Properties

Label 6552.2.a.bs.1.3
Level $6552$
Weight $2$
Character 6552.1
Self dual yes
Analytic conductor $52.318$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6552,2,Mod(1,6552)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6552, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6552.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6552.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3179834043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.138892.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 2x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2184)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.52690\) of defining polynomial
Character \(\chi\) \(=\) 6552.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.152457 q^{5} -1.00000 q^{7} -0.385245 q^{11} +1.00000 q^{13} -7.43905 q^{17} -7.20627 q^{19} -2.90135 q^{23} -4.97676 q^{25} +5.20627 q^{29} +1.76721 q^{31} -0.152457 q^{35} +7.43905 q^{37} -7.05381 q^{41} +2.90135 q^{43} +3.59151 q^{47} +1.00000 q^{49} +10.9502 q^{53} -0.0587335 q^{55} +5.82430 q^{59} +12.5145 q^{61} +0.152457 q^{65} +9.80270 q^{67} -5.82430 q^{71} +3.09865 q^{73} +0.385245 q^{77} +12.6453 q^{79} -11.8964 q^{83} -1.13414 q^{85} +5.59151 q^{89} -1.00000 q^{91} -1.09865 q^{95} +18.9502 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - 4 q^{7} + 3 q^{11} + 4 q^{13} - 3 q^{17} - 4 q^{19} + 8 q^{23} + 14 q^{25} - 4 q^{29} + 9 q^{31} + 2 q^{35} + 3 q^{37} - 6 q^{41} - 8 q^{43} - 15 q^{47} + 4 q^{49} - 13 q^{53} + 7 q^{55}+ \cdots + 19 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.152457 0.0681810 0.0340905 0.999419i \(-0.489147\pi\)
0.0340905 + 0.999419i \(0.489147\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.385245 −0.116156 −0.0580779 0.998312i \(-0.518497\pi\)
−0.0580779 + 0.998312i \(0.518497\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.43905 −1.80424 −0.902118 0.431490i \(-0.857988\pi\)
−0.902118 + 0.431490i \(0.857988\pi\)
\(18\) 0 0
\(19\) −7.20627 −1.65323 −0.826615 0.562767i \(-0.809737\pi\)
−0.826615 + 0.562767i \(0.809737\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.90135 −0.604974 −0.302487 0.953154i \(-0.597817\pi\)
−0.302487 + 0.953154i \(0.597817\pi\)
\(24\) 0 0
\(25\) −4.97676 −0.995351
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.20627 0.966779 0.483390 0.875405i \(-0.339405\pi\)
0.483390 + 0.875405i \(0.339405\pi\)
\(30\) 0 0
\(31\) 1.76721 0.317401 0.158700 0.987327i \(-0.449270\pi\)
0.158700 + 0.987327i \(0.449270\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.152457 −0.0257700
\(36\) 0 0
\(37\) 7.43905 1.22297 0.611486 0.791255i \(-0.290572\pi\)
0.611486 + 0.791255i \(0.290572\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.05381 −1.10162 −0.550810 0.834631i \(-0.685681\pi\)
−0.550810 + 0.834631i \(0.685681\pi\)
\(42\) 0 0
\(43\) 2.90135 0.442452 0.221226 0.975223i \(-0.428994\pi\)
0.221226 + 0.975223i \(0.428994\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.59151 0.523876 0.261938 0.965085i \(-0.415638\pi\)
0.261938 + 0.965085i \(0.415638\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.9502 1.50413 0.752065 0.659089i \(-0.229058\pi\)
0.752065 + 0.659089i \(0.229058\pi\)
\(54\) 0 0
\(55\) −0.0587335 −0.00791963
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.82430 0.758259 0.379130 0.925344i \(-0.376223\pi\)
0.379130 + 0.925344i \(0.376223\pi\)
\(60\) 0 0
\(61\) 12.5145 1.60231 0.801156 0.598455i \(-0.204219\pi\)
0.801156 + 0.598455i \(0.204219\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.152457 0.0189100
\(66\) 0 0
\(67\) 9.80270 1.19759 0.598795 0.800902i \(-0.295646\pi\)
0.598795 + 0.800902i \(0.295646\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.82430 −0.691217 −0.345609 0.938379i \(-0.612328\pi\)
−0.345609 + 0.938379i \(0.612328\pi\)
\(72\) 0 0
\(73\) 3.09865 0.362669 0.181335 0.983421i \(-0.441958\pi\)
