Properties

Label 6561.2.a.d.1.37
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6561,2,Mod(1,6561)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6561, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6561.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.37
Character \(\chi\) \(=\) 6561.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.202096 q^{2} -1.95916 q^{4} -0.911319 q^{5} +0.164043 q^{7} -0.800128 q^{8} -0.184174 q^{10} +0.750003 q^{11} -3.53376 q^{13} +0.0331524 q^{14} +3.75661 q^{16} +4.03805 q^{17} +2.13035 q^{19} +1.78542 q^{20} +0.151572 q^{22} -8.20471 q^{23} -4.16950 q^{25} -0.714158 q^{26} -0.321387 q^{28} +6.58114 q^{29} +5.59557 q^{31} +2.35945 q^{32} +0.816071 q^{34} -0.149496 q^{35} +4.51438 q^{37} +0.430534 q^{38} +0.729172 q^{40} -10.9436 q^{41} -3.46024 q^{43} -1.46937 q^{44} -1.65813 q^{46} -8.93063 q^{47} -6.97309 q^{49} -0.842637 q^{50} +6.92320 q^{52} +6.13971 q^{53} -0.683492 q^{55} -0.131256 q^{56} +1.33002 q^{58} +2.91600 q^{59} -7.06159 q^{61} +1.13084 q^{62} -7.03639 q^{64} +3.22039 q^{65} +8.88178 q^{67} -7.91117 q^{68} -0.0302124 q^{70} -9.52060 q^{71} -8.81387 q^{73} +0.912337 q^{74} -4.17369 q^{76} +0.123033 q^{77} -3.22456 q^{79} -3.42347 q^{80} -2.21165 q^{82} +16.8284 q^{83} -3.67995 q^{85} -0.699298 q^{86} -0.600098 q^{88} +11.4302 q^{89} -0.579690 q^{91} +16.0743 q^{92} -1.80484 q^{94} -1.94143 q^{95} -4.53042 q^{97} -1.40923 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{2} + 63 q^{4} + 18 q^{5} + 27 q^{8} + 36 q^{11} + 36 q^{14} + 45 q^{16} + 36 q^{17} + 54 q^{20} + 54 q^{23} + 36 q^{25} + 45 q^{26} + 9 q^{28} + 54 q^{29} + 63 q^{32} + 72 q^{35} + 54 q^{38}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.202096 0.142903 0.0714516 0.997444i \(-0.477237\pi\)
0.0714516 + 0.997444i \(0.477237\pi\)
\(3\) 0 0
\(4\) −1.95916 −0.979579
\(5\) −0.911319 −0.407554 −0.203777 0.979017i \(-0.565322\pi\)
−0.203777 + 0.979017i \(0.565322\pi\)
\(6\) 0 0
\(7\) 0.164043 0.0620025 0.0310013 0.999519i \(-0.490130\pi\)
0.0310013 + 0.999519i \(0.490130\pi\)
\(8\) −0.800128 −0.282888
\(9\) 0 0
\(10\) −0.184174 −0.0582408
\(11\) 0.750003 0.226134 0.113067 0.993587i \(-0.463932\pi\)
0.113067 + 0.993587i \(0.463932\pi\)
\(12\) 0 0
\(13\) −3.53376 −0.980090 −0.490045 0.871697i \(-0.663020\pi\)
−0.490045 + 0.871697i \(0.663020\pi\)
\(14\) 0.0331524 0.00886035
\(15\) 0 0
\(16\) 3.75661 0.939153
\(17\) 4.03805 0.979370 0.489685 0.871899i \(-0.337112\pi\)
0.489685 + 0.871899i \(0.337112\pi\)
\(18\) 0 0
\(19\) 2.13035 0.488736 0.244368 0.969683i \(-0.421419\pi\)
0.244368 + 0.969683i \(0.421419\pi\)
\(20\) 1.78542 0.399232
\(21\) 0 0
\(22\) 0.151572 0.0323153
\(23\) −8.20471 −1.71080 −0.855400 0.517968i \(-0.826689\pi\)
−0.855400 + 0.517968i \(0.826689\pi\)
\(24\) 0 0
\(25\) −4.16950 −0.833899
\(26\) −0.714158 −0.140058
\(27\) 0 0
\(28\) −0.321387 −0.0607364
\(29\) 6.58114 1.22209 0.611044 0.791597i \(-0.290750\pi\)
0.611044 + 0.791597i \(0.290750\pi\)
\(30\) 0 0
\(31\) 5.59557 1.00499 0.502497 0.864579i \(-0.332415\pi\)
0.502497 + 0.864579i \(0.332415\pi\)
\(32\) 2.35945 0.417096
\(33\) 0 0
\(34\) 0.816071 0.139955
\(35\) −0.149496 −0.0252694
\(36\) 0 0
\(37\) 4.51438 0.742160 0.371080 0.928601i \(-0.378988\pi\)
0.371080 + 0.928601i \(0.378988\pi\)
\(38\) 0.430534 0.0698419
\(39\) 0 0
\(40\) 0.729172 0.115292
\(41\) −10.9436 −1.70910 −0.854550 0.519369i \(-0.826167\pi\)
−0.854550 + 0.519369i \(0.826167\pi\)
\(42\) 0 0
\(43\) −3.46024 −0.527681 −0.263841 0.964566i \(-0.584989\pi\)
−0.263841 + 0.964566i \(0.584989\pi\)
\(44\) −1.46937 −0.221516
\(45\) 0 0
\(46\) −1.65813 −0.244479
\(47\) −8.93063 −1.30267 −0.651333 0.758792i \(-0.725790\pi\)
−0.651333 + 0.758792i \(0.725790\pi\)
\(48\) 0 0
\(49\) −6.97309 −0.996156
\(50\) −0.842637 −0.119167
\(51\) 0 0
\(52\) 6.92320 0.960075
\(53\) 6.13971 0.843355 0.421677 0.906746i \(-0.361442\pi\)
0.421677 + 0.906746i \(0.361442\pi\)
\(54\) 0 0
\(55\) −0.683492 −0.0921621
\(56\) −0.131256 −0.0175398
\(57\) 0 0
\(58\) 1.33002 0.174640
\(59\) 2.91600 0.379631 0.189816 0.981820i \(-0.439211\pi\)
0.189816 + 0.981820i \(0.439211\pi\)
\(60\) 0 0
\(61\) −7.06159 −0.904143 −0.452072 0.891982i \(-0.649315\pi\)
−0.452072 + 0.891982i \(0.649315\pi\)
\(62\) 1.13084 0.143617
\(63\) 0 0
\(64\) −7.03639 −0.879549
\(65\) 3.22039 0.399440
\(66\) 0 0
\(67\) 8.88178 1.08508 0.542541 0.840029i \(-0.317462\pi\)
0.542541 + 0.840029i \(0.317462\pi\)
\(68\) −7.91117 −0.959370
\(69\) 0 0
\(70\) −0.0302124 −0.00361108
\(71\) −9.52060 −1.12989 −0.564944 0.825129i \(-0.691102\pi\)
−0.564944 + 0.825129i \(0.691102\pi\)
\(72\) 0 0
