Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6552,2,Mod(1,6552)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6552, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6552.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6552.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(52.3179834043\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | 4.4.138892.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} - x^{3} - 10x^{2} + 2x + 12 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 2184) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.3 | ||
Root | \(-2.52690\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 6552.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0.152457 | 0.0681810 | 0.0340905 | − | 0.999419i | \(-0.489147\pi\) | ||||
0.0340905 | + | 0.999419i | \(0.489147\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −1.00000 | −0.377964 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −0.385245 | −0.116156 | −0.0580779 | − | 0.998312i | \(-0.518497\pi\) | ||||
−0.0580779 | + | 0.998312i | \(0.518497\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000 | 0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −7.43905 | −1.80424 | −0.902118 | − | 0.431490i | \(-0.857988\pi\) | ||||
−0.902118 | + | 0.431490i | \(0.857988\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −7.20627 | −1.65323 | −0.826615 | − | 0.562767i | \(-0.809737\pi\) | ||||
−0.826615 | + | 0.562767i | \(0.809737\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −2.90135 | −0.604974 | −0.302487 | − | 0.953154i | \(-0.597817\pi\) | ||||
−0.302487 | + | 0.953154i | \(0.597817\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −4.97676 | −0.995351 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 5.20627 | 0.966779 | 0.483390 | − | 0.875405i | \(-0.339405\pi\) | ||||
0.483390 | + | 0.875405i | \(0.339405\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 1.76721 | 0.317401 | 0.158700 | − | 0.987327i | \(-0.449270\pi\) | ||||
0.158700 | + | 0.987327i | \(0.449270\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −0.152457 | −0.0257700 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 7.43905 | 1.22297 | 0.611486 | − | 0.791255i | \(-0.290572\pi\) | ||||
0.611486 | + | 0.791255i | \(0.290572\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −7.05381 | −1.10162 | −0.550810 | − | 0.834631i | \(-0.685681\pi\) | ||||
−0.550810 | + | 0.834631i | \(0.685681\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 2.90135 | 0.442452 | 0.221226 | − | 0.975223i | \(-0.428994\pi\) | ||||
0.221226 | + | 0.975223i | \(0.428994\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 3.59151 | 0.523876 | 0.261938 | − | 0.965085i | \(-0.415638\pi\) | ||||
0.261938 | + | 0.965085i | \(0.415638\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 1.00000 | 0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 10.9502 | 1.50413 | 0.752065 | − | 0.659089i | \(-0.229058\pi\) | ||||
0.752065 | + | 0.659089i | \(0.229058\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −0.0587335 | −0.00791963 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 5.82430 | 0.758259 | 0.379130 | − | 0.925344i | \(-0.376223\pi\) | ||||
0.379130 | + | 0.925344i | \(0.376223\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 12.5145 | 1.60231 | 0.801156 | − | 0.598455i | \(-0.204219\pi\) | ||||
0.801156 | + | 0.598455i | \(0.204219\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0.152457 | 0.0189100 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 9.80270 | 1.19759 | 0.598795 | − | 0.800902i | \(-0.295646\pi\) | ||||
0.598795 | + | 0.800902i | \(0.295646\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −5.82430 | −0.691217 | −0.345609 | − | 0.938379i | \(-0.612328\pi\) | ||||
−0.345609 | + | 0.938379i | \(0.612328\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 3.09865 | 0.362669 | 0.181335 | − | 0.983421i | \(-0.441958\pi\) | ||||
0.181335 | + | 0.983421i | \(0.441958\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0.385245 | 0.0439028 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 12.6453 | 1.42271 | 0.711355 | − | 0.702833i | \(-0.248082\pi\) | ||||
0.711355 | + | 0.702833i | \(0.248082\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −11.8964 | −1.30580 | −0.652901 | − | 0.757443i | \(-0.726448\pi\) | ||||
−0.652901 | + | 0.757443i | \(0.726448\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −1.13414 | −0.123015 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 5.59151 | 0.592699 | 0.296350 | − | 0.955080i | \(-0.404231\pi\) | ||||
0.296350 | + | 0.955080i | \(0.404231\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −1.00000 | −0.104828 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −1.09865 | −0.112719 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 18.9502 | 1.92410 | 0.962052 | − | 0.272865i | \(-0.0879711\pi\) | ||||
0.962052 | + | 0.272865i | \(0.0879711\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −11.3803 | −1.13238 | −0.566192 | − | 0.824273i | \(-0.691584\pi\) | ||||
