Properties

Label 665.2.a.d.1.1
Level $665$
Weight $2$
Character 665.1
Self dual yes
Analytic conductor $5.310$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(1,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.31005173442\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 665.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} -1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{7} -3.00000 q^{8} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} -1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{7} -3.00000 q^{8} -2.00000 q^{9} +1.00000 q^{10} +1.00000 q^{12} -4.00000 q^{13} +1.00000 q^{14} -1.00000 q^{15} -1.00000 q^{16} -3.00000 q^{17} -2.00000 q^{18} -1.00000 q^{19} -1.00000 q^{20} -1.00000 q^{21} +1.00000 q^{23} +3.00000 q^{24} +1.00000 q^{25} -4.00000 q^{26} +5.00000 q^{27} -1.00000 q^{28} -10.0000 q^{29} -1.00000 q^{30} -8.00000 q^{31} +5.00000 q^{32} -3.00000 q^{34} +1.00000 q^{35} +2.00000 q^{36} +3.00000 q^{37} -1.00000 q^{38} +4.00000 q^{39} -3.00000 q^{40} +1.00000 q^{41} -1.00000 q^{42} -11.0000 q^{43} -2.00000 q^{45} +1.00000 q^{46} -4.00000 q^{47} +1.00000 q^{48} +1.00000 q^{49} +1.00000 q^{50} +3.00000 q^{51} +4.00000 q^{52} -5.00000 q^{53} +5.00000 q^{54} -3.00000 q^{56} +1.00000 q^{57} -10.0000 q^{58} +14.0000 q^{59} +1.00000 q^{60} +8.00000 q^{61} -8.00000 q^{62} -2.00000 q^{63} +7.00000 q^{64} -4.00000 q^{65} -6.00000 q^{67} +3.00000 q^{68} -1.00000 q^{69} +1.00000 q^{70} -5.00000 q^{71} +6.00000 q^{72} +15.0000 q^{73} +3.00000 q^{74} -1.00000 q^{75} +1.00000 q^{76} +4.00000 q^{78} -12.0000 q^{79} -1.00000 q^{80} +1.00000 q^{81} +1.00000 q^{82} +4.00000 q^{83} +1.00000 q^{84} -3.00000 q^{85} -11.0000 q^{86} +10.0000 q^{87} -14.0000 q^{89} -2.00000 q^{90} -4.00000 q^{91} -1.00000 q^{92} +8.00000 q^{93} -4.00000 q^{94} -1.00000 q^{95} -5.00000 q^{96} +14.0000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.00000 0.447214
\(6\) −1.00000 −0.408248
\(7\) 1.00000 0.377964
\(8\) −3.00000 −1.06066
\(9\) −2.00000 −0.666667
\(10\) 1.00000 0.316228
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000 0.288675
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 1.00000 0.267261
\(15\) −1.00000 −0.258199
\(16\) −1.00000 −0.250000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) −2.00000 −0.471405
\(19\) −1.00000 −0.229416
\(20\) −1.00000 −0.223607
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 1.00000 0.208514 0.104257 0.994550i \(-0.466753\pi\)
0.104257 + 0.994550i \(0.466753\pi\)
\(24\) 3.00000 0.612372
\(25\) 1.00000 0.200000
\(26\) −4.00000 −0.784465
\(27\) 5.00000 0.962250
\(28\) −1.00000 −0.188982
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) −1.00000 −0.182574
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) 1.00000 0.169031
\(36\) 2.00000 0.333333
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −1.00000 −0.162221
\(39\) 4.00000 0.640513
\(40\) −3.00000 −0.474342
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) −1.00000 −0.154303
\(43\) −11.0000 −1.67748 −0.838742 0.544529i \(-0.816708\pi\)
−0.838742 + 0.544529i \(0.816708\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 1.00000 0.147442