\(73\) −8.81387 −1.03159 −0.515793 0.856714i \(-0.672502\pi\)
−0.515793 + 0.856714i \(0.672502\pi\)
\(74\) 0.912337 0.106057
\(75\) 0 0
\(76\) −4.17369 −0.478755
\(77\) 0.123033 0.0140209
\(78\) 0 0
\(79\) −3.22456 −0.362791 −0.181396 0.983410i \(-0.558061\pi\)
−0.181396 + 0.983410i \(0.558061\pi\)
\(80\) −3.42347 −0.382756
\(81\) 0 0
\(82\) −2.21165 −0.244236
\(83\) 16.8284 1.84716 0.923581 0.383404i \(-0.125248\pi\)
0.923581 + 0.383404i \(0.125248\pi\)
\(84\) 0 0
\(85\) −3.67995 −0.399147
\(86\) −0.699298 −0.0754073
\(87\) 0 0
\(88\) −0.600098 −0.0639707
\(89\) 11.4302 1.21160 0.605798 0.795618i \(-0.292854\pi\)
0.605798 + 0.795618i \(0.292854\pi\)
\(90\) 0 0
\(91\) −0.579690 −0.0607680
\(92\) 16.0743 1.67586
\(93\) 0 0
\(94\) −1.80484 −0.186155
\(95\) −1.94143 −0.199187
\(96\) 0 0
\(97\) −4.53042 −0.459994 −0.229997 0.973191i \(-0.573872\pi\)
−0.229997 + 0.973191i \(0.573872\pi\)
\(98\) −1.40923 −0.142354
\(99\) 0 0
\(100\) 8.16870 0.816870
\(101\) −2.30166 −0.229024 −0.114512 0.993422i \(-0.536530\pi\)
−0.114512 + 0.993422i \(0.536530\pi\)
\(102\) 0 0
\(103\) 2.60246 0.256428 0.128214 0.991746i \(-0.459076\pi\)
0.128214 + 0.991746i \(0.459076\pi\)
\(104\) 2.82746 0.277256
\(105\) 0 0
\(106\) 1.24081 0.120518
\(107\) −11.9544 −1.15567 −0.577837 0.816152i \(-0.696103\pi\)
−0.577837 + 0.816152i \(0.696103\pi\)
\(108\) 0 0
\(109\) 18.1311 1.73664 0.868320 0.496005i \(-0.165200\pi\)
0.868320 + 0.496005i \(0.165200\pi\)
\(110\) −0.138131 −0.0131702
\(111\) 0 0
\(112\) 0.616247 0.0582299
\(113\) 11.9001 1.11947 0.559733 0.828673i \(-0.310904\pi\)
0.559733 + 0.828673i \(0.310904\pi\)
\(114\) 0 0
\(115\) 7.47711 0.697244
\(116\) −12.8935 −1.19713
\(117\) 0 0
\(118\) 0.589311 0.0542505
\(119\) 0.662414 0.0607234
\(120\) 0 0
\(121\) −10.4375 −0.948863
\(122\) −1.42711 −0.129205
\(123\) 0 0
\(124\) −10.9626 −0.984471
\(125\) 8.35634 0.747414
\(126\) 0 0
\(127\) 14.5915 1.29478 0.647392 0.762158i \(-0.275860\pi\)
0.647392 + 0.762158i \(0.275860\pi\)
\(128\) −6.14092 −0.542786
\(129\) 0 0
\(130\) 0.650826 0.0570812
\(131\) 6.66713 0.582510 0.291255 0.956645i \(-0.405927\pi\)
0.291255 + 0.956645i \(0.405927\pi\)
\(132\) 0 0
\(133\) 0.349470 0.0303029
\(134\) 1.79497 0.155062
\(135\) 0 0
\(136\) −3.23095 −0.277052
\(137\) 14.6275 1.24971 0.624854 0.780741i \(-0.285158\pi\)
0.624854 + 0.780741i \(0.285158\pi\)
\(138\) 0 0
\(139\) −3.31539 −0.281208 −0.140604 0.990066i \(-0.544904\pi\)
−0.140604 + 0.990066i \(0.544904\pi\)
\(140\) 0.292886 0.0247534
\(141\) 0 0
\(142\) −1.92407 −0.161464
\(143\) −2.65033 −0.221632
\(144\) 0 0
\(145\) −5.99752 −0.498067
\(146\) −1.78124 −0.147417
\(147\) 0 0
\(148\) −8.84439 −0.727004
\(149\) −4.90208 −0.401594 −0.200797 0.979633i \(-0.564353\pi\)
−0.200797 + 0.979633i \(0.564353\pi\)
\(150\) 0 0
\(151\) 16.1570 1.31484 0.657419 0.753526i \(-0.271648\pi\)
0.657419 + 0.753526i \(0.271648\pi\)
\(152\) −1.70455 −0.138258
\(153\) 0 0
\(154\) 0.0248644 0.00200363
\(155\) −5.09935 −0.409590
\(156\) 0 0
\(157\) 12.3635 0.986718 0.493359 0.869826i \(-0.335769\pi\)
0.493359 + 0.869826i \(0.335769\pi\)
\(158\) −0.651669 −0.0518440
\(159\) 0 0
\(160\) −2.15021 −0.169989
\(161\) −1.34593 −0.106074
\(162\) 0 0
\(163\) −12.1435 −0.951151 −0.475576 0.879675i \(-0.657760\pi\)
−0.475576 + 0.879675i \(0.657760\pi\)
\(164\) 21.4402 1.67420
\(165\) 0 0
\(166\) 3.40095 0.263965
\(167\) −2.54113 −0.196639 −0.0983194 0.995155i \(-0.531347\pi\)
−0.0983194 + 0.995155i \(0.531347\pi\)
\(168\) 0 0
\(169\) −0.512518 −0.0394245
\(170\) −0.743701 −0.0570393
\(171\) 0 0
\(172\) 6.77915 0.516905
\(173\) 9.73670 0.740268 0.370134 0.928978i \(-0.379312\pi\)
0.370134 + 0.928978i \(0.379312\pi\)
\(174\) 0 0
\(175\) −0.683978 −0.0517039
\(176\) 2.81747 0.212375
\(177\) 0 0
\(178\) 2.30999 0.173141
\(179\) 3.72297 0.278268 0.139134 0.990274i \(-0.455568\pi\)
0.139134 + 0.990274i \(0.455568\pi\)
\(180\) 0 0
\(181\) −7.30595 −0.543047 −0.271524 0.962432i \(-0.587527\pi\)
−0.271524 + 0.962432i \(0.587527\pi\)
\(182\) −0.117153 −0.00868394
\(183\) 0 0
\(184\) 6.56482 0.483965
\(185\) −4.11405 −0.302471
\(186\) 0 0
\(187\) 3.02855 0.221469
\(188\) 17.4965 1.27606
\(189\) 0 0
\(190\) −0.392354 −0.0284644
\(191\) 20.7764 1.50333 0.751663 0.659548i \(-0.229252\pi\)
0.751663 + 0.659548i \(0.229252\pi\)
\(192\) 0 0
\(193\) −3.49292 −0.251426 −0.125713 0.992067i \(-0.540122\pi\)
−0.125713 + 0.992067i \(0.540122\pi\)
\(194\) −0.915577 −0.0657346
\(195\) 0 0
\(196\) 13.6614 0.975813
\(197\) 1.18478 0.0844123 0.0422062 0.999109i \(-0.486561\pi\)
0.0422062 + 0.999109i \(0.486561\pi\)
\(198\) 0 0