0.181335 + 0.983421i \(0.441958\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.385245 0.0439028
\(78\) 0 0
\(79\) 12.6453 1.42271 0.711355 0.702833i \(-0.248082\pi\)
0.711355 + 0.702833i \(0.248082\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −11.8964 −1.30580 −0.652901 0.757443i \(-0.726448\pi\)
−0.652901 + 0.757443i \(0.726448\pi\)
\(84\) 0 0
\(85\) −1.13414 −0.123015
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.59151 0.592699 0.296350 0.955080i \(-0.404231\pi\)
0.296350 + 0.955080i \(0.404231\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.09865 −0.112719
\(96\) 0 0
\(97\) 18.9502 1.92410 0.962052 0.272865i \(-0.0879711\pi\)
0.962052 + 0.272865i \(0.0879711\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.3803 −1.13238 −0.566192 0.824273i \(-0.691584\pi\)
−0.566192 + 0.824273i \(0.691584\pi\)
\(102\) 0 0
\(103\) 5.13414 0.505882 0.252941 0.967482i \(-0.418602\pi\)
0.252941 + 0.967482i \(0.418602\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.8781 1.82502 0.912508 0.409059i \(-0.134143\pi\)
0.912508 + 0.409059i \(0.134143\pi\)
\(108\) 0 0
\(109\) 19.7440 1.89113 0.945565 0.325434i \(-0.105511\pi\)
0.945565 + 0.325434i \(0.105511\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.842618 −0.0792668 −0.0396334 0.999214i \(-0.512619\pi\)
−0.0396334 + 0.999214i \(0.512619\pi\)
\(114\) 0 0
\(115\) −0.442333 −0.0412477
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.43905 0.681937
\(120\) 0 0
\(121\) −10.8516 −0.986508
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.52103 −0.136045
\(126\) 0 0
\(127\) −20.9857 −1.86218 −0.931091 0.364787i \(-0.881142\pi\)
−0.931091 + 0.364787i \(0.881142\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.13414 −0.798053 −0.399027 0.916939i \(-0.630652\pi\)
−0.399027 + 0.916939i \(0.630652\pi\)
\(132\) 0 0
\(133\) 7.20627 0.624863
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −22.6005 −1.93089 −0.965445 0.260608i \(-0.916077\pi\)
−0.965445 + 0.260608i \(0.916077\pi\)
\(138\) 0 0
\(139\) −19.7929 −1.67881 −0.839404 0.543508i \(-0.817096\pi\)
−0.839404 + 0.543508i \(0.817096\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.385245 −0.0322158
\(144\) 0 0
\(145\) 0.793734 0.0659160
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.5948 1.03181 0.515903 0.856647i \(-0.327457\pi\)
0.515903 + 0.856647i \(0.327457\pi\)
\(150\) 0 0
\(151\) 21.1341 1.71987 0.859936 0.510402i \(-0.170503\pi\)
0.859936 + 0.510402i \(0.170503\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.269425 0.0216407
\(156\) 0 0
\(157\) 15.4391 1.23217 0.616085 0.787679i \(-0.288718\pi\)
0.616085 + 0.787679i \(0.288718\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.90135 0.228659
\(162\) 0 0
\(163\) −3.22951 −0.252955 −0.126477 0.991969i \(-0.540367\pi\)
−0.126477 + 0.991969i \(0.540367\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.3355 −1.34146 −0.670730 0.741702i \(-0.734019\pi\)
−0.670730 + 0.741702i \(0.734019\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.57319 −0.651808 −0.325904 0.945403i \(-0.605669\pi\)
−0.325904 + 0.945403i \(0.605669\pi\)
\(174\) 0 0
\(175\) 4.97676 0.376207
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.15738 −0.0865068 −0.0432534 0.999064i \(-0.513772\pi\)
−0.0432534 + 0.999064i \(0.513772\pi\)
\(180\) 0 0
\(181\) 6.60983 0.491305 0.245652 0.969358i \(-0.420998\pi\)
0.245652 + 0.969358i \(0.420998\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.13414 0.0833836
\(186\) 0 0
\(187\) 2.86586 0.209573
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.0122 1.44804 0.724018 0.689781i \(-0.242293\pi\)
0.724018 + 0.689781i \(0.242293\pi\)
\(192\) 0 0
\(193\) −0.878108 −0.0632076 −0.0316038 0.999500i \(-0.510061\pi\)
−0.0316038 + 0.999500i \(0.510061\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.336362 0.0239648 0.0119824 0.999928i \(-0.496186\pi\)
0.0119824 + 0.999928i \(0.496186\pi\)