−0.566192 | + | 0.824273i | \(0.691584\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 5.13414 | 0.505882 | 0.252941 | − | 0.967482i | \(-0.418602\pi\) | ||||
0.252941 | + | 0.967482i | \(0.418602\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 18.8781 | 1.82502 | 0.912508 | − | 0.409059i | \(-0.134143\pi\) | ||||
0.912508 | + | 0.409059i | \(0.134143\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 19.7440 | 1.89113 | 0.945565 | − | 0.325434i | \(-0.105511\pi\) | ||||
0.945565 | + | 0.325434i | \(0.105511\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −0.842618 | −0.0792668 | −0.0396334 | − | 0.999214i | \(-0.512619\pi\) | ||||
−0.0396334 | + | 0.999214i | \(0.512619\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −0.442333 | −0.0412477 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 7.43905 | 0.681937 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −10.8516 | −0.986508 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −1.52103 | −0.136045 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −20.9857 | −1.86218 | −0.931091 | − | 0.364787i | \(-0.881142\pi\) | ||||
−0.931091 | + | 0.364787i | \(0.881142\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −9.13414 | −0.798053 | −0.399027 | − | 0.916939i | \(-0.630652\pi\) | ||||
−0.399027 | + | 0.916939i | \(0.630652\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 7.20627 | 0.624863 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −22.6005 | −1.93089 | −0.965445 | − | 0.260608i | \(-0.916077\pi\) | ||||
−0.965445 | + | 0.260608i | \(0.916077\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −19.7929 | −1.67881 | −0.839404 | − | 0.543508i | \(-0.817096\pi\) | ||||
−0.839404 | + | 0.543508i | \(0.817096\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −0.385245 | −0.0322158 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0.793734 | 0.0659160 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 12.5948 | 1.03181 | 0.515903 | − | 0.856647i | \(-0.327457\pi\) | ||||
0.515903 | + | 0.856647i | \(0.327457\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 21.1341 | 1.71987 | 0.859936 | − | 0.510402i | \(-0.170503\pi\) | ||||
0.859936 | + | 0.510402i | \(0.170503\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0.269425 | 0.0216407 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 15.4391 | 1.23217 | 0.616085 | − | 0.787679i | \(-0.288718\pi\) | ||||
0.616085 | + | 0.787679i | \(0.288718\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 2.90135 | 0.228659 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −3.22951 | −0.252955 | −0.126477 | − | 0.991969i | \(-0.540367\pi\) | ||||
−0.126477 | + | 0.991969i | \(0.540367\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −17.3355 | −1.34146 | −0.670730 | − | 0.741702i | \(-0.734019\pi\) | ||||
−0.670730 | + | 0.741702i | \(0.734019\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −8.57319 | −0.651808 | −0.325904 | − | 0.945403i | \(-0.605669\pi\) | ||||
−0.325904 | + | 0.945403i | \(0.605669\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 4.97676 | 0.376207 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −1.15738 | −0.0865068 | −0.0432534 | − | 0.999064i | \(-0.513772\pi\) | ||||
−0.0432534 | + | 0.999064i | \(0.513772\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 6.60983 | 0.491305 | 0.245652 | − | 0.969358i | \(-0.420998\pi\) | ||||
0.245652 | + | 0.969358i | \(0.420998\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 1.13414 | 0.0833836 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 2.86586 | 0.209573 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 20.0122 | 1.44804 | 0.724018 | − | 0.689781i | \(-0.242293\pi\) | ||||
0.724018 | + | 0.689781i | \(0.242293\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −0.878108 | −0.0632076 | −0.0316038 | − | 0.999500i | \(-0.510061\pi\) | ||||
−0.0316038 | + | 0.999500i | \(0.510061\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0.336362 | 0.0239648 | 0.0119824 | − | 0.999928i | \(-0.496186\pi\) | ||||
0.0119824 | + | 0.999928i | \(0.496186\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 5.90463 | 0.418568 | 0.209284 | − | 0.977855i | \(-0.432887\pi\) | ||||
0.209284 | + | 0.977855i | \(0.432887\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −5.20627 | −0.365408 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −1.07541 | −0.0751096 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 2.77618 | 0.192032 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 3.67184 | 0.252780 | 0.126390 | − | 0.991981i | \(-0.459661\pi\) | ||||
0.126390 | + | 0.991981i | \(0.459661\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0.442333 | 0.0301668 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −1.76721 | −0.119966 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −7.43905 | −0.500405 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −12.6453 | −0.846793 | −0.423397 | − | 0.905944i | \(-0.639162\pi\) | ||||
−0.423397 | + | 0.905944i | \(0.639162\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −6.59479 | −0.437712 | −0.218856 | − | 0.975757i | \(-0.570232\pi\) | ||||