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 1.00000 0.144338
\(49\) 1.00000 0.142857
\(50\) 1.00000 0.141421
\(51\) 3.00000 0.420084
\(52\) 4.00000 0.554700
\(53\) −5.00000 −0.686803 −0.343401 0.939189i \(-0.611579\pi\)
−0.343401 + 0.939189i \(0.611579\pi\)
\(54\) 5.00000 0.680414
\(55\) 0 0
\(56\) −3.00000 −0.400892
\(57\) 1.00000 0.132453
\(58\) −10.0000 −1.31306
\(59\) 14.0000 1.82264 0.911322 0.411693i \(-0.135063\pi\)
0.911322 + 0.411693i \(0.135063\pi\)
\(60\) 1.00000 0.129099
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) −8.00000 −1.01600
\(63\) −2.00000 −0.251976
\(64\) 7.00000 0.875000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) 3.00000 0.363803
\(69\) −1.00000 −0.120386
\(70\) 1.00000 0.119523
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 6.00000 0.707107
\(73\) 15.0000 1.75562 0.877809 0.479012i \(-0.159005\pi\)
0.877809 + 0.479012i \(0.159005\pi\)
\(74\) 3.00000 0.348743
\(75\) −1.00000 −0.115470
\(76\) 1.00000 0.114708
\(77\) 0 0
\(78\) 4.00000 0.452911
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) 1.00000 0.110432
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 1.00000 0.109109
\(85\) −3.00000 −0.325396
\(86\) −11.0000 −1.18616
\(87\) 10.0000 1.07211
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) −2.00000 −0.210819
\(91\) −4.00000 −0.419314
\(92\) −1.00000 −0.104257
\(93\) 8.00000 0.829561
\(94\) −4.00000 −0.412568
\(95\) −1.00000 −0.102598
\(96\) −5.00000 −0.510310
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 3.00000 0.297044
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 12.0000 1.17670
\(105\) −1.00000 −0.0975900
\(106\) −5.00000 −0.485643
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) −5.00000 −0.481125
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) −1.00000 −0.0944911
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 1.00000 0.0936586
\(115\) 1.00000 0.0932505
\(116\) 10.0000 0.928477
\(117\) 8.00000 0.739600
\(118\) 14.0000 1.28880
\(119\) −3.00000 −0.275010
\(120\) 3.00000 0.273861
\(121\) −11.0000 −1.00000
\(122\) 8.00000 0.724286
\(123\) −1.00000 −0.0901670
\(124\) 8.00000 0.718421
\(125\) 1.00000 0.0894427
\(126\) −2.00000 −0.178174
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −3.00000 −0.265165
\(129\) 11.0000 0.968496
\(130\) −4.00000 −0.350823
\(131\) −21.0000 −1.83478 −0.917389 0.397991i \(-0.869707\pi\)
−0.917389 + 0.397991i \(0.869707\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) −6.00000 −0.518321
\(135\) 5.00000 0.430331
\(136\) 9.00000 0.771744
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) −1.00000 −0.0851257
\(139\) −7.00000 −0.593732 −0.296866 0.954919i \(-0.595942\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) −1.00000 −0.0845154
\(141\) 4.00000 0.336861
\(142\) −5.00000 −0.419591
\(143\) 0 0
\(144\) 2.00000 0.166667
\(145\) −10.0000 −0.830455
\(146\) 15.0000 1.24141
\(147\) −1.00000 −0.0824786
\(148\) −3.00000 −0.246598
\(149\) −5.00000 −0.409616 −0.204808 0.978802i \(-0.565657\pi\)
−0.204808 + 0.978802i \(0.565657\pi\)
\(150\) −1.00000 −0.0816497
\(151\) −11.0000 −0.895167 −0.447584 0.894242i \(-0.647715\pi\)