\(199\) −1.10157 −0.0780881 −0.0390441 0.999237i \(-0.512431\pi\)
−0.0390441 + 0.999237i \(0.512431\pi\)
\(200\) 3.33613 0.235900
\(201\) 0 0
\(202\) −0.465155 −0.0327282
\(203\) 1.07959 0.0757725
\(204\) 0 0
\(205\) 9.97310 0.696551
\(206\) 0.525946 0.0366444
\(207\) 0 0
\(208\) −13.2750 −0.920454
\(209\) 1.59777 0.110520
\(210\) 0 0
\(211\) −14.9836 −1.03151 −0.515757 0.856735i \(-0.672489\pi\)
−0.515757 + 0.856735i \(0.672489\pi\)
\(212\) −12.0287 −0.826132
\(213\) 0 0
\(214\) −2.41593 −0.165150
\(215\) 3.15338 0.215059
\(216\) 0 0
\(217\) 0.917916 0.0623122
\(218\) 3.66420 0.248171
\(219\) 0 0
\(220\) 1.33907 0.0902800
\(221\) −14.2695 −0.959870
\(222\) 0 0
\(223\) 5.10101 0.341589 0.170795 0.985307i \(-0.445367\pi\)
0.170795 + 0.985307i \(0.445367\pi\)
\(224\) 0.387052 0.0258610
\(225\) 0 0
\(226\) 2.40495 0.159975
\(227\) 16.7632 1.11261 0.556305 0.830978i \(-0.312218\pi\)
0.556305 + 0.830978i \(0.312218\pi\)
\(228\) 0 0
\(229\) 16.1230 1.06544 0.532720 0.846291i \(-0.321170\pi\)
0.532720 + 0.846291i \(0.321170\pi\)
\(230\) 1.51109 0.0996384
\(231\) 0 0
\(232\) −5.26576 −0.345714
\(233\) 10.4877 0.687075 0.343537 0.939139i \(-0.388375\pi\)
0.343537 + 0.939139i \(0.388375\pi\)
\(234\) 0 0
\(235\) 8.13866 0.530907
\(236\) −5.71291 −0.371879
\(237\) 0 0
\(238\) 0.133871 0.00867757
\(239\) −0.0543615 −0.00351635 −0.00175818 0.999998i \(-0.500560\pi\)
−0.00175818 + 0.999998i \(0.500560\pi\)
\(240\) 0 0
\(241\) 11.8962 0.766303 0.383151 0.923686i \(-0.374839\pi\)
0.383151 + 0.923686i \(0.374839\pi\)
\(242\) −2.10937 −0.135596
\(243\) 0 0
\(244\) 13.8348 0.885680
\(245\) 6.35471 0.405988
\(246\) 0 0
\(247\) −7.52816 −0.479005
\(248\) −4.47717 −0.284301
\(249\) 0 0
\(250\) 1.68878 0.106808
\(251\) 4.45032 0.280902 0.140451 0.990088i \(-0.455145\pi\)
0.140451 + 0.990088i \(0.455145\pi\)
\(252\) 0 0
\(253\) −6.15356 −0.386871
\(254\) 2.94887 0.185029
\(255\) 0 0
\(256\) 12.8317 0.801983
\(257\) 15.4743 0.965262 0.482631 0.875824i \(-0.339681\pi\)
0.482631 + 0.875824i \(0.339681\pi\)
\(258\) 0 0
\(259\) 0.740554 0.0460158
\(260\) −6.30925 −0.391283
\(261\) 0 0
\(262\) 1.34740 0.0832425
\(263\) −14.3353 −0.883952 −0.441976 0.897027i \(-0.645722\pi\)
−0.441976 + 0.897027i \(0.645722\pi\)
\(264\) 0 0
\(265\) −5.59524 −0.343713
\(266\) 0.0706263 0.00433037
\(267\) 0 0
\(268\) −17.4008 −1.06292
\(269\) −1.82045 −0.110995 −0.0554974 0.998459i \(-0.517674\pi\)
−0.0554974 + 0.998459i \(0.517674\pi\)
\(270\) 0 0
\(271\) −13.5864 −0.825313 −0.412656 0.910887i \(-0.635399\pi\)
−0.412656 + 0.910887i \(0.635399\pi\)
\(272\) 15.1694 0.919779
\(273\) 0 0
\(274\) 2.95615 0.178587
\(275\) −3.12713 −0.188573
\(276\) 0 0
\(277\) −21.8862 −1.31501 −0.657507 0.753448i \(-0.728389\pi\)
−0.657507 + 0.753448i \(0.728389\pi\)
\(278\) −0.670025 −0.0401854
\(279\) 0 0
\(280\) 0.119616 0.00714841
\(281\) 25.2626 1.50704 0.753522 0.657423i \(-0.228354\pi\)
0.753522 + 0.657423i \(0.228354\pi\)
\(282\) 0 0
\(283\) 22.3824 1.33049 0.665247 0.746623i \(-0.268326\pi\)
0.665247 + 0.746623i \(0.268326\pi\)
\(284\) 18.6524 1.10681
\(285\) 0 0
\(286\) −0.535620 −0.0316719
\(287\) −1.79522 −0.105969
\(288\) 0 0
\(289\) −0.694179 −0.0408341
\(290\) −1.21207 −0.0711753
\(291\) 0 0
\(292\) 17.2678 1.01052
\(293\) 13.0937 0.764945 0.382472 0.923967i \(-0.375073\pi\)
0.382472 + 0.923967i \(0.375073\pi\)
\(294\) 0 0
\(295\) −2.65741 −0.154720
\(296\) −3.61208 −0.209948
\(297\) 0 0
\(298\) −0.990689 −0.0573891
\(299\) 28.9935 1.67674
\(300\) 0 0
\(301\) −0.567628 −0.0327176
\(302\) 3.26525 0.187894
\(303\) 0 0
\(304\) 8.00290 0.458998
\(305\) 6.43536 0.368488
\(306\) 0 0
\(307\) 14.6940 0.838632 0.419316 0.907840i \(-0.362270\pi\)
0.419316 + 0.907840i \(0.362270\pi\)
\(308\) −0.241041 −0.0137346
\(309\) 0 0
\(310\) −1.03056 −0.0585317
\(311\) 33.3819 1.89291 0.946457 0.322831i \(-0.104635\pi\)
0.946457 + 0.322831i \(0.104635\pi\)
\(312\) 0 0
\(313\) −22.8598 −1.29211 −0.646056 0.763290i \(-0.723583\pi\)
−0.646056 + 0.763290i \(0.723583\pi\)
\(314\) 2.49862 0.141005
\(315\) 0 0
\(316\) 6.31742 0.355383
\(317\) −18.7851 −1.05508 −0.527539 0.849531i \(-0.676885\pi\)
−0.527539 + 0.849531i \(0.676885\pi\)
\(318\) 0 0
\(319\) 4.93587 0.276356
\(320\) 6.41240 0.358464
\(321\) 0 0
\(322\) −0.272006 −0.0151583
\(323\) 8.60246 0.478654
\(324\) 0 0
\(325\) 14.7340 0.817296
\(326\) −2.45414 −0.135922
\(327\) 0 0
\(328\) 8.75626 0.483484
\(329\) −1.46501 −0.0807686
\(330\) 0 0
\(331\) −5.91925 −0.325351 −0.162676 0.986680i \(-0.552012\pi\)
−0.162676 + 0.986680i \(0.552012\pi\)
\(332\) −32.9696 −1.80944
\(333\) 0 0
\(334\) −0.513552 −0.0281003
