 0 0
379379 27.4252 1.40874 0.704369 0.709834i 0.251230π-0.251230\pi
0.704369 + 0.709834i 0.251230π0.251230\pi
380380 0 0
381381 0 0
382382 62.6016 3.20298
383383 26.7931 1.36906 0.684531 0.728984i 0.260007π-0.260007\pi
0.684531 + 0.728984i 0.260007π0.260007\pi
384384 0 0
385385 0 0
386386 −19.9516 −1.01551
387387 0 0
388388 −59.6161 −3.02655
389389 −25.7792 −1.30706 −0.653528 0.756902i 0.726712π-0.726712\pi
−0.653528 + 0.756902i 0.726712π0.726712\pi
390390 0 0
391391 2.62914 0.132961
392392 55.9698 2.82690
393393 0 0
394394 −37.4554 −1.88697
395395 0 0
396396 0 0
397397 −21.2065 −1.06432 −0.532161 0.846643i 0.678620π-0.678620\pi
−0.532161 + 0.846643i 0.678620π0.678620\pi
398398 26.9410 1.35043
399399 0 0
400400 0 0
401401 −20.5845 −1.02794 −0.513971 0.857807i 0.671826π-0.671826\pi
−0.513971 + 0.857807i 0.671826π0.671826\pi
402402 0 0
403403 2.19221 0.109202
404404 104.346 5.19139
405405 0 0
406406 −3.03012 −0.150382
407407 0.636211 0.0315358
408408 0 0
409409 1.93199 0.0955309 0.0477654 0.998859i 0.484790π-0.484790\pi
0.0477654 + 0.998859i 0.484790π0.484790\pi
410410 0 0
411411 0 0
412412 66.8275 3.29236
413413 13.9884 0.688324
414414 0 0
415415 0 0
416416 −23.3819 −1.14639
417417 0 0
418418 −0.361327 −0.0176731
419419 −5.69653 −0.278294 −0.139147 0.990272i 0.544436π-0.544436\pi
−0.139147 + 0.990272i 0.544436π0.544436\pi
420420 0 0
421421 −34.1352 −1.66365 −0.831825 0.555038i 0.812704π-0.812704\pi
−0.831825 + 0.555038i 0.812704π0.812704\pi
422422 36.5891 1.78113
423423 0 0
424424 −24.6660 −1.19789
425425 0 0
426426 0 0
427427 −8.05613 −0.389863
428428 59.8873 2.89476
429429 0 0
430430 0 0
431431 15.1704 0.730734 0.365367 0.930864i 0.380944π-0.380944\pi
0.365367 + 0.930864i 0.380944π0.380944\pi
432432 0 0
433433 −6.09226 −0.292775 −0.146388 0.989227i 0.546765π-0.546765\pi
−0.146388 + 0.989227i 0.546765π0.546765\pi
434434 6.58883 0.316274
435435 0 0
436436 73.0524 3.49857
437437 −1.86903 −0.0894077
438438 0 0
439439 −4.42241 −0.211070 −0.105535 0.994416i 0.533655π-0.533655\pi
−0.105535 + 0.994416i 0.533655π0.533655\pi
440440 0 0
441441 0 0
442442 5.32917 0.253483
443443 10.1506 0.482268 0.241134 0.970492i 0.422481π-0.422481\pi
0.241134 + 0.970492i 0.422481π0.422481\pi
444444 0 0
445445 0 0
446446 −23.6101 −1.11797
447447 0 0
448448 −36.0195 −1.70176
449449 −15.6656 −0.739307 −0.369653 0.929170i 0.620524π-0.620524\pi
−0.369653 + 0.929170i 0.620524π0.620524\pi
450450 0 0
451451 0.488348 0.0229954
452452 −12.1962 −0.573660
453453 0 0
454454 −40.1353 −1.88364
455455 0 0
456456 0 0
457457 29.3357 1.37226 0.686132 0.727477i 0.259307π-0.259307\pi
0.686132 + 0.727477i 0.259307π0.259307\pi
458458 −26.4622 −1.23650
459459 0 0
460460 0 0
461461 0.433920 0.0202097 0.0101048 0.999949i 0.496783π-0.496783\pi
0.0101048 + 0.999949i 0.496783π0.496783\pi
462462 0 0