−0.447584 + 0.894242i \(0.647715\pi\)
\(152\) 3.00000 0.243332
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) −4.00000 −0.320256
\(157\) 13.0000 1.03751 0.518756 0.854922i \(-0.326395\pi\)
0.518756 + 0.854922i \(0.326395\pi\)
\(158\) −12.0000 −0.954669
\(159\) 5.00000 0.396526
\(160\) 5.00000 0.395285
\(161\) 1.00000 0.0788110
\(162\) 1.00000 0.0785674
\(163\) 3.00000 0.234978 0.117489 0.993074i \(-0.462515\pi\)
0.117489 + 0.993074i \(0.462515\pi\)
\(164\) −1.00000 −0.0780869
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 3.00000 0.231455
\(169\) 3.00000 0.230769
\(170\) −3.00000 −0.230089
\(171\) 2.00000 0.152944
\(172\) 11.0000 0.838742
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 10.0000 0.758098
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) −14.0000 −1.05230
\(178\) −14.0000 −1.04934
\(179\) −13.0000 −0.971666 −0.485833 0.874052i \(-0.661484\pi\)
−0.485833 + 0.874052i \(0.661484\pi\)
\(180\) 2.00000 0.149071
\(181\) −21.0000 −1.56092 −0.780459 0.625207i \(-0.785014\pi\)
−0.780459 + 0.625207i \(0.785014\pi\)
\(182\) −4.00000 −0.296500
\(183\) −8.00000 −0.591377
\(184\) −3.00000 −0.221163
\(185\) 3.00000 0.220564
\(186\) 8.00000 0.586588
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) 5.00000 0.363696
\(190\) −1.00000 −0.0725476
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) −7.00000 −0.505181
\(193\) −11.0000 −0.791797 −0.395899 0.918294i \(-0.629567\pi\)
−0.395899 + 0.918294i \(0.629567\pi\)
\(194\) 14.0000 1.00514
\(195\) 4.00000 0.286446
\(196\) −1.00000 −0.0714286
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −17.0000 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) −3.00000 −0.212132
\(201\) 6.00000 0.423207
\(202\) 14.0000 0.985037
\(203\) −10.0000 −0.701862
\(204\) −3.00000 −0.210042
\(205\) 1.00000 0.0698430
\(206\) 8.00000 0.557386
\(207\) −2.00000 −0.139010
\(208\) 4.00000 0.277350
\(209\) 0 0
\(210\) −1.00000 −0.0690066
\(211\) −11.0000 −0.757271 −0.378636 0.925546i \(-0.623607\pi\)
−0.378636 + 0.925546i \(0.623607\pi\)
\(212\) 5.00000 0.343401
\(213\) 5.00000 0.342594
\(214\) 18.0000 1.23045
\(215\) −11.0000 −0.750194
\(216\) −15.0000 −1.02062
\(217\) −8.00000 −0.543075
\(218\) 16.0000 1.08366
\(219\) −15.0000 −1.01361
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) −3.00000 −0.201347
\(223\) 15.0000 1.00447 0.502237 0.864730i \(-0.332510\pi\)
0.502237 + 0.864730i \(0.332510\pi\)
\(224\) 5.00000 0.334077
\(225\) −2.00000 −0.133333
\(226\) 1.00000 0.0665190
\(227\) −15.0000 −0.995585 −0.497792 0.867296i \(-0.665856\pi\)
−0.497792 + 0.867296i \(0.665856\pi\)
\(228\) −1.00000 −0.0662266
\(229\) 24.0000 1.58596 0.792982 0.609245i \(-0.208527\pi\)
0.792982 + 0.609245i \(0.208527\pi\)
\(230\) 1.00000 0.0659380
\(231\) 0 0
\(232\) 30.0000 1.96960
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 8.00000 0.522976
\(235\) −4.00000 −0.260931
\(236\) −14.0000 −0.911322
\(237\) 12.0000 0.779484
\(238\) −3.00000 −0.194461
\(239\) −10.0000 −0.646846 −0.323423 0.946254i \(-0.604834\pi\)
−0.323423 + 0.946254i \(0.604834\pi\)
\(240\) 1.00000 0.0645497