\(335\) −8.09414 −0.442230
\(336\) 0 0
\(337\) −12.1352 −0.661049 −0.330525 0.943797i \(-0.607226\pi\)
−0.330525 + 0.943797i \(0.607226\pi\)
\(338\) −0.103578 −0.00563388
\(339\) 0 0
\(340\) 7.20960 0.390996
\(341\) 4.19670 0.227264
\(342\) 0 0
\(343\) −2.29219 −0.123767
\(344\) 2.76863 0.149275
\(345\) 0 0
\(346\) 1.96774 0.105787
\(347\) 2.43917 0.130942 0.0654709 0.997854i \(-0.479145\pi\)
0.0654709 + 0.997854i \(0.479145\pi\)
\(348\) 0 0
\(349\) 22.9813 1.23016 0.615080 0.788464i \(-0.289124\pi\)
0.615080 + 0.788464i \(0.289124\pi\)
\(350\) −0.138229 −0.00738864
\(351\) 0 0
\(352\) 1.76959 0.0943197
\(353\) 23.1555 1.23245 0.616223 0.787572i \(-0.288662\pi\)
0.616223 + 0.787572i \(0.288662\pi\)
\(354\) 0 0
\(355\) 8.67631 0.460491
\(356\) −22.3935 −1.18685
\(357\) 0 0
\(358\) 0.752395 0.0397653
\(359\) 31.3108 1.65252 0.826259 0.563290i \(-0.190465\pi\)
0.826259 + 0.563290i \(0.190465\pi\)
\(360\) 0 0
\(361\) −14.4616 −0.761137
\(362\) −1.47650 −0.0776031
\(363\) 0 0
\(364\) 1.13570 0.0595271
\(365\) 8.03225 0.420427
\(366\) 0 0
\(367\) 7.67467 0.400614 0.200307 0.979733i \(-0.435806\pi\)
0.200307 + 0.979733i \(0.435806\pi\)
\(368\) −30.8219 −1.60670
\(369\) 0 0
\(370\) −0.831430 −0.0432240
\(371\) 1.00718 0.0522901
\(372\) 0 0
\(373\) 25.9539 1.34384 0.671922 0.740622i \(-0.265469\pi\)
0.671922 + 0.740622i \(0.265469\pi\)
\(374\) 0.612056 0.0316486
\(375\) 0 0
\(376\) 7.14565 0.368509
\(377\) −23.2562 −1.19776
\(378\) 0 0
\(379\) 26.5701 1.36482 0.682408 0.730971i \(-0.260933\pi\)
0.682408 + 0.730971i \(0.260933\pi\)
\(380\) 3.80357 0.195119
\(381\) 0 0
\(382\) 4.19881 0.214830
\(383\) 2.69562 0.137740 0.0688699 0.997626i \(-0.478061\pi\)
0.0688699 + 0.997626i \(0.478061\pi\)
\(384\) 0 0
\(385\) −0.112122 −0.00571428
\(386\) −0.705903 −0.0359295
\(387\) 0 0
\(388\) 8.87580 0.450600
\(389\) 23.6943 1.20135 0.600674 0.799494i \(-0.294899\pi\)
0.600674 + 0.799494i \(0.294899\pi\)
\(390\) 0 0
\(391\) −33.1310 −1.67551
\(392\) 5.57936 0.281800
\(393\) 0 0
\(394\) 0.239439 0.0120628
\(395\) 2.93860 0.147857
\(396\) 0 0
\(397\) 0.109546 0.00549795 0.00274897 0.999996i \(-0.499125\pi\)
0.00274897 + 0.999996i \(0.499125\pi\)
\(398\) −0.222622 −0.0111590
\(399\) 0 0
\(400\) −15.6632 −0.783159
\(401\) 8.44683 0.421814 0.210907 0.977506i \(-0.432358\pi\)
0.210907 + 0.977506i \(0.432358\pi\)
\(402\) 0 0
\(403\) −19.7734 −0.984985
\(404\) 4.50932 0.224347
\(405\) 0 0
\(406\) 0.218181 0.0108281
\(407\) 3.38580 0.167828
\(408\) 0 0
\(409\) −5.05552 −0.249979 −0.124990 0.992158i \(-0.539890\pi\)
−0.124990 + 0.992158i \(0.539890\pi\)
\(410\) 2.01552 0.0995393
\(411\) 0 0
\(412\) −5.09864 −0.251192
\(413\) 0.478351 0.0235381
\(414\) 0 0
\(415\) −15.3361 −0.752819
\(416\) −8.33774 −0.408791
\(417\) 0 0
\(418\) 0.322902 0.0157937
\(419\) −12.7750 −0.624099 −0.312049 0.950066i \(-0.601015\pi\)
−0.312049 + 0.950066i \(0.601015\pi\)
\(420\) 0 0
\(421\) −18.2073 −0.887371 −0.443686 0.896183i \(-0.646329\pi\)
−0.443686 + 0.896183i \(0.646329\pi\)
\(422\) −3.02812 −0.147407
\(423\) 0 0
\(424\) −4.91256 −0.238575
\(425\) −16.8366 −0.816696
\(426\) 0 0
\(427\) −1.15841 −0.0560592
\(428\) 23.4205 1.13207
\(429\) 0 0
\(430\) 0.637284 0.0307326
\(431\) −23.1350 −1.11438 −0.557188 0.830387i \(-0.688120\pi\)
−0.557188 + 0.830387i \(0.688120\pi\)
\(432\) 0 0
\(433\) −33.5063 −1.61021 −0.805104 0.593133i \(-0.797891\pi\)
−0.805104 + 0.593133i \(0.797891\pi\)
\(434\) 0.185507 0.00890461
\(435\) 0 0
\(436\) −35.5216 −1.70118
\(437\) −17.4789 −0.836130
\(438\) 0 0
\(439\) −31.6536 −1.51074 −0.755371 0.655297i \(-0.772543\pi\)
−0.755371 + 0.655297i \(0.772543\pi\)
\(440\) 0.546881 0.0260715
\(441\) 0 0
\(442\) −2.88380 −0.137168
\(443\) 22.6104 1.07425 0.537127 0.843502i \(-0.319510\pi\)
0.537127 + 0.843502i \(0.319510\pi\)
\(444\) 0 0
\(445\) −10.4165 −0.493791
\(446\) 1.03089 0.0488142
\(447\) 0 0
\(448\) −1.15427 −0.0545343
\(449\) 18.0204 0.850435 0.425218 0.905091i \(-0.360198\pi\)
0.425218 + 0.905091i \(0.360198\pi\)
\(450\) 0 0
\(451\) −8.20771 −0.386486
\(452\) −23.3141 −1.09661
\(453\) 0 0
\(454\) 3.38776 0.158996
\(455\) 0.528283 0.0247663
\(456\) 0 0
\(457\) −23.5593 −1.10206 −0.551029 0.834486i \(-0.685765\pi\)
−0.551029 + 0.834486i \(0.685765\pi\)
\(458\) 3.25839 0.152255
\(459\) 0 0
\(460\) −14.6488 −0.683006
\(461\) 40.1716 1.87098 0.935489 0.353356i \(-0.114960\pi\)
0.935489 + 0.353356i \(0.114960\pi\)
\(462\) 0 0
\(463\) −10.9824 −0.510394 −0.255197 0.966889i \(-0.582140\pi\)
−0.255197 + 0.966889i \(0.582140\pi\)
\(464\) 24.7228 1.14773
\(465\) 0 0
\(466\) 2.11953 0.0981851
\(467\) 1.68549 0.0779953 0.0389976 0.999239i \(-0.487584\pi\)