−0.218856 | + | 0.975757i | \(0.570232\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −2.60983 | −0.172462 | −0.0862312 | − | 0.996275i | \(-0.527482\pi\) | ||||
−0.0862312 | + | 0.996275i | \(0.527482\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 1.35468 | 0.0887480 | 0.0443740 | − | 0.999015i | \(-0.485871\pi\) | ||||
0.0443740 | + | 0.999015i | \(0.485871\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0.547553 | 0.0357184 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −14.4341 | −0.933666 | −0.466833 | − | 0.884345i | \(-0.654605\pi\) | ||||
−0.466833 | + | 0.884345i | \(0.654605\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 17.7306 | 1.14213 | 0.571063 | − | 0.820906i | \(-0.306531\pi\) | ||||
0.571063 | + | 0.820906i | \(0.306531\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0.152457 | 0.00974015 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −7.20627 | −0.458524 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −4.05873 | −0.256185 | −0.128092 | − | 0.991762i | \(-0.540885\pi\) | ||||
−0.128092 | + | 0.991762i | \(0.540885\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 1.11773 | 0.0702712 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 30.2584 | 1.88747 | 0.943734 | − | 0.330704i | \(-0.107286\pi\) | ||||
0.943734 | + | 0.330704i | \(0.107286\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −7.43905 | −0.462240 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −12.9502 | −0.798546 | −0.399273 | − | 0.916832i | \(-0.630737\pi\) | ||||
−0.399273 | + | 0.916832i | \(0.630737\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 1.66944 | 0.102553 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −17.7929 | −1.08485 | −0.542425 | − | 0.840104i | \(-0.682494\pi\) | ||||
−0.542425 | + | 0.840104i | \(0.682494\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 17.9470 | 1.09020 | 0.545100 | − | 0.838371i | \(-0.316492\pi\) | ||||
0.545100 | + | 0.838371i | \(0.316492\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 1.91727 | 0.115616 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −5.87483 | −0.352984 | −0.176492 | − | 0.984302i | \(-0.556475\pi\) | ||||
−0.176492 | + | 0.984302i | \(0.556475\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 26.5417 | 1.58335 | 0.791674 | − | 0.610944i | \(-0.209210\pi\) | ||||
0.791674 | + | 0.610944i | \(0.209210\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 17.7562 | 1.05550 | 0.527749 | − | 0.849401i | \(-0.323036\pi\) | ||||
0.527749 | + | 0.849401i | \(0.323036\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 7.05381 | 0.416373 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 38.3395 | 2.25527 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 14.0139 | 0.818700 | 0.409350 | − | 0.912377i | \(-0.365755\pi\) | ||||
0.409350 | + | 0.912377i | \(0.365755\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0.887958 | 0.0516989 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −2.90135 | −0.167789 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −2.90135 | −0.167231 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 1.90792 | 0.109247 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 22.4912 | 1.28364 | 0.641821 | − | 0.766855i | \(-0.278179\pi\) | ||||
0.641821 | + | 0.766855i | \(0.278179\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 33.1300 | 1.87863 | 0.939314 | − | 0.343058i | \(-0.111463\pi\) | ||||
0.939314 | + | 0.343058i | \(0.111463\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 19.3371 | 1.09300 | 0.546500 | − | 0.837459i | \(-0.315960\pi\) | ||||
0.546500 | + | 0.837459i | \(0.315960\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 16.0860 | 0.903481 | 0.451740 | − | 0.892149i | \(-0.350803\pi\) | ||||
0.451740 | + | 0.892149i | \(0.350803\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −2.00569 | −0.112297 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 53.6078 | 2.98282 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −4.97676 | −0.276061 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −3.59151 | −0.198006 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −27.9535 | −1.53646 | −0.768232 | − | 0.640172i | \(-0.778863\pi\) | ||||
−0.768232 | + | 0.640172i | \(0.778863\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 1.49449 | 0.0816530 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 7.31388 | 0.398413 | 0.199206 | − | 0.979958i | \(-0.436164\pi\) | ||||
0.199206 | + | 0.979958i | \(0.436164\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −0.680810 | −0.0368679 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −1.00000 | −0.0539949 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 26.1076 | 1.40153 | 0.700765 | − | 0.713392i | \(-0.252842\pi\) | ||||
0.700765 | + | 0.713392i | \(0.252842\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −3.76721 | −0.201654 | −0.100827 | − | 0.994904i | \(-0.532149\pi\) | ||||