463463 −9.63020 −0.447553 −0.223777 0.974640i 0.571839π-0.571839\pi
−0.223777 + 0.974640i 0.571839π0.571839\pi
464464 −15.5101 −0.720037
465465 0 0
466466 −49.3581 −2.28647
467467 −13.4944 −0.624447 −0.312223 0.950009i 0.601074π-0.601074\pi
−0.312223 + 0.950009i 0.601074π0.601074\pi
468468 0 0
469469 3.06359 0.141463
470470 0 0
471471 0 0
472472 122.649 5.64536
473473 −0.724414 −0.0333086
474474 0 0
475475 0 0
476476 11.7623 0.539122
477477 0 0
478478 21.2510 0.972000
479479 −7.97389 −0.364336 −0.182168 0.983267i 0.558312π-0.558312\pi
−0.182168 + 0.983267i 0.558312π0.558312\pi
480480 0 0
481481 6.67057 0.304152
482482 −14.5632 −0.663337
483483 0 0
484484 −60.7657 −2.76208
485485 0 0
486486 0 0
487487 1.61623 0.0732385 0.0366192 0.999329i 0.488341π-0.488341\pi
0.0366192 + 0.999329i 0.488341π0.488341\pi
488488 −70.6352 −3.19750
489489 0 0
490490 0 0
491491 10.0585 0.453932 0.226966 0.973903i 0.427119π-0.427119\pi
0.226966 + 0.973903i 0.427119π0.427119\pi
492492 0 0
493493 1.92647 0.0867641
494494 −3.78845 −0.170450
495495 0 0
496496 33.7259 1.51434
497497 6.68538 0.299880
498498 0 0
499499 20.3154 0.909440 0.454720 0.890634i 0.349739π-0.349739\pi
0.454720 + 0.890634i 0.349739π0.349739\pi
500500 0 0
501501 0 0
502502 −35.7992 −1.59780
503503 −40.7407 −1.81654 −0.908270 0.418385i 0.862596π-0.862596\pi
−0.908270 + 0.418385i 0.862596π0.862596\pi
504504 0 0
505505 0 0
506506 0.360068 0.0160070
507507 0 0
508508 −93.3775 −4.14296
509509 −35.8671 −1.58978 −0.794891 0.606752i 0.792472π-0.792472\pi
−0.794891 + 0.606752i 0.792472π0.792472\pi
510510 0 0
511511 −12.7769 −0.565217
512512 −59.3618 −2.62344
513513 0 0
514514 42.4930 1.87429
515515 0 0
516516 0 0
517517 −0.555716 −0.0244403
518518 20.0488 0.880895
519519 0 0
520520 0 0
521521 −10.6032 −0.464534 −0.232267 0.972652i 0.574614π-0.574614\pi
−0.232267 + 0.972652i 0.574614π0.574614\pi
522522 0 0
523523 20.6859 0.904530 0.452265 0.891884i 0.350616π-0.350616\pi
0.452265 + 0.891884i 0.350616π0.350616\pi
524524 46.6615 2.03842
525525 0 0
526526 16.1947 0.706124
527527 −4.18902 −0.182477
528528 0 0
529529 −21.1375 −0.919021
530530 0 0
531531 0 0
532532 −8.36167 −0.362524
533533 5.12024 0.221782
534534 0 0
535535 0 0
536536 26.8612 1.16023
537537 0 0
538538 −71.6183 −3.08768
539539 −0.555821 −0.0239409
540540 0 0
541541 1.77636 0.0763715 0.0381857 0.999271i 0.487842π-0.487842\pi
0.0381857 + 0.999271i 0.487842π0.487842\pi
542542 −10.1076 −0.434160
543543 0 0
544544 44.6797 1.91563
545545 0 0
546546 0 0
547547 −39.7930 −1.70143 −0.850713 0.525630i 0.823830π-0.823830\pi
−0.850713 + 0.525630i 0.823830π0.823830\pi
548548 −48.6536 −2.07838
549549 0 0
550550 0 0
551551 −1.36951 −0.0583431
552552 0 0
553553 3.32634 0.141450
554554 67.7464 2.87827
555555 0 0
556556 10.6994 0.453754
557557 −10.6253 −0.450206 −0.225103 0.974335i 0.572272π-0.572272\pi