0.0389976 + 0.999239i \(0.487584\pi\)
\(468\) 0 0
\(469\) 1.45700 0.0672779
\(470\) 1.64479 0.0758683
\(471\) 0 0
\(472\) −2.33318 −0.107393
\(473\) −2.59519 −0.119327
\(474\) 0 0
\(475\) −8.88249 −0.407557
\(476\) −1.29777 −0.0594834
\(477\) 0 0
\(478\) −0.0109862 −0.000502498 0
\(479\) 19.8895 0.908776 0.454388 0.890804i \(-0.349858\pi\)
0.454388 + 0.890804i \(0.349858\pi\)
\(480\) 0 0
\(481\) −15.9528 −0.727383
\(482\) 2.40417 0.109507
\(483\) 0 0
\(484\) 20.4487 0.929486
\(485\) 4.12866 0.187473
\(486\) 0 0
\(487\) −16.9386 −0.767563 −0.383782 0.923424i \(-0.625378\pi\)
−0.383782 + 0.923424i \(0.625378\pi\)
\(488\) 5.65017 0.255771
\(489\) 0 0
\(490\) 1.28426 0.0580169
\(491\) 34.3958 1.55226 0.776130 0.630574i \(-0.217180\pi\)
0.776130 + 0.630574i \(0.217180\pi\)
\(492\) 0 0
\(493\) 26.5750 1.19688
\(494\) −1.52141 −0.0684513
\(495\) 0 0
\(496\) 21.0204 0.943844
\(497\) −1.56179 −0.0700559
\(498\) 0 0
\(499\) 17.5931 0.787576 0.393788 0.919201i \(-0.371164\pi\)
0.393788 + 0.919201i \(0.371164\pi\)
\(500\) −16.3714 −0.732151
\(501\) 0 0
\(502\) 0.899390 0.0401418
\(503\) −23.0323 −1.02696 −0.513480 0.858102i \(-0.671644\pi\)
−0.513480 + 0.858102i \(0.671644\pi\)
\(504\) 0 0
\(505\) 2.09755 0.0933397
\(506\) −1.24361 −0.0552850
\(507\) 0 0
\(508\) −28.5870 −1.26834
\(509\) 32.0259 1.41952 0.709760 0.704443i \(-0.248803\pi\)
0.709760 + 0.704443i \(0.248803\pi\)
\(510\) 0 0
\(511\) −1.44586 −0.0639609
\(512\) 14.8751 0.657392
\(513\) 0 0
\(514\) 3.12729 0.137939
\(515\) −2.37168 −0.104509
\(516\) 0 0
\(517\) −6.69800 −0.294578
\(518\) 0.149663 0.00657580
\(519\) 0 0
\(520\) −2.57672 −0.112997
\(521\) −2.51563 −0.110212 −0.0551060 0.998481i \(-0.517550\pi\)
−0.0551060 + 0.998481i \(0.517550\pi\)
\(522\) 0 0
\(523\) 27.8338 1.21709 0.608544 0.793520i \(-0.291754\pi\)
0.608544 + 0.793520i \(0.291754\pi\)
\(524\) −13.0620 −0.570614
\(525\) 0 0
\(526\) −2.89710 −0.126320
\(527\) 22.5952 0.984262
\(528\) 0 0
\(529\) 44.3173 1.92684
\(530\) −1.13077 −0.0491176
\(531\) 0 0
\(532\) −0.684666 −0.0296841
\(533\) 38.6720 1.67507
\(534\) 0 0
\(535\) 10.8943 0.471000
\(536\) −7.10656 −0.306957
\(537\) 0 0
\(538\) −0.367905 −0.0158615
\(539\) −5.22984 −0.225265
\(540\) 0 0
\(541\) −6.47702 −0.278469 −0.139234 0.990259i \(-0.544464\pi\)
−0.139234 + 0.990259i \(0.544464\pi\)
\(542\) −2.74574 −0.117940
\(543\) 0 0
\(544\) 9.52757 0.408491
\(545\) −16.5232 −0.707775
\(546\) 0 0
\(547\) 15.3996 0.658438 0.329219 0.944254i \(-0.393215\pi\)
0.329219 + 0.944254i \(0.393215\pi\)
\(548\) −28.6575 −1.22419
\(549\) 0 0
\(550\) −0.631980 −0.0269477
\(551\) 14.0201 0.597278
\(552\) 0 0
\(553\) −0.528967 −0.0224940
\(554\) −4.42310 −0.187920
\(555\) 0 0
\(556\) 6.49537 0.275465
\(557\) 22.6130 0.958142 0.479071 0.877776i \(-0.340974\pi\)
0.479071 + 0.877776i \(0.340974\pi\)
\(558\) 0 0
\(559\) 12.2277 0.517175
\(560\) −0.561598 −0.0237318
\(561\) 0 0
\(562\) 5.10547 0.215361
\(563\) −23.7258 −0.999923 −0.499961 0.866048i \(-0.666652\pi\)
−0.499961 + 0.866048i \(0.666652\pi\)
\(564\) 0 0
\(565\) −10.8448 −0.456243
\(566\) 4.52338 0.190132
\(567\) 0 0
\(568\) 7.61770 0.319632
\(569\) 0.632660 0.0265225 0.0132612 0.999912i \(-0.495779\pi\)
0.0132612 + 0.999912i \(0.495779\pi\)
\(570\) 0 0
\(571\) 40.0927 1.67783 0.838914 0.544263i \(-0.183191\pi\)
0.838914 + 0.544263i \(0.183191\pi\)
\(572\) 5.19242 0.217106
\(573\) 0 0
\(574\) −0.362806 −0.0151432
\(575\) 34.2095 1.42664
\(576\) 0 0
\(577\) −16.7429 −0.697015 −0.348508 0.937306i \(-0.613311\pi\)
−0.348508 + 0.937306i \(0.613311\pi\)
\(578\) −0.140290 −0.00583531
\(579\) 0 0
\(580\) 11.7501 0.487896
\(581\) 2.76059 0.114529
\(582\) 0 0
\(583\) 4.60480 0.190711
\(584\) 7.05222 0.291823
\(585\) 0 0
\(586\) 2.64619 0.109313
\(587\) −16.4711 −0.679834 −0.339917 0.940455i \(-0.610399\pi\)
−0.339917 + 0.940455i \(0.610399\pi\)
\(588\) 0 0
\(589\) 11.9205 0.491177
\(590\) −0.537051 −0.0221100
\(591\) 0 0
\(592\) 16.9588 0.697002
\(593\) 40.3500 1.65697 0.828487 0.560008i \(-0.189202\pi\)
0.828487 + 0.560008i \(0.189202\pi\)
\(594\) 0 0
\(595\) −0.603671 −0.0247481
\(596\) 9.60395 0.393393
\(597\) 0 0
\(598\) 5.85946 0.239611
\(599\) −5.63253 −0.230139 −0.115069 0.993357i \(-0.536709\pi\)
−0.115069 + 0.993357i \(0.536709\pi\)
\(600\) 0 0
\(601\) 17.0922 0.697204 0.348602 0.937271i \(-0.386657\pi\)
0.348602 + 0.937271i \(0.386657\pi\)
\(602\) −0.114715 −0.00467544
\(603\) 0 0
\(604\) −31.6541 −1.28799
\(605\) 9.51189 0.386713
\(606\) 0 0
\(607\) 18.1244 0.735646 0.367823 0.929896i \(-0.380103\pi\)
0.367823 + 0.929896i \(0.380103\pi\)