−0.100827 | + | 0.994904i | \(0.532149\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 11.8243 | 0.629344 | 0.314672 | − | 0.949200i | \(-0.398105\pi\) | ||||
0.314672 | + | 0.949200i | \(0.398105\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −0.887958 | −0.0471279 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −14.4341 | −0.761804 | −0.380902 | − | 0.924615i | \(-0.624387\pi\) | ||||
−0.380902 | + | 0.924615i | \(0.624387\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 32.9303 | 1.73317 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0.472412 | 0.0247272 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −13.9634 | −0.728882 | −0.364441 | − | 0.931227i | \(-0.618740\pi\) | ||||
−0.364441 | + | 0.931227i | \(0.618740\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −10.9502 | −0.568508 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −31.0289 | −1.60662 | −0.803308 | − | 0.595563i | \(-0.796929\pi\) | ||||
−0.803308 | + | 0.595563i | \(0.796929\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 5.20627 | 0.268136 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −25.9634 | −1.33365 | −0.666824 | − | 0.745215i | \(-0.732347\pi\) | ||||
−0.666824 | + | 0.745215i | \(0.732347\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −13.4175 | −0.685600 | −0.342800 | − | 0.939408i | \(-0.611375\pi\) | ||||
−0.342800 | + | 0.939408i | \(0.611375\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0.0587335 | 0.00299334 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 2.00000 | 0.101404 | 0.0507020 | − | 0.998714i | \(-0.483854\pi\) | ||||
0.0507020 | + | 0.998714i | \(0.483854\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 21.5833 | 1.09151 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 1.92787 | 0.0970018 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −25.5234 | −1.28098 | −0.640492 | − | 0.767965i | \(-0.721270\pi\) | ||||
−0.640492 | + | 0.767965i | \(0.721270\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −3.00732 | −0.150178 | −0.0750892 | − | 0.997177i | \(-0.523924\pi\) | ||||
−0.0750892 | + | 0.997177i | \(0.523924\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 1.76721 | 0.0880311 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −2.86586 | −0.142055 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −22.8483 | −1.12978 | −0.564888 | − | 0.825168i | \(-0.691081\pi\) | ||||
−0.564888 | + | 0.825168i | \(0.691081\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −5.82430 | −0.286595 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −1.81370 | −0.0890310 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −16.1565 | −0.789297 | −0.394648 | − | 0.918832i | \(-0.629134\pi\) | ||||
−0.394648 | + | 0.918832i | \(0.629134\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 21.7929 | 1.06212 | 0.531059 | − | 0.847335i | \(-0.321794\pi\) | ||||
0.531059 | + | 0.847335i | \(0.321794\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 37.0224 | 1.79585 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −12.5145 | −0.605617 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 6.80194 | 0.327638 | 0.163819 | − | 0.986490i | \(-0.447619\pi\) | ||||
0.163819 | + | 0.986490i | \(0.447619\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 6.26172 | 0.300919 | 0.150460 | − | 0.988616i | \(-0.451925\pi\) | ||||
0.150460 | + | 0.988616i | \(0.451925\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 20.9079 | 1.00016 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −21.0877 | −1.00646 | −0.503229 | − | 0.864153i | \(-0.667855\pi\) | ||||
−0.503229 | + | 0.864153i | \(0.667855\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 6.39345 | 0.303762 | 0.151881 | − | 0.988399i | \(-0.451467\pi\) | ||||
0.151881 | + | 0.988399i | \(0.451467\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0.852467 | 0.0404108 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −4.49286 | −0.212031 | −0.106016 | − | 0.994364i | \(-0.533809\pi\) | ||||
−0.106016 | + | 0.994364i | \(0.533809\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 2.71745 | 0.127960 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −0.152457 | −0.00714731 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −31.7398 | −1.48473 | −0.742363 | − | 0.669998i | \(-0.766295\pi\) | ||||
−0.742363 | + | 0.669998i | \(0.766295\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −3.76886 | −0.175533 | −0.0877666 | − | 0.996141i | \(-0.527973\pi\) | ||||
−0.0877666 | + | 0.996141i | \(0.527973\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 18.1664 | 0.844262 | 0.422131 | − | 0.906535i | \(-0.361282\pi\) | ||||
0.422131 | + | 0.906535i | \(0.361282\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 14.0057 | 0.648106 | 0.324053 | − | 0.946039i | \(-0.394954\pi\) | ||||
0.324053 | + | 0.946039i | \(0.394954\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −9.80270 | −0.452647 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −1.11773 | −0.0513934 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 35.8638 | 1.64555 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −36.1704 | −1.65267 | −0.826334 | − | 0.563181i | \(-0.809577\pi\) | ||||