\(198\) 0 0
\(199\) 5.90463 0.418568 0.209284 0.977855i \(-0.432887\pi\)
0.209284 + 0.977855i \(0.432887\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.20627 −0.365408
\(204\) 0 0
\(205\) −1.07541 −0.0751096
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.77618 0.192032
\(210\) 0 0
\(211\) 3.67184 0.252780 0.126390 0.991981i \(-0.459661\pi\)
0.126390 + 0.991981i \(0.459661\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.442333 0.0301668
\(216\) 0 0
\(217\) −1.76721 −0.119966
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.43905 −0.500405
\(222\) 0 0
\(223\) −12.6453 −0.846793 −0.423397 0.905944i \(-0.639162\pi\)
−0.423397 + 0.905944i \(0.639162\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.59479 −0.437712 −0.218856 0.975757i \(-0.570232\pi\)
−0.218856 + 0.975757i \(0.570232\pi\)
\(228\) 0 0
\(229\) −2.60983 −0.172462 −0.0862312 0.996275i \(-0.527482\pi\)
−0.0862312 + 0.996275i \(0.527482\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.35468 0.0887480 0.0443740 0.999015i \(-0.485871\pi\)
0.0443740 + 0.999015i \(0.485871\pi\)
\(234\) 0 0
\(235\) 0.547553 0.0357184
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.4341 −0.933666 −0.466833 0.884345i \(-0.654605\pi\)
−0.466833 + 0.884345i \(0.654605\pi\)
\(240\) 0 0
\(241\) 17.7306 1.14213 0.571063 0.820906i \(-0.306531\pi\)
0.571063 + 0.820906i \(0.306531\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.152457 0.00974015
\(246\) 0 0
\(247\) −7.20627 −0.458524
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.05873 −0.256185 −0.128092 0.991762i \(-0.540885\pi\)
−0.128092 + 0.991762i \(0.540885\pi\)
\(252\) 0 0
\(253\) 1.11773 0.0702712
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 30.2584 1.88747 0.943734 0.330704i \(-0.107286\pi\)
0.943734 + 0.330704i \(0.107286\pi\)
\(258\) 0 0
\(259\) −7.43905 −0.462240
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.9502 −0.798546 −0.399273 0.916832i \(-0.630737\pi\)
−0.399273 + 0.916832i \(0.630737\pi\)
\(264\) 0 0
\(265\) 1.66944 0.102553
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −17.7929 −1.08485 −0.542425 0.840104i \(-0.682494\pi\)
−0.542425 + 0.840104i \(0.682494\pi\)
\(270\) 0 0
\(271\) 17.9470 1.09020 0.545100 0.838371i \(-0.316492\pi\)
0.545100 + 0.838371i \(0.316492\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.91727 0.115616
\(276\) 0 0
\(277\) −5.87483 −0.352984 −0.176492 0.984302i \(-0.556475\pi\)
−0.176492 + 0.984302i \(0.556475\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.5417 1.58335 0.791674 0.610944i \(-0.209210\pi\)
0.791674 + 0.610944i \(0.209210\pi\)
\(282\) 0 0
\(283\) 17.7562 1.05550 0.527749 0.849401i \(-0.323036\pi\)
0.527749 + 0.849401i \(0.323036\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.05381 0.416373
\(288\) 0 0
\(289\) 38.3395 2.25527
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.0139 0.818700 0.409350 0.912377i \(-0.365755\pi\)
0.409350 + 0.912377i \(0.365755\pi\)
\(294\) 0 0
\(295\) 0.887958 0.0516989
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.90135 −0.167789
\(300\) 0 0
\(301\) −2.90135 −0.167231
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.90792 0.109247
\(306\) 0 0
\(307\) 22.4912 1.28364 0.641821 0.766855i \(-0.278179\pi\)
0.641821 + 0.766855i \(0.278179\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 33.1300 1.87863 0.939314 0.343058i \(-0.111463\pi\)
0.939314 + 0.343058i \(0.111463\pi\)
\(312\) 0 0
\(313\) 19.3371 1.09300 0.546500 0.837459i \(-0.315960\pi\)
0.546500 + 0.837459i \(0.315960\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.0860 0.903481 0.451740 0.892149i \(-0.350803\pi\)
0.451740 + 0.892149i \(0.350803\pi\)
\(318\) 0 0
\(319\) −2.00569 −0.112297
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 53.6078 2.98282
\(324\) 0 0
\(325\) −4.97676 −0.276061
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.59151 −0.198006