\(608\) 5.02646 0.203850
\(609\) 0 0
\(610\) 1.30056 0.0526580
\(611\) 31.5587 1.27673
\(612\) 0 0
\(613\) 22.1812 0.895890 0.447945 0.894061i \(-0.352156\pi\)
0.447945 + 0.894061i \(0.352156\pi\)
\(614\) 2.96960 0.119843
\(615\) 0 0
\(616\) −0.0984421 −0.00396634
\(617\) −10.0390 −0.404155 −0.202077 0.979370i \(-0.564769\pi\)
−0.202077 + 0.979370i \(0.564769\pi\)
\(618\) 0 0
\(619\) −19.9368 −0.801328 −0.400664 0.916225i \(-0.631221\pi\)
−0.400664 + 0.916225i \(0.631221\pi\)
\(620\) 9.99044 0.401226
\(621\) 0 0
\(622\) 6.74633 0.270503
\(623\) 1.87504 0.0751220
\(624\) 0 0
\(625\) 13.2322 0.529288
\(626\) −4.61986 −0.184647
\(627\) 0 0
\(628\) −24.2221 −0.966568
\(629\) 18.2293 0.726849
\(630\) 0 0
\(631\) 2.03105 0.0808549 0.0404275 0.999182i \(-0.487128\pi\)
0.0404275 + 0.999182i \(0.487128\pi\)
\(632\) 2.58006 0.102629
\(633\) 0 0
\(634\) −3.79639 −0.150774
\(635\) −13.2975 −0.527695
\(636\) 0 0
\(637\) 24.6412 0.976322
\(638\) 0.997518 0.0394921
\(639\) 0 0
\(640\) 5.59634 0.221215
\(641\) −26.7525 −1.05666 −0.528329 0.849040i \(-0.677181\pi\)
−0.528329 + 0.849040i \(0.677181\pi\)
\(642\) 0 0
\(643\) −8.75409 −0.345228 −0.172614 0.984990i \(-0.555221\pi\)
−0.172614 + 0.984990i \(0.555221\pi\)
\(644\) 2.63688 0.103908
\(645\) 0 0
\(646\) 1.73852 0.0684011
\(647\) −1.73387 −0.0681653 −0.0340827 0.999419i \(-0.510851\pi\)
−0.0340827 + 0.999419i \(0.510851\pi\)
\(648\) 0 0
\(649\) 2.18701 0.0858477
\(650\) 2.97768 0.116794
\(651\) 0 0
\(652\) 23.7910 0.931727
\(653\) −25.8655 −1.01220 −0.506098 0.862476i \(-0.668913\pi\)
−0.506098 + 0.862476i \(0.668913\pi\)
\(654\) 0 0
\(655\) −6.07589 −0.237405
\(656\) −41.1108 −1.60511
\(657\) 0 0
\(658\) −0.296072 −0.0115421
\(659\) 7.78344 0.303200 0.151600 0.988442i \(-0.451557\pi\)
0.151600 + 0.988442i \(0.451557\pi\)
\(660\) 0 0
\(661\) 7.82579 0.304388 0.152194 0.988351i \(-0.451366\pi\)
0.152194 + 0.988351i \(0.451366\pi\)
\(662\) −1.19625 −0.0464937
\(663\) 0 0
\(664\) −13.4649 −0.522540
\(665\) −0.318479 −0.0123501
\(666\) 0 0
\(667\) −53.9964 −2.09075
\(668\) 4.97848 0.192623
\(669\) 0 0
\(670\) −1.63579 −0.0631961
\(671\) −5.29621 −0.204458
\(672\) 0 0
\(673\) 6.32541 0.243827 0.121913 0.992541i \(-0.461097\pi\)
0.121913 + 0.992541i \(0.461097\pi\)
\(674\) −2.45248 −0.0944660
\(675\) 0 0
\(676\) 1.00410 0.0386194
\(677\) −24.6661 −0.947993 −0.473997 0.880527i \(-0.657189\pi\)
−0.473997 + 0.880527i \(0.657189\pi\)
\(678\) 0 0
\(679\) −0.743184 −0.0285208
\(680\) 2.94443 0.112914
\(681\) 0 0
\(682\) 0.848133 0.0324767
\(683\) 21.7390 0.831820 0.415910 0.909406i \(-0.363463\pi\)
0.415910 + 0.909406i \(0.363463\pi\)
\(684\) 0 0
\(685\) −13.3303 −0.509324
\(686\) −0.463242 −0.0176866
\(687\) 0 0
\(688\) −12.9988 −0.495573
\(689\) −21.6963 −0.826563
\(690\) 0 0
\(691\) −48.5869 −1.84833 −0.924166 0.381991i \(-0.875238\pi\)
−0.924166 + 0.381991i \(0.875238\pi\)
\(692\) −19.0757 −0.725151
\(693\) 0 0
\(694\) 0.492946 0.0187120
\(695\) 3.02138 0.114607
\(696\) 0 0
\(697\) −44.1907 −1.67384
\(698\) 4.64442 0.175794
\(699\) 0 0
\(700\) 1.34002 0.0506480
\(701\) −25.9876 −0.981540 −0.490770 0.871289i \(-0.663284\pi\)
−0.490770 + 0.871289i \(0.663284\pi\)
\(702\) 0 0
\(703\) 9.61722 0.362720
\(704\) −5.27731 −0.198896
\(705\) 0 0
\(706\) 4.67963 0.176120
\(707\) −0.377572 −0.0142001
\(708\) 0 0
\(709\) 36.2646 1.36195 0.680973 0.732309i \(-0.261557\pi\)
0.680973 + 0.732309i \(0.261557\pi\)
\(710\) 1.75344 0.0658056
\(711\) 0 0
\(712\) −9.14560 −0.342746
\(713\) −45.9100 −1.71934
\(714\) 0 0
\(715\) 2.41530 0.0903271
\(716\) −7.29388 −0.272585
\(717\) 0 0
\(718\) 6.32776 0.236150
\(719\) 0.582371 0.0217188 0.0108594 0.999941i \(-0.496543\pi\)
0.0108594 + 0.999941i \(0.496543\pi\)
\(720\) 0 0
\(721\) 0.426917 0.0158992
\(722\) −2.92263 −0.108769
\(723\) 0 0
\(724\) 14.3135 0.531957
\(725\) −27.4401 −1.01910
\(726\) 0 0
\(727\) 20.0001 0.741764 0.370882 0.928680i \(-0.379055\pi\)
0.370882 + 0.928680i \(0.379055\pi\)
\(728\) 0.463826 0.0171905
\(729\) 0 0
\(730\) 1.62328 0.0600803
\(731\) −13.9726 −0.516795
\(732\) 0 0
\(733\) −42.8774 −1.58371 −0.791857 0.610707i \(-0.790885\pi\)
−0.791857 + 0.610707i \(0.790885\pi\)
\(734\) 1.55102 0.0572490
\(735\) 0 0
\(736\) −19.3586 −0.713568
\(737\) 6.66136 0.245374
\(738\) 0 0
\(739\) 32.3852 1.19131 0.595654 0.803241i \(-0.296893\pi\)
0.595654 + 0.803241i \(0.296893\pi\)
\(740\) 8.06006 0.296294
\(741\) 0 0
\(742\) 0.203546 0.00747242
\(743\) −12.5358 −0.459895 −0.229948 0.973203i \(-0.573855\pi\)
−0.229948 + 0.973203i \(0.573855\pi\)
\(744\) 0 0
\(745\) 4.46736 0.163672
\(746\) 5.24517 0.192039
\(747\) 0 0