−0.826334 | + | 0.563181i | \(0.809577\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 7.43905 | 0.339192 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 2.88910 | 0.131187 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 5.03221 | 0.228031 | 0.114016 | − | 0.993479i | \(-0.463629\pi\) | ||||
0.114016 | + | 0.993479i | \(0.463629\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −10.8781 | −0.490922 | −0.245461 | − | 0.969406i | \(-0.578939\pi\) | ||||
−0.245461 | + | 0.969406i | \(0.578939\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −38.7297 | −1.74430 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 5.82430 | 0.261256 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −12.0000 | −0.537194 | −0.268597 | − | 0.963253i | \(-0.586560\pi\) | ||||
−0.268597 | + | 0.963253i | \(0.586560\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −13.8459 | −0.617358 | −0.308679 | − | 0.951166i | \(-0.599887\pi\) | ||||
−0.308679 | + | 0.951166i | \(0.599887\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −1.73501 | −0.0772071 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 37.1814 | 1.64804 | 0.824018 | − | 0.566564i | \(-0.191728\pi\) | ||||
0.824018 | + | 0.566564i | \(0.191728\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −3.09865 | −0.137076 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0.782738 | 0.0344915 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −1.38361 | −0.0608512 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −43.4936 | −1.90549 | −0.952745 | − | 0.303771i | \(-0.901754\pi\) | ||||
−0.952745 | + | 0.303771i | \(0.901754\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −25.9634 | −1.13530 | −0.567649 | − | 0.823270i | \(-0.692147\pi\) | ||||
−0.567649 | + | 0.823270i | \(0.692147\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −13.1464 | −0.572666 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −14.5822 | −0.634007 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −7.05381 | −0.305534 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 2.87811 | 0.124431 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −0.385245 | −0.0165937 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −14.1565 | −0.608636 | −0.304318 | − | 0.952571i | \(-0.598428\pi\) | ||||
−0.304318 | + | 0.952571i | \(0.598428\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 3.01011 | 0.128939 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −14.3338 | −0.612871 | −0.306436 | − | 0.951891i | \(-0.599136\pi\) | ||||
−0.306436 | + | 0.951891i | \(0.599136\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −37.5177 | −1.59831 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −12.6453 | −0.537734 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 38.4953 | 1.63110 | 0.815548 | − | 0.578689i | \(-0.196436\pi\) | ||||
0.815548 | + | 0.578689i | \(0.196436\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 2.90135 | 0.122714 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 39.9494 | 1.68366 | 0.841832 | − | 0.539739i | \(-0.181477\pi\) | ||||
0.841832 | + | 0.539739i | \(0.181477\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −0.128463 | −0.00540449 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −2.83606 | −0.118894 | −0.0594469 | − | 0.998231i | \(-0.518934\pi\) | ||||
−0.0594469 | + | 0.998231i | \(0.518934\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −15.9890 | −0.669119 | −0.334559 | − | 0.942375i | \(-0.608588\pi\) | ||||
−0.334559 | + | 0.942375i | \(0.608588\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 14.4393 | 0.602161 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 15.2826 | 0.636221 | 0.318111 | − | 0.948054i | \(-0.396952\pi\) | ||||
0.318111 | + | 0.948054i | \(0.396952\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 11.8964 | 0.493547 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −4.21853 | −0.174714 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 44.5340 | 1.83812 | 0.919058 | − | 0.394122i | \(-0.128951\pi\) | ||||
0.919058 | + | 0.394122i | \(0.128951\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −12.7350 | −0.524737 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 23.9063 | 0.981713 | 0.490857 | − | 0.871240i | \(-0.336684\pi\) | ||||
0.490857 | + | 0.871240i | \(0.336684\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 1.13414 | 0.0464952 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −23.9303 | −0.977764 | −0.488882 | − | 0.872350i | \(-0.662595\pi\) | ||||
−0.488882 | + | 0.872350i | \(0.662595\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 6.51206 | 0.265633 | 0.132816 | − | 0.991141i | \(-0.457598\pi\) | ||||
0.132816 | + | 0.991141i | \(0.457598\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −1.65440 | −0.0672611 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 40.5756 | 1.64691 | 0.823456 | − | 0.567380i | \(-0.192043\pi\) | ||||