\(241\) −17.0000 −1.09507 −0.547533 0.836784i \(-0.684433\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) −11.0000 −0.707107
\(243\) −16.0000 −1.02640
\(244\) −8.00000 −0.512148
\(245\) 1.00000 0.0638877
\(246\) −1.00000 −0.0637577
\(247\) 4.00000 0.254514
\(248\) 24.0000 1.52400
\(249\) −4.00000 −0.253490
\(250\) 1.00000 0.0632456
\(251\) 5.00000 0.315597 0.157799 0.987471i \(-0.449560\pi\)
0.157799 + 0.987471i \(0.449560\pi\)
\(252\) 2.00000 0.125988
\(253\) 0 0
\(254\) −16.0000 −1.00393
\(255\) 3.00000 0.187867
\(256\) −17.0000 −1.06250
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 11.0000 0.684830
\(259\) 3.00000 0.186411
\(260\) 4.00000 0.248069
\(261\) 20.0000 1.23797
\(262\) −21.0000 −1.29738
\(263\) 19.0000 1.17159 0.585795 0.810459i \(-0.300782\pi\)
0.585795 + 0.810459i \(0.300782\pi\)
\(264\) 0 0
\(265\) −5.00000 −0.307148
\(266\) −1.00000 −0.0613139
\(267\) 14.0000 0.856786
\(268\) 6.00000 0.366508
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 5.00000 0.304290
\(271\) −15.0000 −0.911185 −0.455593 0.890188i \(-0.650573\pi\)
−0.455593 + 0.890188i \(0.650573\pi\)
\(272\) 3.00000 0.181902
\(273\) 4.00000 0.242091
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 1.00000 0.0601929
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) −7.00000 −0.419832
\(279\) 16.0000 0.957895
\(280\) −3.00000 −0.179284
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 4.00000 0.238197
\(283\) 2.00000 0.118888 0.0594438 0.998232i \(-0.481067\pi\)
0.0594438 + 0.998232i \(0.481067\pi\)
\(284\) 5.00000 0.296695
\(285\) 1.00000 0.0592349
\(286\) 0 0
\(287\) 1.00000 0.0590281
\(288\) −10.0000 −0.589256
\(289\) −8.00000 −0.470588
\(290\) −10.0000 −0.587220
\(291\) −14.0000 −0.820695
\(292\) −15.0000 −0.877809
\(293\) −8.00000 −0.467365 −0.233682 0.972313i \(-0.575078\pi\)
−0.233682 + 0.972313i \(0.575078\pi\)
\(294\) −1.00000 −0.0583212
\(295\) 14.0000 0.815112
\(296\) −9.00000 −0.523114
\(297\) 0 0
\(298\) −5.00000 −0.289642
\(299\) −4.00000 −0.231326
\(300\) 1.00000 0.0577350
\(301\) −11.0000 −0.634029
\(302\) −11.0000 −0.632979
\(303\) −14.0000 −0.804279
\(304\) 1.00000 0.0573539
\(305\) 8.00000 0.458079
\(306\) 6.00000 0.342997
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) −8.00000 −0.454369
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) −12.0000 −0.679366
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 13.0000 0.733632
\(315\) −2.00000 −0.112687
\(316\) 12.0000 0.675053
\(317\) 33.0000 1.85346 0.926732 0.375722i \(-0.122605\pi\)
0.926732 + 0.375722i \(0.122605\pi\)
\(318\) 5.00000 0.280386
\(319\) 0 0
\(320\) 7.00000 0.391312
\(321\) −18.0000 −1.00466
\(322\) 1.00000 0.0557278
\(323\) 3.00000 0.166924
\(324\) −1.00000 −0.0555556
\(325\) −4.00000 −0.221880
\(326\) 3.00000 0.166155
\(327\) −16.0000 −0.884802
\(328\) −3.00000 −0.165647
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −4.00000 −0.219529
\(333\) −6.00000 −0.328798
\(334\) 8.00000 0.437741
\(335\) −6.00000 −0.327815
\(336\) 1.00000 0.0545545
\(337\) −34.0000 −1.85210 −0.926049 0.377403i \(-0.876817\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 3.00000 0.163178
\(339\) −1.00000 −0.0543125
\(340\) 3.00000 0.162698