\(330\) 0 0
\(331\) −27.9535 −1.53646 −0.768232 0.640172i \(-0.778863\pi\)
−0.768232 + 0.640172i \(0.778863\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.49449 0.0816530
\(336\) 0 0
\(337\) 7.31388 0.398413 0.199206 0.979958i \(-0.436164\pi\)
0.199206 + 0.979958i \(0.436164\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.680810 −0.0368679
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.1076 1.40153 0.700765 0.713392i \(-0.252842\pi\)
0.700765 + 0.713392i \(0.252842\pi\)
\(348\) 0 0
\(349\) −3.76721 −0.201654 −0.100827 0.994904i \(-0.532149\pi\)
−0.100827 + 0.994904i \(0.532149\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.8243 0.629344 0.314672 0.949200i \(-0.398105\pi\)
0.314672 + 0.949200i \(0.398105\pi\)
\(354\) 0 0
\(355\) −0.887958 −0.0471279
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −14.4341 −0.761804 −0.380902 0.924615i \(-0.624387\pi\)
−0.380902 + 0.924615i \(0.624387\pi\)
\(360\) 0 0
\(361\) 32.9303 1.73317
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.472412 0.0247272
\(366\) 0 0
\(367\) −13.9634 −0.728882 −0.364441 0.931227i \(-0.618740\pi\)
−0.364441 + 0.931227i \(0.618740\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.9502 −0.568508
\(372\) 0 0
\(373\) −31.0289 −1.60662 −0.803308 0.595563i \(-0.796929\pi\)
−0.803308 + 0.595563i \(0.796929\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.20627 0.268136
\(378\) 0 0
\(379\) −25.9634 −1.33365 −0.666824 0.745215i \(-0.732347\pi\)
−0.666824 + 0.745215i \(0.732347\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.4175 −0.685600 −0.342800 0.939408i \(-0.611375\pi\)
−0.342800 + 0.939408i \(0.611375\pi\)
\(384\) 0 0
\(385\) 0.0587335 0.00299334
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 0 0
\(391\) 21.5833 1.09151
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.92787 0.0970018
\(396\) 0 0
\(397\) −25.5234 −1.28098 −0.640492 0.767965i \(-0.721270\pi\)
−0.640492 + 0.767965i \(0.721270\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.00732 −0.150178 −0.0750892 0.997177i \(-0.523924\pi\)
−0.0750892 + 0.997177i \(0.523924\pi\)
\(402\) 0 0
\(403\) 1.76721 0.0880311
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.86586 −0.142055
\(408\) 0 0
\(409\) −22.8483 −1.12978 −0.564888 0.825168i \(-0.691081\pi\)
−0.564888 + 0.825168i \(0.691081\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5.82430 −0.286595
\(414\) 0 0
\(415\) −1.81370 −0.0890310
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16.1565 −0.789297 −0.394648 0.918832i \(-0.629134\pi\)
−0.394648 + 0.918832i \(0.629134\pi\)
\(420\) 0 0
\(421\) 21.7929 1.06212 0.531059 0.847335i \(-0.321794\pi\)
0.531059 + 0.847335i \(0.321794\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 37.0224 1.79585
\(426\) 0 0
\(427\) −12.5145 −0.605617
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.80194 0.327638 0.163819 0.986490i \(-0.447619\pi\)
0.163819 + 0.986490i \(0.447619\pi\)
\(432\) 0 0
\(433\) 6.26172 0.300919 0.150460 0.988616i \(-0.451925\pi\)
0.150460 + 0.988616i \(0.451925\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.9079 1.00016
\(438\) 0 0
\(439\) −21.0877 −1.00646 −0.503229 0.864153i \(-0.667855\pi\)
−0.503229 + 0.864153i \(0.667855\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.39345 0.303762 0.151881 0.988399i \(-0.451467\pi\)
0.151881 + 0.988399i \(0.451467\pi\)
\(444\) 0 0
\(445\) 0.852467 0.0404108
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.49286 −0.212031 −0.106016 0.994364i \(-0.533809\pi\)
−0.106016 + 0.994364i \(0.533809\pi\)
\(450\) 0 0
\(451\) 2.71745 0.127960
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.152457 −0.00714731
\(456\) 0 0
\(457\) −31.7398 −1.48473 −0.742363 0.669998i \(-0.766295\pi\)
−0.742363 + 0.669998i \(0.766295\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.76886 −0.175533 −0.0877666 0.996141i \(-0.527973\pi\)