0.823456 | + | 0.567380i | \(0.192043\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 3.59151 | 0.145297 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 39.1422 | 1.58094 | 0.790470 | − | 0.612501i | \(-0.209836\pi\) | ||||
0.790470 | + | 0.612501i | \(0.209836\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 31.7191 | 1.27696 | 0.638481 | − | 0.769638i | \(-0.279563\pi\) | ||||
0.638481 | + | 0.769638i | \(0.279563\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 0.246181 | 0.00989486 | 0.00494743 | − | 0.999988i | \(-0.498425\pi\) | ||||
0.00494743 | + | 0.999988i | \(0.498425\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −5.59151 | −0.224019 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 24.6519 | 0.986076 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −55.3395 | −2.20653 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 24.0587 | 0.957763 | 0.478882 | − | 0.877880i | \(-0.341042\pi\) | ||||
0.478882 | + | 0.877880i | \(0.341042\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −3.19943 | −0.126965 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 1.00000 | 0.0396214 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 18.1962 | 0.718705 | 0.359352 | − | 0.933202i | \(-0.382998\pi\) | ||||
0.359352 | + | 0.933202i | \(0.382998\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −21.3926 | −0.843641 | −0.421820 | − | 0.906679i | \(-0.638609\pi\) | ||||
−0.421820 | + | 0.906679i | \(0.638609\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −19.8557 | −0.780610 | −0.390305 | − | 0.920686i | \(-0.627630\pi\) | ||||
−0.390305 | + | 0.920686i | \(0.627630\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −2.24378 | −0.0880762 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 34.4182 | 1.34689 | 0.673445 | − | 0.739238i | \(-0.264814\pi\) | ||||
0.673445 | + | 0.739238i | \(0.264814\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −1.39257 | −0.0544121 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −35.7851 | −1.39399 | −0.696996 | − | 0.717075i | \(-0.745480\pi\) | ||||
−0.696996 | + | 0.717075i | \(0.745480\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 18.5988 | 0.723411 | 0.361705 | − | 0.932292i | \(-0.382195\pi\) | ||||
0.361705 | + | 0.932292i | \(0.382195\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 1.09865 | 0.0426038 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −15.1052 | −0.584876 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −4.82114 | −0.186118 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −42.6576 | −1.64433 | −0.822164 | − | 0.569250i | \(-0.807233\pi\) | ||||
−0.822164 | + | 0.569250i | \(0.807233\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −32.3660 | −1.24393 | −0.621964 | − | 0.783046i | \(-0.713665\pi\) | ||||
−0.621964 | + | 0.783046i | \(0.713665\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −18.9502 | −0.727243 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −7.40761 | −0.283444 | −0.141722 | − | 0.989906i | \(-0.545264\pi\) | ||||
−0.141722 | + | 0.989906i | \(0.545264\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −3.44561 | −0.131650 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 10.9502 | 0.417171 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 39.0147 | 1.48419 | 0.742094 | − | 0.670296i | \(-0.233833\pi\) | ||||
0.742094 | + | 0.670296i | \(0.233833\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −3.01757 | −0.114463 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 52.4737 | 1.98758 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −4.27598 | −0.161502 | −0.0807508 | − | 0.996734i | \(-0.525732\pi\) | ||||
−0.0807508 | + | 0.996734i | \(0.525732\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −53.6078 | −2.02186 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 11.3803 | 0.428001 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 45.5425 | 1.71038 | 0.855192 | − | 0.518311i | \(-0.173439\pi\) | ||||
0.855192 | + | 0.518311i | \(0.173439\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −5.12730 | −0.192019 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −0.0587335 | −0.00219651 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −23.3005 | −0.868962 | −0.434481 | − | 0.900681i | \(-0.643068\pi\) | ||||
−0.434481 | + | 0.900681i | \(0.643068\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −5.13414 | −0.191205 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −25.9103 | −0.962285 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 1.55652 | 0.0577282 | 0.0288641 | − | 0.999583i | \(-0.490811\pi\) | ||||
0.0288641 | + | 0.999583i | \(0.490811\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −21.5833 | −0.798287 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 32.6087 | 1.20443 | 0.602215 | − | 0.798334i | \(-0.294285\pi\) | ||||
0.602215 | + | 0.798334i | \(0.294285\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −3.77645 | −0.139107 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 28.5633 | 1.05072 | 0.525360 | − | 0.850880i | \(-0.323931\pi\) | ||||
