Properties

Label 665.2.a.b
Level $665$
Weight $2$
Character orbit 665.a
Self dual yes
Analytic conductor $5.310$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(1,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} + 2 q^{4} + q^{5} - 6 q^{6} + q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 3 q^{3} + 2 q^{4} + q^{5} - 6 q^{6} + q^{7} + 6 q^{9} - 2 q^{10} - 3 q^{11} + 6 q^{12} + 3 q^{13} - 2 q^{14} + 3 q^{15} - 4 q^{16} + 3 q^{17} - 12 q^{18} + q^{19} + 2 q^{20} + 3 q^{21} + 6 q^{22} - 4 q^{23} + q^{25} - 6 q^{26} + 9 q^{27} + 2 q^{28} + q^{29} - 6 q^{30} + 8 q^{31} + 8 q^{32} - 9 q^{33} - 6 q^{34} + q^{35} + 12 q^{36} - 4 q^{37} - 2 q^{38} + 9 q^{39} - 8 q^{41} - 6 q^{42} - 4 q^{43} - 6 q^{44} + 6 q^{45} + 8 q^{46} + q^{47} - 12 q^{48} + q^{49} - 2 q^{50} + 9 q^{51} + 6 q^{52} - 12 q^{53} - 18 q^{54} - 3 q^{55} + 3 q^{57} - 2 q^{58} + 6 q^{59} + 6 q^{60} - 6 q^{61} - 16 q^{62} + 6 q^{63} - 8 q^{64} + 3 q^{65} + 18 q^{66} + 4 q^{67} + 6 q^{68} - 12 q^{69} - 2 q^{70} + 10 q^{73} + 8 q^{74} + 3 q^{75} + 2 q^{76} - 3 q^{77} - 18 q^{78} + 13 q^{79} - 4 q^{80} + 9 q^{81} + 16 q^{82} + 4 q^{83} + 6 q^{84} + 3 q^{85} + 8 q^{86} + 3 q^{87} - 6 q^{89} - 12 q^{90} + 3 q^{91} - 8 q^{92} + 24 q^{93} - 2 q^{94} + q^{95} + 24 q^{96} + 5 q^{97} - 2 q^{98} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 3.00000 2.00000 1.00000 −6.00000 1.00000 0 6.00000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 665.2.a.b 1
3.b odd 2 1 5985.2.a.r 1
5.b even 2 1 3325.2.a.i 1
7.b odd 2 1 4655.2.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
665.2.a.b 1 1.a even 1 1 trivial
3325.2.a.i 1 5.b even 2 1
4655.2.a.a 1 7.b odd 2 1
5985.2.a.r 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(665))\):

\( T_{2} + 2 \) Copy content Toggle raw display
\( T_{3} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T + 3 \) Copy content Toggle raw display
$13$ \( T - 3 \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T + 4 \) Copy content Toggle raw display
$41$ \( T + 8 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T - 1 \) Copy content Toggle raw display
$53$ \( T + 12 \) Copy content Toggle raw display
$59$ \( T - 6 \) Copy content Toggle raw display
$61$ \( T + 6 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 10 \) Copy content Toggle raw display
$79$ \( T - 13 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T - 5 \) Copy content Toggle raw display
show more
show less