−0.225103 + 0.974335i 0.572272π0.572272\pi
558558 0 0
559559 −7.59535 −0.321249
560560 0 0
561561 0 0
562562 −62.5764 −2.63963
563563 −24.7572 −1.04339 −0.521696 0.853132i 0.674700π-0.674700\pi
−0.521696 + 0.853132i 0.674700π0.674700\pi
564564 0 0
565565 0 0
566566 −16.3450 −0.687033
567567 0 0
568568 58.6166 2.45950
569569 33.7414 1.41451 0.707257 0.706957i 0.249933π-0.249933\pi
0.707257 + 0.706957i 0.249933π0.249933\pi
570570 0 0
571571 −12.2259 −0.511639 −0.255819 0.966725i 0.582345π-0.582345\pi
−0.255819 + 0.966725i 0.582345π0.582345\pi
572572 0.535964 0.0224098
573573 0 0
574574 15.3892 0.642334
575575 0 0
576576 0 0
577577 22.9772 0.956555 0.478278 0.878209i 0.341261π-0.341261\pi
0.478278 + 0.878209i 0.341261π0.341261\pi
578578 36.4624 1.51664
579579 0 0
580580 0 0
581581 −0.503516 −0.0208893
582582 0 0
583583 0.244952 0.0101449
584584 −112.026 −4.63568
585585 0 0
586586 −46.5655 −1.92360
587587 −41.5985 −1.71695 −0.858477 0.512851i 0.828589π-0.828589\pi
−0.858477 + 0.512851i 0.828589π0.828589\pi
588588 0 0
589589 2.97793 0.122704
590590 0 0
591591 0 0
592592 102.623 4.21777
593593 −4.89980 −0.201211 −0.100605 0.994926i 0.532078π-0.532078\pi
−0.100605 + 0.994926i 0.532078π0.532078\pi
594594 0 0
595595 0 0
596596 −107.714 −4.41212
597597 0 0
598598 3.77525 0.154382
599599 24.3309 0.994133 0.497066 0.867713i 0.334411π-0.334411\pi
0.497066 + 0.867713i 0.334411π0.334411\pi
600600 0 0
601601 −35.2493 −1.43785 −0.718923 0.695089i 0.755365π-0.755365\pi
−0.718923 + 0.695089i 0.755365π0.755365\pi
602602 −22.8283 −0.930414
603603 0 0
604604 −105.570 −4.29560
605605 0 0
606606 0 0
607607 −46.7359 −1.89695 −0.948476 0.316850i 0.897375π-0.897375\pi
−0.948476 + 0.316850i 0.897375π0.897375\pi
608608 −31.7623 −1.28813
609609 0 0
610610 0 0
611611 −5.82658 −0.235718
612612 0 0
613613 −0.159393 −0.00643782 −0.00321891 0.999995i 0.501025π-0.501025\pi
−0.00321891 + 0.999995i 0.501025π0.501025\pi
614614 5.86841 0.236830
615615 0 0
616616 1.02815 0.0414255
617617 18.5015 0.744841 0.372421 0.928064i 0.378528π-0.378528\pi
0.372421 + 0.928064i 0.378528π0.378528\pi
618618 0 0
619619 −36.4393 −1.46462 −0.732310 0.680971i 0.761558π-0.761558\pi
−0.732310 + 0.680971i 0.761558π0.761558\pi
620620 0 0
621621 0 0
622622 −37.5033 −1.50375
623623 −8.36614 −0.335182
624624 0 0
625625 0 0
626626 −13.9301 −0.556760
627627 0 0
628628 61.7550 2.46429
629629 −12.7466 −0.508239
630630 0 0
631631 −33.2812 −1.32490 −0.662451 0.749105i 0.730484π-0.730484\pi
−0.662451 + 0.749105i 0.730484π0.730484\pi
632632 29.1650 1.16012
633633 0 0
634634 20.0143 0.794870
635635 0 0
636636 0 0
637637 −5.82769 −0.230901
638638 0.263836 0.0104454
639639 0 0
640640 0 0
641641 14.8916 0.588185 0.294092 0.955777i 0.404983π-0.404983\pi
0.294092 + 0.955777i 0.404983π0.404983\pi
642642 0 0
643643 27.7299 1.09356 0.546779 0.837277i 0.315854π-0.315854\pi