0.525360 | + | 0.850880i | \(0.323931\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 20.4440 | 0.750017 | 0.375008 | − | 0.927021i | \(-0.377640\pi\) | ||||
0.375008 | + | 0.927021i | \(0.377640\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 1.92017 | 0.0703496 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −18.8781 | −0.689791 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 11.8748 | 0.433319 | 0.216659 | − | 0.976247i | \(-0.430484\pi\) | ||||
0.216659 | + | 0.976247i | \(0.430484\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 3.22206 | 0.117263 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −37.1720 | −1.35104 | −0.675520 | − | 0.737342i | \(-0.736081\pi\) | ||||
−0.675520 | + | 0.737342i | \(0.736081\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 44.8920 | 1.62733 | 0.813667 | − | 0.581331i | \(-0.197468\pi\) | ||||
0.813667 | + | 0.581331i | \(0.197468\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −19.7440 | −0.714780 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 5.82430 | 0.210303 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 46.7008 | 1.68407 | 0.842036 | − | 0.539421i | \(-0.181357\pi\) | ||||
0.842036 | + | 0.539421i | \(0.181357\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −9.56827 | −0.344147 | −0.172073 | − | 0.985084i | \(-0.555047\pi\) | ||||
−0.172073 | + | 0.985084i | \(0.555047\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −8.79498 | −0.315925 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 50.8316 | 1.82123 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 2.24378 | 0.0802889 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 2.35380 | 0.0840107 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −40.2898 | −1.43617 | −0.718087 | − | 0.695953i | \(-0.754982\pi\) | ||||
−0.718087 | + | 0.695953i | \(0.754982\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0.842618 | 0.0299600 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 12.5145 | 0.444401 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 23.6584 | 0.838025 | 0.419013 | − | 0.907980i | \(-0.362376\pi\) | ||||
0.419013 | + | 0.907980i | \(0.362376\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −26.7174 | −0.945195 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −1.19374 | −0.0421262 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0.442333 | 0.0155902 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 38.7431 | 1.36213 | 0.681067 | − | 0.732221i | \(-0.261516\pi\) | ||||
0.681067 | + | 0.732221i | \(0.261516\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −1.86144 | −0.0653639 | −0.0326819 | − | 0.999466i | \(-0.510405\pi\) | ||||
−0.0326819 | + | 0.999466i | \(0.510405\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −0.492363 | −0.0172467 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −20.9079 | −0.731475 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −10.7024 | −0.373517 | −0.186758 | − | 0.982406i | \(-0.559798\pi\) | ||||
−0.186758 | + | 0.982406i | \(0.559798\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 38.9759 | 1.35861 | 0.679307 | − | 0.733854i | \(-0.262281\pi\) | ||||
0.679307 | + | 0.733854i | \(0.262281\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −24.1349 | −0.839253 | −0.419626 | − | 0.907697i | \(-0.637839\pi\) | ||||
−0.419626 | + | 0.907697i | \(0.637839\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 10.3636 | 0.359944 | 0.179972 | − | 0.983672i | \(-0.442399\pi\) | ||||
0.179972 | + | 0.983672i | \(0.442399\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −7.43905 | −0.257748 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −2.64292 | −0.0914621 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −22.7855 | −0.786644 | −0.393322 | − | 0.919401i | \(-0.628674\pi\) | ||||
−0.393322 | + | 0.919401i | \(0.628674\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −1.89479 | −0.0653377 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0.152457 | 0.00524470 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 10.8516 | 0.372865 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −21.5833 | −0.739866 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −24.0289 | −0.822735 | −0.411367 | − | 0.911470i | \(-0.634949\pi\) | ||||
−0.411367 | + | 0.911470i | \(0.634949\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −26.8683 | −0.917802 | −0.458901 | − | 0.888487i | \(-0.651757\pi\) | ||||
−0.458901 | + | 0.888487i | \(0.651757\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 18.6164 | 0.635183 | 0.317591 | − | 0.948228i | \(-0.397126\pi\) | ||||
0.317591 | + | 0.948228i | \(0.397126\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −19.8341 | −0.675162 | −0.337581 | − | 0.941296i | \(-0.609609\pi\) | ||||
−0.337581 | + | 0.941296i | \(0.609609\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −1.30705 | −0.0444409 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −4.87155 | −0.165256 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 9.80270 | 0.332152 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 1.52103 | 0.0514202 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −7.07541 | −0.238919 | −0.119460 | − | 0.992839i | \(-0.538116\pi\) | ||||