\(341\) 0 0
\(342\) 2.00000 0.108148
\(343\) 1.00000 0.0539949
\(344\) 33.0000 1.77924
\(345\) −1.00000 −0.0538382
\(346\) −6.00000 −0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) −10.0000 −0.536056
\(349\) 4.00000 0.214115 0.107058 0.994253i \(-0.465857\pi\)
0.107058 + 0.994253i \(0.465857\pi\)
\(350\) 1.00000 0.0534522
\(351\) −20.0000 −1.06752
\(352\) 0 0
\(353\) 13.0000 0.691920 0.345960 0.938249i \(-0.387553\pi\)
0.345960 + 0.938249i \(0.387553\pi\)
\(354\) −14.0000 −0.744092
\(355\) −5.00000 −0.265372
\(356\) 14.0000 0.741999
\(357\) 3.00000 0.158777
\(358\) −13.0000 −0.687071
\(359\) −18.0000 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(360\) 6.00000 0.316228
\(361\) 1.00000 0.0526316
\(362\) −21.0000 −1.10374
\(363\) 11.0000 0.577350
\(364\) 4.00000 0.209657
\(365\) 15.0000 0.785136
\(366\) −8.00000 −0.418167
\(367\) −38.0000 −1.98358 −0.991792 0.127862i \(-0.959188\pi\)
−0.991792 + 0.127862i \(0.959188\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −2.00000 −0.104116
\(370\) 3.00000 0.155963
\(371\) −5.00000 −0.259587
\(372\) −8.00000 −0.414781
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 12.0000 0.618853
\(377\) 40.0000 2.06010
\(378\) 5.00000 0.257172
\(379\) −25.0000 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(380\) 1.00000 0.0512989
\(381\) 16.0000 0.819705
\(382\) −6.00000 −0.306987
\(383\) 27.0000 1.37964 0.689818 0.723983i \(-0.257691\pi\)
0.689818 + 0.723983i \(0.257691\pi\)
\(384\) 3.00000 0.153093
\(385\) 0 0
\(386\) −11.0000 −0.559885
\(387\) 22.0000 1.11832
\(388\) −14.0000 −0.710742
\(389\) 27.0000 1.36895 0.684477 0.729034i \(-0.260031\pi\)
0.684477 + 0.729034i \(0.260031\pi\)
\(390\) 4.00000 0.202548
\(391\) −3.00000 −0.151717
\(392\) −3.00000 −0.151523
\(393\) 21.0000 1.05931
\(394\) −18.0000 −0.906827
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) −1.00000 −0.0501886 −0.0250943 0.999685i \(-0.507989\pi\)
−0.0250943 + 0.999685i \(0.507989\pi\)
\(398\) −17.0000 −0.852133
\(399\) 1.00000 0.0500626
\(400\) −1.00000 −0.0500000
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 6.00000 0.299253
\(403\) 32.0000 1.59403
\(404\) −14.0000 −0.696526
\(405\) 1.00000 0.0496904
\(406\) −10.0000 −0.496292
\(407\) 0 0
\(408\) −9.00000 −0.445566
\(409\) −17.0000 −0.840596 −0.420298 0.907386i \(-0.638074\pi\)
−0.420298 + 0.907386i \(0.638074\pi\)
\(410\) 1.00000 0.0493865
\(411\) −12.0000 −0.591916
\(412\) −8.00000 −0.394132
\(413\) 14.0000 0.688895
\(414\) −2.00000 −0.0982946
\(415\) 4.00000 0.196352
\(416\) −20.0000 −0.980581
\(417\) 7.00000 0.342791
\(418\) 0 0
\(419\) −15.0000 −0.732798 −0.366399 0.930458i \(-0.619409\pi\)
−0.366399 + 0.930458i \(0.619409\pi\)
\(420\) 1.00000 0.0487950
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) −11.0000 −0.535472
\(423\) 8.00000 0.388973
\(424\) 15.0000 0.728464
\(425\) −3.00000 −0.145521
\(426\) 5.00000 0.242251
\(427\) 8.00000 0.387147
\(428\) −18.0000 −0.870063
\(429\) 0 0
\(430\) −11.0000 −0.530467
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) −5.00000 −0.240563
\(433\) −4.00000 −0.192228 −0.0961139 0.995370i \(-0.530641\pi\)
−0.0961139 + 0.995370i \(0.530641\pi\)