−0.0877666 + 0.996141i \(0.527973\pi\)
\(462\) 0 0
\(463\) 18.1664 0.844262 0.422131 0.906535i \(-0.361282\pi\)
0.422131 + 0.906535i \(0.361282\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.0057 0.648106 0.324053 0.946039i \(-0.394954\pi\)
0.324053 + 0.946039i \(0.394954\pi\)
\(468\) 0 0
\(469\) −9.80270 −0.452647
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.11773 −0.0513934
\(474\) 0 0
\(475\) 35.8638 1.64555
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −36.1704 −1.65267 −0.826334 0.563181i \(-0.809577\pi\)
−0.826334 + 0.563181i \(0.809577\pi\)
\(480\) 0 0
\(481\) 7.43905 0.339192
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.88910 0.131187
\(486\) 0 0
\(487\) 5.03221 0.228031 0.114016 0.993479i \(-0.463629\pi\)
0.114016 + 0.993479i \(0.463629\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10.8781 −0.490922 −0.245461 0.969406i \(-0.578939\pi\)
−0.245461 + 0.969406i \(0.578939\pi\)
\(492\) 0 0
\(493\) −38.7297 −1.74430
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.82430 0.261256
\(498\) 0 0
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −13.8459 −0.617358 −0.308679 0.951166i \(-0.599887\pi\)
−0.308679 + 0.951166i \(0.599887\pi\)
\(504\) 0 0
\(505\) −1.73501 −0.0772071
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 37.1814 1.64804 0.824018 0.566564i \(-0.191728\pi\)
0.824018 + 0.566564i \(0.191728\pi\)
\(510\) 0 0
\(511\) −3.09865 −0.137076
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.782738 0.0344915
\(516\) 0 0
\(517\) −1.38361 −0.0608512
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −43.4936 −1.90549 −0.952745 0.303771i \(-0.901754\pi\)
−0.952745 + 0.303771i \(0.901754\pi\)
\(522\) 0 0
\(523\) −25.9634 −1.13530 −0.567649 0.823270i \(-0.692147\pi\)
−0.567649 + 0.823270i \(0.692147\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −13.1464 −0.572666
\(528\) 0 0
\(529\) −14.5822 −0.634007
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.05381 −0.305534
\(534\) 0 0
\(535\) 2.87811 0.124431
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.385245 −0.0165937
\(540\) 0 0
\(541\) −14.1565 −0.608636 −0.304318 0.952571i \(-0.598428\pi\)
−0.304318 + 0.952571i \(0.598428\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.01011 0.128939
\(546\) 0 0
\(547\) −14.3338 −0.612871 −0.306436 0.951891i \(-0.599136\pi\)
−0.306436 + 0.951891i \(0.599136\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −37.5177 −1.59831
\(552\) 0 0
\(553\) −12.6453 −0.537734
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.4953 1.63110 0.815548 0.578689i \(-0.196436\pi\)
0.815548 + 0.578689i \(0.196436\pi\)
\(558\) 0 0
\(559\) 2.90135 0.122714
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 39.9494 1.68366 0.841832 0.539739i \(-0.181477\pi\)
0.841832 + 0.539739i \(0.181477\pi\)
\(564\) 0 0
\(565\) −0.128463 −0.00540449
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.83606 −0.118894 −0.0594469 0.998231i \(-0.518934\pi\)
−0.0594469 + 0.998231i \(0.518934\pi\)
\(570\) 0 0
\(571\) −15.9890 −0.669119 −0.334559 0.942375i \(-0.608588\pi\)
−0.334559 + 0.942375i \(0.608588\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 14.4393 0.602161
\(576\) 0 0
\(577\) 15.2826 0.636221 0.318111 0.948054i \(-0.396952\pi\)
0.318111 + 0.948054i \(0.396952\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.8964 0.493547
\(582\) 0 0
\(583\) −4.21853 −0.174714
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 44.5340 1.83812 0.919058 0.394122i \(-0.128951\pi\)
0.919058 + 0.394122i \(0.128951\pi\)
\(588\) 0 0
\(589\) −12.7350 −0.524737
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.9063 0.981713 0.490857 0.871240i \(-0.336684\pi\)
0.490857 + 0.871240i \(0.336684\pi\)
\(594\) 0 0
\(595\) 1.13414 0.0464952
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −23.9303 −0.977764 −0.488882 0.872350i \(-0.662595\pi\)
−0.488882 + 0.872350i \(0.662595\pi\)
\(600\) 0 0