0.546779 + 0.837277i 0.315854π0.315854\pi
644644 8.33254 0.328348
645645 0 0
646646 7.23922 0.284823
647647 −30.9301 −1.21599 −0.607994 0.793942i 0.708026π-0.708026\pi
−0.607994 + 0.793942i 0.708026π0.708026\pi
648648 0 0
649649 −1.21799 −0.0478103
650650 0 0
651651 0 0
652652 34.0344 1.33289
653653 −25.0243 −0.979278 −0.489639 0.871925i 0.662871π-0.662871\pi
−0.489639 + 0.871925i 0.662871π0.662871\pi
654654 0 0
655655 0 0
656656 78.7720 3.07553
657657 0 0
658658 −17.5122 −0.682696
659659 20.2013 0.786930 0.393465 0.919340i 0.371276π-0.371276\pi
0.393465 + 0.919340i 0.371276π0.371276\pi
660660 0 0
661661 −14.2973 −0.556099 −0.278049 0.960567i 0.589688π-0.589688\pi
−0.278049 + 0.960567i 0.589688π0.589688\pi
662662 43.0040 1.67140
663663 0 0
664664 −4.41476 −0.171326
665665 0 0
666666 0 0
667667 1.36474 0.0528430
668668 −79.9136 −3.09195
669669 0 0
670670 0 0
671671 0.701459 0.0270795
672672 0 0
673673 33.6661 1.29773 0.648867 0.760902i 0.275243π-0.275243\pi
0.648867 + 0.760902i 0.275243π0.275243\pi
674674 74.3692 2.86459
675675 0 0
676676 −66.2550 −2.54827
677677 −8.78111 −0.337486 −0.168743 0.985660i 0.553971π-0.553971\pi
−0.168743 + 0.985660i 0.553971π0.553971\pi
678678 0 0
679679 11.9077 0.456976
680680 0 0
681681 0 0
682682 −0.573699 −0.0219681
683683 −37.3359 −1.42862 −0.714310 0.699830i 0.753259π-0.753259\pi
−0.714310 + 0.699830i 0.753259π0.753259\pi
684684 0 0
685685 0 0
686686 −38.7263 −1.47858
687687 0 0
688688 −116.850 −4.45487
689689 2.56828 0.0978435
690690 0 0
691691 38.7767 1.47513 0.737567 0.675274i 0.235975π-0.235975\pi
0.737567 + 0.675274i 0.235975π0.235975\pi
692692 −105.230 −4.00026
693693 0 0
694694 −54.4142 −2.06554
695695 0 0
696696 0 0
697697 −9.78410 −0.370599
698698 70.1240 2.65423
699699 0 0
700700 0 0
701701 20.8879 0.788924 0.394462 0.918912i 0.370931π-0.370931\pi
0.394462 + 0.918912i 0.370931π0.370931\pi
702702 0 0
703703 9.06140 0.341757
704704 3.13627 0.118203
705705 0 0
706706 −21.7949 −0.820261
707707 −20.8420 −0.783843
708708 0 0
709709 −9.72205 −0.365119 −0.182560 0.983195i 0.558438π-0.558438\pi
−0.182560 + 0.983195i 0.558438π0.558438\pi
710710 0 0
711711 0 0
712712 −73.3533 −2.74903
713713 −2.96756 −0.111136
714714 0 0
715715 0 0
716716 17.4465 0.652005
717717 0 0
718718 15.9124 0.593844
719719 −45.2454 −1.68737 −0.843684 0.536841i 0.819618π-0.819618\pi
−0.843684 + 0.536841i 0.819618π0.819618\pi
720720 0 0
721721 −13.3481 −0.497110
722722 46.9872 1.74868
723723 0 0
724724 −121.288 −4.50764
725725 0 0
726726 0 0
727727 19.4957 0.723054 0.361527 0.932362i 0.382256π-0.382256\pi
0.361527 + 0.932362i 0.382256π0.382256\pi
728728 10.7800 0.399534
729729 0 0
730730 0 0
731731 14.5137 0.536809
732732 0 0
733733 35.7113 1.31903 0.659513 0.751693i 0.270762π-0.270762\pi
0.659513 + 0.751693i 0.270762π0.270762\pi