\(748\) −5.93340 −0.216947
\(749\) −1.96104 −0.0716548
\(750\) 0 0
\(751\) −24.5016 −0.894077 −0.447039 0.894515i \(-0.647521\pi\)
−0.447039 + 0.894515i \(0.647521\pi\)
\(752\) −33.5489 −1.22340
\(753\) 0 0
\(754\) −4.69997 −0.171163
\(755\) −14.7242 −0.535868
\(756\) 0 0
\(757\) 21.4627 0.780074 0.390037 0.920799i \(-0.372462\pi\)
0.390037 + 0.920799i \(0.372462\pi\)
\(758\) 5.36971 0.195037
\(759\) 0 0
\(760\) 1.55339 0.0563475
\(761\) 35.6077 1.29078 0.645390 0.763853i \(-0.276695\pi\)
0.645390 + 0.763853i \(0.276695\pi\)
\(762\) 0 0
\(763\) 2.97428 0.107676
\(764\) −40.7042 −1.47263
\(765\) 0 0
\(766\) 0.544773 0.0196834
\(767\) −10.3045 −0.372073
\(768\) 0 0
\(769\) −16.5914 −0.598299 −0.299150 0.954206i \(-0.596703\pi\)
−0.299150 + 0.954206i \(0.596703\pi\)
\(770\) −0.0226594 −0.000816588 0
\(771\) 0 0
\(772\) 6.84318 0.246291
\(773\) −11.3858 −0.409519 −0.204759 0.978812i \(-0.565641\pi\)
−0.204759 + 0.978812i \(0.565641\pi\)
\(774\) 0 0
\(775\) −23.3307 −0.838064
\(776\) 3.62491 0.130127
\(777\) 0 0
\(778\) 4.78851 0.171676
\(779\) −23.3137 −0.835299
\(780\) 0 0
\(781\) −7.14048 −0.255506
\(782\) −6.69563 −0.239435
\(783\) 0 0
\(784\) −26.1952 −0.935543
\(785\) −11.2671 −0.402141
\(786\) 0 0
\(787\) −43.0600 −1.53492 −0.767461 0.641095i \(-0.778480\pi\)
−0.767461 + 0.641095i \(0.778480\pi\)
\(788\) −2.32118 −0.0826885
\(789\) 0 0
\(790\) 0.593879 0.0211293
\(791\) 1.95213 0.0694097
\(792\) 0 0
\(793\) 24.9540 0.886142
\(794\) 0.0221387 0.000785674 0
\(795\) 0 0
\(796\) 2.15815 0.0764935
\(797\) −32.6980 −1.15822 −0.579111 0.815249i \(-0.696600\pi\)
−0.579111 + 0.815249i \(0.696600\pi\)
\(798\) 0 0
\(799\) −36.0623 −1.27579
\(800\) −9.83772 −0.347816
\(801\) 0 0
\(802\) 1.70707 0.0602786
\(803\) −6.61042 −0.233277
\(804\) 0 0
\(805\) 1.22657 0.0432309
\(806\) −3.99612 −0.140757
\(807\) 0 0
\(808\) 1.84162 0.0647881
\(809\) −25.5159 −0.897092 −0.448546 0.893760i \(-0.648058\pi\)
−0.448546 + 0.893760i \(0.648058\pi\)
\(810\) 0 0
\(811\) −8.80464 −0.309173 −0.154586 0.987979i \(-0.549404\pi\)
−0.154586 + 0.987979i \(0.549404\pi\)
\(812\) −2.11509 −0.0742251
\(813\) 0 0
\(814\) 0.684255 0.0239831
\(815\) 11.0666 0.387646
\(816\) 0 0
\(817\) −7.37152 −0.257897
\(818\) −1.02170 −0.0357228
\(819\) 0 0
\(820\) −19.5389 −0.682327
\(821\) −5.89246 −0.205648 −0.102824 0.994700i \(-0.532788\pi\)
−0.102824 + 0.994700i \(0.532788\pi\)
\(822\) 0 0
\(823\) −45.2067 −1.57581 −0.787904 0.615798i \(-0.788834\pi\)
−0.787904 + 0.615798i \(0.788834\pi\)
\(824\) −2.08230 −0.0725405
\(825\) 0 0
\(826\) 0.0966725 0.00336367
\(827\) 4.30278 0.149622 0.0748112 0.997198i \(-0.476165\pi\)
0.0748112 + 0.997198i \(0.476165\pi\)
\(828\) 0 0
\(829\) 51.1600 1.77686 0.888430 0.459012i \(-0.151797\pi\)
0.888430 + 0.459012i \(0.151797\pi\)
\(830\) −3.09935 −0.107580
\(831\) 0 0
\(832\) 24.8649 0.862037
\(833\) −28.1577 −0.975605
\(834\) 0 0
\(835\) 2.31578 0.0801410
\(836\) −3.13028 −0.108263
\(837\) 0 0
\(838\) −2.58177 −0.0891857
\(839\) −22.2666 −0.768730 −0.384365 0.923181i \(-0.625580\pi\)
−0.384365 + 0.923181i \(0.625580\pi\)
\(840\) 0 0
\(841\) 14.3114 0.493497
\(842\) −3.67962 −0.126808
\(843\) 0 0
\(844\) 29.3553 1.01045
\(845\) 0.467068 0.0160676
\(846\) 0 0
\(847\) −1.71220 −0.0588319
\(848\) 23.0645 0.792039
\(849\) 0 0
\(850\) −3.40261 −0.116708
\(851\) −37.0392 −1.26969
\(852\) 0 0
\(853\) −6.67502 −0.228548 −0.114274 0.993449i \(-0.536454\pi\)
−0.114274 + 0.993449i \(0.536454\pi\)
\(854\) −0.234109 −0.00801103
\(855\) 0 0
\(856\) 9.56504 0.326926
\(857\) 3.23621 0.110547 0.0552734 0.998471i \(-0.482397\pi\)
0.0552734 + 0.998471i \(0.482397\pi\)
\(858\) 0 0
\(859\) −8.95134 −0.305416 −0.152708 0.988271i \(-0.548799\pi\)
−0.152708 + 0.988271i \(0.548799\pi\)
\(860\) −6.17797 −0.210667
\(861\) 0 0
\(862\) −4.67549 −0.159248
\(863\) 16.6061 0.565278 0.282639 0.959226i \(-0.408790\pi\)
0.282639 + 0.959226i \(0.408790\pi\)
\(864\) 0 0
\(865\) −8.87325 −0.301699
\(866\) −6.77147 −0.230104
\(867\) 0 0
\(868\) −1.79834 −0.0610397
\(869\) −2.41843 −0.0820396
\(870\) 0 0
\(871\) −31.3861 −1.06348
\(872\) −14.5072 −0.491274
\(873\) 0 0
\(874\) −3.53241 −0.119486
\(875\) 1.37080 0.0463415
\(876\) 0 0
\(877\) 5.59472 0.188920 0.0944601 0.995529i \(-0.469888\pi\)
0.0944601 + 0.995529i \(0.469888\pi\)
\(878\) −6.39704 −0.215890
\(879\) 0 0
\(880\) −2.56762 −0.0865543
\(881\) −8.94054 −0.301214 −0.150607 0.988594i \(-0.548123\pi\)
−0.150607 + 0.988594i \(0.548123\pi\)
\(882\) 0 0
\(883\) −14.7132 −0.495140 −0.247570 0.968870i \(-0.579632\pi\)
−0.247570 + 0.968870i \(0.579632\pi\)
\(884\) 27.9562 0.940269
\(885\) 0 0