−0.119460 | + | 0.992839i | \(0.538116\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 23.0412 | 0.776277 | 0.388138 | − | 0.921601i | \(-0.373118\pi\) | ||||
0.388138 | + | 0.921601i | \(0.373118\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −21.6462 | −0.728453 | −0.364226 | − | 0.931310i | \(-0.618667\pi\) | ||||
−0.364226 | + | 0.931310i | \(0.618667\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 52.1223 | 1.75009 | 0.875047 | − | 0.484038i | \(-0.160830\pi\) | ||||
0.875047 | + | 0.484038i | \(0.160830\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 20.9857 | 0.703839 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −25.8814 | −0.866088 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −0.176452 | −0.00589812 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 9.20058 | 0.306856 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −81.4594 | −2.71381 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 1.00772 | 0.0334977 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 38.2841 | 1.27120 | 0.635601 | − | 0.772018i | \(-0.280752\pi\) | ||||
0.635601 | + | 0.772018i | \(0.280752\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −15.8161 | −0.524011 | −0.262005 | − | 0.965066i | \(-0.584384\pi\) | ||||
−0.262005 | + | 0.965066i | \(0.584384\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 4.58304 | 0.151677 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 9.13414 | 0.301636 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 12.0546 | 0.397644 | 0.198822 | − | 0.980036i | \(-0.436288\pi\) | ||||
0.198822 | + | 0.980036i | \(0.436288\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −5.82430 | −0.191709 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −37.0224 | −1.21729 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 1.98940 | 0.0652701 | 0.0326350 | − | 0.999467i | \(-0.489610\pi\) | ||||
0.0326350 | + | 0.999467i | \(0.489610\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −7.20627 | −0.236176 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0.436922 | 0.0142889 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 1.31919 | 0.0430961 | 0.0215480 | − | 0.999768i | \(-0.493141\pi\) | ||||
0.0215480 | + | 0.999768i | \(0.493141\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −12.9107 | −0.420877 | −0.210438 | − | 0.977607i | \(-0.567489\pi\) | ||||
−0.210438 | + | 0.977607i | \(0.567489\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 20.4656 | 0.666451 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −46.7081 | −1.51781 | −0.758905 | − | 0.651202i | \(-0.774265\pi\) | ||||
−0.758905 | + | 0.651202i | \(0.774265\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 3.09865 | 0.100586 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 58.0355 | 1.87995 | 0.939977 | − | 0.341238i | \(-0.110846\pi\) | ||||
0.939977 | + | 0.341238i | \(0.110846\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 3.05102 | 0.0987286 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 22.6005 | 0.729808 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −27.8770 | −0.899257 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −0.133874 | −0.00430956 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 50.0057 | 1.60807 | 0.804037 | − | 0.594579i | \(-0.202681\pi\) | ||||
0.804037 | + | 0.594579i | \(0.202681\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −52.3595 | −1.68030 | −0.840148 | − | 0.542357i | \(-0.817532\pi\) | ||||
−0.840148 | + | 0.542357i | \(0.817532\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 19.7929 | 0.634530 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 17.3098 | 0.553791 | 0.276895 | − | 0.960900i | \(-0.410694\pi\) | ||||
0.276895 | + | 0.960900i | \(0.410694\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −2.15410 | −0.0688455 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −47.5409 | −1.51632 | −0.758159 | − | 0.652070i | \(-0.773901\pi\) | ||||
−0.758159 | + | 0.652070i | \(0.773901\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0.0512808 | 0.00163394 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −8.41784 | −0.267672 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 11.5809 | 0.367880 | 0.183940 | − | 0.982937i | \(-0.441115\pi\) | ||||
0.183940 | + | 0.982937i | \(0.441115\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0.900205 | 0.0285384 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 16.5103 | 0.522886 | 0.261443 | − | 0.965219i | \(-0.415802\pi\) | ||||
0.261443 | + | 0.965219i | \(0.415802\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 6552.2.a.bs.1.3 | 4 | ||
3.2 | odd | 2 | 2184.2.a.v.1.2 | ✓ | 4 | ||
12.11 | even | 2 | 4368.2.a.bs.1.2 | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
2184.2.a.v.1.2 | ✓ | 4 | 3.2 | odd | 2 | ||
4368.2.a.bs.1.2 | 4 | 12.11 | even | 2 | |||
6552.2.a.bs.1.3 | 4 | 1.1 | even | 1 | trivial |