\(601\) 6.51206 0.265633 0.132816 0.991141i \(-0.457598\pi\)
0.132816 + 0.991141i \(0.457598\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.65440 −0.0672611
\(606\) 0 0
\(607\) 40.5756 1.64691 0.823456 0.567380i \(-0.192043\pi\)
0.823456 + 0.567380i \(0.192043\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.59151 0.145297
\(612\) 0 0
\(613\) 39.1422 1.58094 0.790470 0.612501i \(-0.209836\pi\)
0.790470 + 0.612501i \(0.209836\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.7191 1.27696 0.638481 0.769638i \(-0.279563\pi\)
0.638481 + 0.769638i \(0.279563\pi\)
\(618\) 0 0
\(619\) 0.246181 0.00989486 0.00494743 0.999988i \(-0.498425\pi\)
0.00494743 + 0.999988i \(0.498425\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.59151 −0.224019
\(624\) 0 0
\(625\) 24.6519 0.986076
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −55.3395 −2.20653
\(630\) 0 0
\(631\) 24.0587 0.957763 0.478882 0.877880i \(-0.341042\pi\)
0.478882 + 0.877880i \(0.341042\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.19943 −0.126965
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.1962 0.718705 0.359352 0.933202i \(-0.382998\pi\)
0.359352 + 0.933202i \(0.382998\pi\)
\(642\) 0 0
\(643\) −21.3926 −0.843641 −0.421820 0.906679i \(-0.638609\pi\)
−0.421820 + 0.906679i \(0.638609\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.8557 −0.780610 −0.390305 0.920686i \(-0.627630\pi\)
−0.390305 + 0.920686i \(0.627630\pi\)
\(648\) 0 0
\(649\) −2.24378 −0.0880762
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 34.4182 1.34689 0.673445 0.739238i \(-0.264814\pi\)
0.673445 + 0.739238i \(0.264814\pi\)
\(654\) 0 0
\(655\) −1.39257 −0.0544121
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −35.7851 −1.39399 −0.696996 0.717075i \(-0.745480\pi\)
−0.696996 + 0.717075i \(0.745480\pi\)
\(660\) 0 0
\(661\) 18.5988 0.723411 0.361705 0.932292i \(-0.382195\pi\)
0.361705 + 0.932292i \(0.382195\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.09865 0.0426038
\(666\) 0 0
\(667\) −15.1052 −0.584876
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.82114 −0.186118
\(672\) 0 0
\(673\) −42.6576 −1.64433 −0.822164 0.569250i \(-0.807233\pi\)
−0.822164 + 0.569250i \(0.807233\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −32.3660 −1.24393 −0.621964 0.783046i \(-0.713665\pi\)
−0.621964 + 0.783046i \(0.713665\pi\)
\(678\) 0 0
\(679\) −18.9502 −0.727243
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.40761 −0.283444 −0.141722 0.989906i \(-0.545264\pi\)
−0.141722 + 0.989906i \(0.545264\pi\)
\(684\) 0 0
\(685\) −3.44561 −0.131650
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.9502 0.417171
\(690\) 0 0
\(691\) 39.0147 1.48419 0.742094 0.670296i \(-0.233833\pi\)
0.742094 + 0.670296i \(0.233833\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.01757 −0.114463
\(696\) 0 0
\(697\) 52.4737 1.98758
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4.27598 −0.161502 −0.0807508 0.996734i \(-0.525732\pi\)
−0.0807508 + 0.996734i \(0.525732\pi\)
\(702\) 0 0
\(703\) −53.6078 −2.02186
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11.3803 0.428001
\(708\) 0 0
\(709\) 45.5425 1.71038 0.855192 0.518311i \(-0.173439\pi\)
0.855192 + 0.518311i \(0.173439\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5.12730 −0.192019
\(714\) 0 0
\(715\) −0.0587335 −0.00219651
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −23.3005 −0.868962 −0.434481 0.900681i \(-0.643068\pi\)
−0.434481 + 0.900681i \(0.643068\pi\)
\(720\) 0 0
\(721\) −5.13414 −0.191205
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −25.9103 −0.962285
\(726\) 0 0
\(727\) 1.55652 0.0577282 0.0288641 0.999583i \(-0.490811\pi\)
0.0288641 + 0.999583i \(0.490811\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −21.5833 −0.798287
\(732\) 0 0
\(733\) 32.6087 1.20443 0.602215 0.798334i \(-0.294285\pi\)