\(886\) 4.56946 0.153514
\(887\) −4.40891 −0.148037 −0.0740184 0.997257i \(-0.523582\pi\)
−0.0740184 + 0.997257i \(0.523582\pi\)
\(888\) 0 0
\(889\) 2.39363 0.0802798
\(890\) −2.10514 −0.0705643
\(891\) 0 0
\(892\) −9.99369 −0.334614
\(893\) −19.0254 −0.636660
\(894\) 0 0
\(895\) −3.39281 −0.113409
\(896\) −1.00738 −0.0336541
\(897\) 0 0
\(898\) 3.64184 0.121530
\(899\) 36.8253 1.22819
\(900\) 0 0
\(901\) 24.7925 0.825956
\(902\) −1.65874 −0.0552301
\(903\) 0 0
\(904\) −9.52159 −0.316684
\(905\) 6.65806 0.221321
\(906\) 0 0
\(907\) 3.27708 0.108814 0.0544069 0.998519i \(-0.482673\pi\)
0.0544069 + 0.998519i \(0.482673\pi\)
\(908\) −32.8417 −1.08989
\(909\) 0 0
\(910\) 0.106764 0.00353918
\(911\) 42.0943 1.39465 0.697323 0.716757i \(-0.254374\pi\)
0.697323 + 0.716757i \(0.254374\pi\)
\(912\) 0 0
\(913\) 12.6214 0.417707
\(914\) −4.76123 −0.157488
\(915\) 0 0
\(916\) −31.5876 −1.04368
\(917\) 1.09370 0.0361171
\(918\) 0 0
\(919\) −30.1308 −0.993924 −0.496962 0.867772i \(-0.665551\pi\)
−0.496962 + 0.867772i \(0.665551\pi\)
\(920\) −5.98265 −0.197242
\(921\) 0 0
\(922\) 8.11850 0.267369
\(923\) 33.6436 1.10739
\(924\) 0 0
\(925\) −18.8227 −0.618887
\(926\) −2.21949 −0.0729369
\(927\) 0 0
\(928\) 15.5279 0.509728
\(929\) −35.6647 −1.17012 −0.585060 0.810990i \(-0.698929\pi\)
−0.585060 + 0.810990i \(0.698929\pi\)
\(930\) 0 0
\(931\) −14.8551 −0.486857
\(932\) −20.5471 −0.673044
\(933\) 0 0
\(934\) 0.340630 0.0111458
\(935\) −2.75997 −0.0902608
\(936\) 0 0
\(937\) −16.2042 −0.529368 −0.264684 0.964335i \(-0.585268\pi\)
−0.264684 + 0.964335i \(0.585268\pi\)
\(938\) 0.294453 0.00961422
\(939\) 0 0
\(940\) −15.9449 −0.520066
\(941\) 15.6246 0.509348 0.254674 0.967027i \(-0.418032\pi\)
0.254674 + 0.967027i \(0.418032\pi\)
\(942\) 0 0
\(943\) 89.7889 2.92393
\(944\) 10.9543 0.356532
\(945\) 0 0
\(946\) −0.524476 −0.0170522
\(947\) −50.9846 −1.65678 −0.828389 0.560154i \(-0.810742\pi\)
−0.828389 + 0.560154i \(0.810742\pi\)
\(948\) 0 0
\(949\) 31.1461 1.01105
\(950\) −1.79511 −0.0582411
\(951\) 0 0
\(952\) −0.530016 −0.0171779
\(953\) 39.7922 1.28900 0.644498 0.764606i \(-0.277066\pi\)
0.644498 + 0.764606i \(0.277066\pi\)
\(954\) 0 0
\(955\) −18.9339 −0.612687
\(956\) 0.106503 0.00344455
\(957\) 0 0
\(958\) 4.01959 0.129867
\(959\) 2.39954 0.0774851
\(960\) 0 0
\(961\) 0.310434 0.0100140
\(962\) −3.22398 −0.103945
\(963\) 0 0
\(964\) −23.3066 −0.750654
\(965\) 3.18316 0.102470
\(966\) 0 0
\(967\) 22.5777 0.726048 0.363024 0.931780i \(-0.381744\pi\)
0.363024 + 0.931780i \(0.381744\pi\)
\(968\) 8.35133 0.268422
\(969\) 0 0
\(970\) 0.834383 0.0267904
\(971\) −7.94868 −0.255085 −0.127543 0.991833i \(-0.540709\pi\)
−0.127543 + 0.991833i \(0.540709\pi\)
\(972\) 0 0
\(973\) −0.543867 −0.0174356
\(974\) −3.42322 −0.109687
\(975\) 0 0
\(976\) −26.5276 −0.849129
\(977\) −38.7688 −1.24032 −0.620162 0.784474i \(-0.712933\pi\)
−0.620162 + 0.784474i \(0.712933\pi\)
\(978\) 0 0
\(979\) 8.57266 0.273984
\(980\) −12.4499 −0.397697
\(981\) 0 0
\(982\) 6.95123 0.221823
\(983\) −16.8463 −0.537314 −0.268657 0.963236i \(-0.586580\pi\)
−0.268657 + 0.963236i \(0.586580\pi\)
\(984\) 0 0
\(985\) −1.07972 −0.0344026
\(986\) 5.37068 0.171037
\(987\) 0 0
\(988\) 14.7488 0.469223
\(989\) 28.3902 0.902757
\(990\) 0 0
\(991\) −6.81915 −0.216618 −0.108309 0.994117i \(-0.534544\pi\)
−0.108309 + 0.994117i \(0.534544\pi\)
\(992\) 13.2025 0.419179
\(993\) 0 0
\(994\) −0.315631 −0.0100112
\(995\) 1.00388 0.0318252
\(996\) 0 0
\(997\) −11.8247 −0.374492 −0.187246 0.982313i \(-0.559956\pi\)
−0.187246 + 0.982313i \(0.559956\pi\)
\(998\) 3.55549 0.112547
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.d.1.37 72
3.2 odd 2 6561.2.a.c.1.36 72
81.2 odd 54 729.2.g.d.433.4 144
81.13 even 27 243.2.g.a.100.4 144
81.14 odd 54 729.2.g.c.55.5 144
81.25 even 27 243.2.g.a.226.4 144
81.29 odd 54 729.2.g.c.676.5 144
81.40 even 27 729.2.g.a.298.5 144
81.41 odd 54 729.2.g.d.298.4 144
81.52 even 27 729.2.g.b.676.4 144
81.56 odd 54 81.2.g.a.58.5 yes 144
81.67 even 27 729.2.g.b.55.4 144
81.68 odd 54 81.2.g.a.7.5 144
81.79 even 27 729.2.g.a.433.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.7.5 144 81.68 odd 54
81.2.g.a.58.5 yes 144 81.56 odd 54
243.2.g.a.100.4 144 81.13 even 27
243.2.g.a.226.4 144 81.25 even 27
729.2.g.a.298.5 144 81.40 even 27
729.2.g.a.433.5 144 81.79 even 27
729.2.g.b.55.4 144 81.67 even 27
729.2.g.b.676.4 144 81.52 even 27
729.2.g.c.55.5 144 81.14 odd 54
729.2.g.c.676.5 144 81.29 odd 54
729.2.g.d.298.4 144 81.41 odd 54
729.2.g.d.433.4 144 81.2 odd 54
6561.2.a.c.1.36 72 3.2 odd 2
6561.2.a.d.1.37 72 1.1 even 1 trivial