734734 −62.0988 −2.29211
735735 0 0
736736 31.6517 1.16670
737737 −0.266751 −0.00982590
738738 0 0
739739 −39.8367 −1.46542 −0.732708 0.680543i 0.761744π-0.761744\pi
−0.732708 + 0.680543i 0.761744π0.761744\pi
740740 0 0
741741 0 0
742742 7.71912 0.283378
743743 21.7579 0.798218 0.399109 0.916903i 0.369319π-0.369319\pi
0.399109 + 0.916903i 0.369319π0.369319\pi
744744 0 0
745745 0 0
746746 64.2028 2.35063
747747 0 0
748748 −1.02416 −0.0374469
749749 −11.9619 −0.437078
750750 0 0
751751 −36.0557 −1.31569 −0.657846 0.753152i 0.728532π-0.728532\pi
−0.657846 + 0.753152i 0.728532π0.728532\pi
752752 −89.6386 −3.26878
753753 0 0
754754 2.76628 0.100742
755755 0 0
756756 0 0
757757 −7.57942 −0.275479 −0.137739 0.990469i 0.543984π-0.543984\pi
−0.137739 + 0.990469i 0.543984π0.543984\pi
758758 −75.2512 −2.73325
759759 0 0
760760 0 0
761761 17.3466 0.628814 0.314407 0.949288i 0.398194π-0.398194\pi
0.314407 + 0.949288i 0.398194π0.398194\pi
762762 0 0
763763 −14.5915 −0.528247
764764 −126.140 −4.56360
765765 0 0
766766 −73.5166 −2.65626
767767 −12.7704 −0.461113
768768 0 0
769769 13.7054 0.494228 0.247114 0.968986i 0.420518π-0.420518\pi
0.247114 + 0.968986i 0.420518π0.420518\pi
770770 0 0
771771 0 0
772772 40.2019 1.44690
773773 15.1545 0.545069 0.272534 0.962146i 0.412138π-0.412138\pi
0.272534 + 0.962146i 0.412138π0.412138\pi
774774 0 0
775775 0 0
776776 104.405 3.74794
777777 0 0
778778 70.7346 2.53596
779779 6.95542 0.249204
780780 0 0
781781 −0.582105 −0.0208294
782782 −7.21401 −0.257972
783783 0 0
784784 −89.6556 −3.20198
785785 0 0
786786 0 0
787787 −30.7331 −1.09552 −0.547759 0.836636i 0.684519π-0.684519\pi
−0.547759 + 0.836636i 0.684519π0.684519\pi
788788 75.4714 2.68856
789789 0 0
790790 0 0
791791 2.43606 0.0866165
792792 0 0
793793 7.35467 0.261172
794794 58.1877 2.06500
795795 0 0
796796 −54.2852 −1.92409
797797 −20.4224 −0.723399 −0.361699 0.932295i 0.617803π-0.617803\pi
−0.361699 + 0.932295i 0.617803π0.617803\pi
798798 0 0
799799 11.1338 0.393886
800800 0 0
801801 0 0
802802 56.4812 1.99442
803803 1.11250 0.0392594
804804 0 0
805805 0 0
806806 −6.01514 −0.211874
807807 0 0
808808 −182.740 −6.42877
809809 −41.0932 −1.44476 −0.722380 0.691497i 0.756952π-0.756952\pi
−0.722380 + 0.691497i 0.756952π0.756952\pi
810810 0 0
811811 11.0882 0.389360 0.194680 0.980867i 0.437633π-0.437633\pi
0.194680 + 0.980867i 0.437633π0.437633\pi
812812 6.10559 0.214264
813813 0 0
814814 −1.74568 −0.0611860
815815 0 0
816816 0 0
817817 −10.3176 −0.360969
818818 −5.30113 −0.185350
819819 0 0
820820 0 0
821821 −11.4735 −0.400427 −0.200213 0.979752i 0.564164π-0.564164\pi
−0.200213 + 0.979752i 0.564164π0.564164\pi
822822 0 0
823823 −12.7083 −0.442985 −0.221492 0.975162i 0.571093π-0.571093\pi
−0.221492 + 0.975162i 0.571093π0.571093\pi
824824 −117.035 −4.07710
825825 0 0
826826 −38.3823 −1.33549