0.602215 + 0.798334i \(0.294285\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.77645 −0.139107
\(738\) 0 0
\(739\) 28.5633 1.05072 0.525360 0.850880i \(-0.323931\pi\)
0.525360 + 0.850880i \(0.323931\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.4440 0.750017 0.375008 0.927021i \(-0.377640\pi\)
0.375008 + 0.927021i \(0.377640\pi\)
\(744\) 0 0
\(745\) 1.92017 0.0703496
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.8781 −0.689791
\(750\) 0 0
\(751\) 11.8748 0.433319 0.216659 0.976247i \(-0.430484\pi\)
0.216659 + 0.976247i \(0.430484\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.22206 0.117263
\(756\) 0 0
\(757\) −37.1720 −1.35104 −0.675520 0.737342i \(-0.736081\pi\)
−0.675520 + 0.737342i \(0.736081\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 44.8920 1.62733 0.813667 0.581331i \(-0.197468\pi\)
0.813667 + 0.581331i \(0.197468\pi\)
\(762\) 0 0
\(763\) −19.7440 −0.714780
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.82430 0.210303
\(768\) 0 0
\(769\) 46.7008 1.68407 0.842036 0.539421i \(-0.181357\pi\)
0.842036 + 0.539421i \(0.181357\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.56827 −0.344147 −0.172073 0.985084i \(-0.555047\pi\)
−0.172073 + 0.985084i \(0.555047\pi\)
\(774\) 0 0
\(775\) −8.79498 −0.315925
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 50.8316 1.82123
\(780\) 0 0
\(781\) 2.24378 0.0802889
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.35380 0.0840107
\(786\) 0 0
\(787\) −40.2898 −1.43617 −0.718087 0.695953i \(-0.754982\pi\)
−0.718087 + 0.695953i \(0.754982\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.842618 0.0299600
\(792\) 0 0
\(793\) 12.5145 0.444401
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.6584 0.838025 0.419013 0.907980i \(-0.362376\pi\)
0.419013 + 0.907980i \(0.362376\pi\)
\(798\) 0 0
\(799\) −26.7174 −0.945195
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.19374 −0.0421262
\(804\) 0 0
\(805\) 0.442333 0.0155902
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 38.7431 1.36213 0.681067 0.732221i \(-0.261516\pi\)
0.681067 + 0.732221i \(0.261516\pi\)
\(810\) 0 0
\(811\) −1.86144 −0.0653639 −0.0326819 0.999466i \(-0.510405\pi\)
−0.0326819 + 0.999466i \(0.510405\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.492363 −0.0172467
\(816\) 0 0
\(817\) −20.9079 −0.731475
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.7024 −0.373517 −0.186758 0.982406i \(-0.559798\pi\)
−0.186758 + 0.982406i \(0.559798\pi\)
\(822\) 0 0
\(823\) 38.9759 1.35861 0.679307 0.733854i \(-0.262281\pi\)
0.679307 + 0.733854i \(0.262281\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.1349 −0.839253 −0.419626 0.907697i \(-0.637839\pi\)
−0.419626 + 0.907697i \(0.637839\pi\)
\(828\) 0 0
\(829\) 10.3636 0.359944 0.179972 0.983672i \(-0.442399\pi\)
0.179972 + 0.983672i \(0.442399\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.43905 −0.257748
\(834\) 0 0
\(835\) −2.64292 −0.0914621
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.7855 −0.786644 −0.393322 0.919401i \(-0.628674\pi\)
−0.393322 + 0.919401i \(0.628674\pi\)
\(840\) 0 0
\(841\) −1.89479 −0.0653377
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.152457 0.00524470
\(846\) 0 0
\(847\) 10.8516 0.372865
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −21.5833 −0.739866
\(852\) 0 0
\(853\) −24.0289 −0.822735 −0.411367 0.911470i \(-0.634949\pi\)
−0.411367 + 0.911470i \(0.634949\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.8683 −0.917802 −0.458901 0.888487i \(-0.651757\pi\)
−0.458901 + 0.888487i \(0.651757\pi\)
\(858\) 0 0
\(859\) 18.6164 0.635183 0.317591 0.948228i \(-0.397126\pi\)
0.317591 + 0.948228i \(0.397126\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −19.8341 −0.675162 −0.337581 0.941296i \(-0.609609\pi\)
−0.337581 + 0.941296i \(0.609609\pi\)
\(864\) 0 0
\(865\) −1.30705 −0.0444409
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.87155 −0.165256