827827 −13.3335 −0.463650 −0.231825 0.972757i 0.574470π-0.574470\pi
−0.231825 + 0.972757i 0.574470π0.574470\pi
828828 0 0
829829 −26.2252 −0.910838 −0.455419 0.890277i 0.650510π-0.650510\pi
−0.455419 + 0.890277i 0.650510π0.650510\pi
830830 0 0
831831 0 0
832832 32.8832 1.14002
833833 11.1359 0.385837
834834 0 0
835835 0 0
836836 0.728062 0.0251806
837837 0 0
838838 15.6305 0.539947
839839 12.8865 0.444891 0.222446 0.974945i 0.428596π-0.428596\pi
0.222446 + 0.974945i 0.428596π0.428596\pi
840840 0 0
841841 1.00000 0.0344828
842842 93.6625 3.22782
843843 0 0
844844 −73.7258 −2.53775
845845 0 0
846846 0 0
847847 12.1373 0.417044
848848 39.5114 1.35683
849849 0 0
850850 0 0
851851 −9.02984 −0.309539
852852 0 0
853853 17.3965 0.595645 0.297822 0.954621i 0.403740π-0.403740\pi
0.297822 + 0.954621i 0.403740π0.403740\pi
854854 22.1049 0.756416
855855 0 0
856856 −104.880 −3.58474
857857 5.74494 0.196243 0.0981217 0.995174i 0.468717π-0.468717\pi
0.0981217 + 0.995174i 0.468717π0.468717\pi
858858 0 0
859859 −36.5326 −1.24648 −0.623238 0.782032i 0.714183π-0.714183\pi
−0.623238 + 0.782032i 0.714183π0.714183\pi
860860 0 0
861861 0 0
862862 −41.6256 −1.41777
863863 5.99556 0.204091 0.102046 0.994780i 0.467461π-0.467461\pi
0.102046 + 0.994780i 0.467461π0.467461\pi
864864 0 0
865865 0 0
866866 16.7163 0.568044
867867 0 0
868868 −13.2763 −0.450627
869869 −0.289629 −0.00982500
870870 0 0
871871 −2.79684 −0.0947673
872872 −127.936 −4.33247
873873 0 0
874874 5.12836 0.173469
875875 0 0
876876 0 0
877877 10.7265 0.362209 0.181105 0.983464i 0.442033π-0.442033\pi
0.181105 + 0.983464i 0.442033π0.442033\pi
878878 12.1345 0.409519
879879 0 0
880880 0 0
881881 35.4683 1.19496 0.597479 0.801885i 0.296169π-0.296169\pi
0.597479 + 0.801885i 0.296169π0.296169\pi
882882 0 0
883883 −31.2074 −1.05021 −0.525106 0.851037i 0.675974π-0.675974\pi
−0.525106 + 0.851037i 0.675974π0.675974\pi
884884 −10.7381 −0.361162
885885 0 0
886886 −27.8518 −0.935700
887887 36.5271 1.22646 0.613230 0.789904i 0.289870π-0.289870\pi
0.613230 + 0.789904i 0.289870π0.289870\pi
888888 0 0
889889 18.6512 0.625542
890890 0 0
891891 0 0
892892 47.5735 1.59288
893893 −7.91492 −0.264863
894894 0 0
895895 0 0
896896 47.6088 1.59050
897897 0 0
898898 42.9844 1.43441
899899 −2.17445 −0.0725220
900900 0 0
901901 −4.90763 −0.163497
902902 −1.33996 −0.0446158
903903 0 0
904904 21.3591 0.710394
905905 0 0
906906 0 0
907907 26.6054 0.883416 0.441708 0.897159i 0.354373π-0.354373\pi
0.441708 + 0.897159i 0.354373π0.354373\pi
908908 80.8713 2.68381
909909 0 0
910910 0 0
911911 −29.9283 −0.991567 −0.495784 0.868446i 0.665119π-0.665119\pi
−0.495784 + 0.868446i 0.665119π0.665119\pi
912912 0 0
913913 0.0438418 0.00145095
914914 −80.4932 −2.66248
915915 0 0
916916 53.3204 1.76176
917917 −9.32015 −0.307779
918918 0 0
919919 −2.30814 −0.0761385 −0.0380693 0.999275i 0.512121π-0.512121\pi
−0.0380693 + 0.999275i 0.512121π0.512121\pi
920920 0 0
921921 0 0
922922 −1.19062 −0.0392109
923923 −6.10327 −0.200892
924924 0 0
925925 0 0
926926 26.4240 0.868346
927927 0 0
928928 23.1924 0.761329
929929 −13.6997 −0.449473 −0.224737 0.974420i 0.572152π-0.572152\pi
−0.224737 + 0.974420i 0.572152π0.572152\pi
930930 0 0
931931 −7.91642 −0.259450
932932 99.4549 3.25775
933933 0 0
934934 37.0269 1.21156
935935 0 0
936936 0 0
937937 −44.5601 −1.45572 −0.727858 0.685728i 0.759484π-0.759484\pi
−0.727858 + 0.685728i 0.759484π0.759484\pi
938938 −8.40608 −0.274468
939939 0 0
940940 0 0
941941 59.0327 1.92441 0.962206 0.272324i 0.0877924π-0.0877924\pi
0.962206 + 0.272324i 0.0877924π0.0877924\pi
942942 0 0
943943 −6.93119 −0.225711
944944 −196.465 −6.39440
945945 0 0
946946 1.98770 0.0646256
947947 −40.4627 −1.31486 −0.657431 0.753515i 0.728357π-0.728357\pi
−0.657431 + 0.753515i 0.728357π0.728357\pi
948948 0 0
949949 11.6644 0.378642
950950 0 0
951951 0 0
952952 −20.5992 −0.667624
953953 50.2692 1.62838 0.814190 0.580599i 0.197182π-0.197182\pi
0.814190 + 0.580599i 0.197182π0.197182\pi
954954 0 0
955955 0 0
956956 −42.8202 −1.38490
957957 0 0
958958 21.8793 0.706888
959959 9.71806 0.313813
960960 0 0
961961 −26.2718 −0.847476
962962 −18.3031 −0.590117
963963 0 0
964964 29.3444 0.945121
965965 0 0
966966 0 0
967967 24.4422 0.786009 0.393004 0.919537i 0.371436π-0.371436\pi
0.393004 + 0.919537i 0.371436π0.371436\pi
968968 106.419 3.42043
969969 0 0
970970 0 0
971971 −47.1924 −1.51447 −0.757237 0.653140i 0.773451π-0.773451\pi
−0.757237 + 0.653140i 0.773451π0.773451\pi
972972 0 0
973973 −2.13709 −0.0685120
974974 −4.43473 −0.142098
975975 0 0
976976 113.147 3.62176
977977 −55.7755 −1.78442 −0.892209 0.451623i 0.850845π-0.850845\pi
−0.892209 + 0.451623i 0.850845π0.850845\pi
978978 0 0
979979 0.728451 0.0232814
980980 0 0
981981 0 0
982982 −27.5991 −0.880722
983983 −44.1469 −1.40807 −0.704033 0.710167i 0.748619π-0.748619\pi
−0.704033 + 0.710167i 0.748619π0.748619\pi
984984 0 0
985985 0 0
986986 −5.28599 −0.168340
987987 0 0
988988 7.63361 0.242857
989989 10.2817 0.326939
990990 0 0
991991 −25.7068 −0.816605 −0.408302 0.912847i 0.633879π-0.633879\pi
−0.408302 + 0.912847i 0.633879π0.633879\pi
992992 −50.4308 −1.60118
993993 0 0
994994 −18.3438 −0.581830
995995 0 0
996996 0 0
997997 5.14864 0.163059 0.0815296 0.996671i 0.474019π-0.474019\pi
0.0815296 + 0.996671i 0.474019π0.474019\pi
998998 −55.7426 −1.76450
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.cb.1.1 yes 9
3.2 odd 2 6525.2.a.cd.1.9 yes 9
5.4 even 2 6525.2.a.cc.1.9 yes 9
15.14 odd 2 6525.2.a.ca.1.1 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6525.2.a.ca.1.1 9 15.14 odd 2
6525.2.a.cb.1.1 yes 9 1.1 even 1 trivial
6525.2.a.cc.1.9 yes 9 5.4 even 2
6525.2.a.cd.1.9 yes 9 3.2 odd 2