\(870\) 0 0
\(871\) 9.80270 0.332152
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.52103 0.0514202
\(876\) 0 0
\(877\) −7.07541 −0.238919 −0.119460 0.992839i \(-0.538116\pi\)
−0.119460 + 0.992839i \(0.538116\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 23.0412 0.776277 0.388138 0.921601i \(-0.373118\pi\)
0.388138 + 0.921601i \(0.373118\pi\)
\(882\) 0 0
\(883\) −21.6462 −0.728453 −0.364226 0.931310i \(-0.618667\pi\)
−0.364226 + 0.931310i \(0.618667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 52.1223 1.75009 0.875047 0.484038i \(-0.160830\pi\)
0.875047 + 0.484038i \(0.160830\pi\)
\(888\) 0 0
\(889\) 20.9857 0.703839
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −25.8814 −0.866088
\(894\) 0 0
\(895\) −0.176452 −0.00589812
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.20058 0.306856
\(900\) 0 0
\(901\) −81.4594 −2.71381
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.00772 0.0334977
\(906\) 0 0
\(907\) 38.2841 1.27120 0.635601 0.772018i \(-0.280752\pi\)
0.635601 + 0.772018i \(0.280752\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −15.8161 −0.524011 −0.262005 0.965066i \(-0.584384\pi\)
−0.262005 + 0.965066i \(0.584384\pi\)
\(912\) 0 0
\(913\) 4.58304 0.151677
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.13414 0.301636
\(918\) 0 0
\(919\) 12.0546 0.397644 0.198822 0.980036i \(-0.436288\pi\)
0.198822 + 0.980036i \(0.436288\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.82430 −0.191709
\(924\) 0 0
\(925\) −37.0224 −1.21729
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.98940 0.0652701 0.0326350 0.999467i \(-0.489610\pi\)
0.0326350 + 0.999467i \(0.489610\pi\)
\(930\) 0 0
\(931\) −7.20627 −0.236176
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.436922 0.0142889
\(936\) 0 0
\(937\) 1.31919 0.0430961 0.0215480 0.999768i \(-0.493141\pi\)
0.0215480 + 0.999768i \(0.493141\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12.9107 −0.420877 −0.210438 0.977607i \(-0.567489\pi\)
−0.210438 + 0.977607i \(0.567489\pi\)
\(942\) 0 0
\(943\) 20.4656 0.666451
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −46.7081 −1.51781 −0.758905 0.651202i \(-0.774265\pi\)
−0.758905 + 0.651202i \(0.774265\pi\)
\(948\) 0 0
\(949\) 3.09865 0.100586
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 58.0355 1.87995 0.939977 0.341238i \(-0.110846\pi\)
0.939977 + 0.341238i \(0.110846\pi\)
\(954\) 0 0
\(955\) 3.05102 0.0987286
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.6005 0.729808
\(960\) 0 0
\(961\) −27.8770 −0.899257
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.133874 −0.00430956
\(966\) 0 0
\(967\) 50.0057 1.60807 0.804037 0.594579i \(-0.202681\pi\)
0.804037 + 0.594579i \(0.202681\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −52.3595 −1.68030 −0.840148 0.542357i \(-0.817532\pi\)
−0.840148 + 0.542357i \(0.817532\pi\)
\(972\) 0 0
\(973\) 19.7929 0.634530
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.3098 0.553791 0.276895 0.960900i \(-0.410694\pi\)
0.276895 + 0.960900i \(0.410694\pi\)
\(978\) 0 0
\(979\) −2.15410 −0.0688455
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −47.5409 −1.51632 −0.758159 0.652070i \(-0.773901\pi\)
−0.758159 + 0.652070i \(0.773901\pi\)
\(984\) 0 0
\(985\) 0.0512808 0.00163394
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.41784 −0.267672
\(990\) 0 0
\(991\) 11.5809 0.367880 0.183940 0.982937i \(-0.441115\pi\)
0.183940 + 0.982937i \(0.441115\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.900205 0.0285384
\(996\) 0 0
\(997\) 16.5103 0.522886 0.261443 0.965219i \(-0.415802\pi\)
0.261443 + 0.965219i \(0.415802\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6552.2.a.bs.1.3 4
3.2 odd 2 2184.2.a.v.1.2 4
12.11 even 2 4368.2.a.bs.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2184.2.a.v.1.2 4 3.2 odd 2
4368.2.a.bs.1.2 4 12.11 even 2
6552.2.a.bs.1.3 4 1.1 even 1 trivial