\(434\) −8.00000 −0.384012
\(435\) 10.0000 0.479463
\(436\) −16.0000 −0.766261
\(437\) −1.00000 −0.0478365
\(438\) −15.0000 −0.716728
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 12.0000 0.570782
\(443\) −16.0000 −0.760183 −0.380091 0.924949i \(-0.624107\pi\)
−0.380091 + 0.924949i \(0.624107\pi\)
\(444\) 3.00000 0.142374
\(445\) −14.0000 −0.663664
\(446\) 15.0000 0.710271
\(447\) 5.00000 0.236492
\(448\) 7.00000 0.330719
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) −2.00000 −0.0942809
\(451\) 0 0
\(452\) −1.00000 −0.0470360
\(453\) 11.0000 0.516825
\(454\) −15.0000 −0.703985
\(455\) −4.00000 −0.187523
\(456\) −3.00000 −0.140488
\(457\) −16.0000 −0.748448 −0.374224 0.927338i \(-0.622091\pi\)
−0.374224 + 0.927338i \(0.622091\pi\)
\(458\) 24.0000 1.12145
\(459\) −15.0000 −0.700140
\(460\) −1.00000 −0.0466252
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) −31.0000 −1.44069 −0.720346 0.693615i \(-0.756017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) 10.0000 0.464238
\(465\) 8.00000 0.370991
\(466\) 14.0000 0.648537
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) −8.00000 −0.369800
\(469\) −6.00000 −0.277054
\(470\) −4.00000 −0.184506
\(471\) −13.0000 −0.599008
\(472\) −42.0000 −1.93321
\(473\) 0 0
\(474\) 12.0000 0.551178
\(475\) −1.00000 −0.0458831
\(476\) 3.00000 0.137505
\(477\) 10.0000 0.457869
\(478\) −10.0000 −0.457389
\(479\) 21.0000 0.959514 0.479757 0.877401i \(-0.340725\pi\)
0.479757 + 0.877401i \(0.340725\pi\)
\(480\) −5.00000 −0.228218
\(481\) −12.0000 −0.547153
\(482\) −17.0000 −0.774329
\(483\) −1.00000 −0.0455016
\(484\) 11.0000 0.500000
\(485\) 14.0000 0.635707
\(486\) −16.0000 −0.725775
\(487\) −42.0000 −1.90320 −0.951601 0.307337i \(-0.900562\pi\)
−0.951601 + 0.307337i \(0.900562\pi\)
\(488\) −24.0000 −1.08643
\(489\) −3.00000 −0.135665
\(490\) 1.00000 0.0451754
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 1.00000 0.0450835
\(493\) 30.0000 1.35113
\(494\) 4.00000 0.179969
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) −5.00000 −0.224281
\(498\) −4.00000 −0.179244
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −8.00000 −0.357414
\(502\) 5.00000 0.223161
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 6.00000 0.267261
\(505\) 14.0000 0.622992
\(506\) 0 0
\(507\) −3.00000 −0.133235
\(508\) 16.0000 0.709885
\(509\) 9.00000 0.398918 0.199459 0.979906i \(-0.436082\pi\)
0.199459 + 0.979906i \(0.436082\pi\)
\(510\) 3.00000 0.132842
\(511\) 15.0000 0.663561
\(512\) −11.0000 −0.486136
\(513\) −5.00000 −0.220755
\(514\) 2.00000 0.0882162
\(515\) 8.00000 0.352522
\(516\) −11.0000 −0.484248
\(517\) 0 0
\(518\) 3.00000 0.131812
\(519\) 6.00000 0.263371
\(520\) 12.0000 0.526235
\(521\) −11.0000 −0.481919 −0.240959 0.970535i \(-0.577462\pi\)
−0.240959 + 0.970535i \(0.577462\pi\)
\(522\) 20.0000 0.875376
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 21.0000 0.917389
\(525\) −1.00000 −0.0436436
\(526\) 19.0000 0.828439
\(527\) 24.0000 1.04546
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) −5.00000 −0.217186
\(531\) −28.0000 −1.21510
\(532\) 1.00000 0.0433555
\(533\) −4.00000 −0.173259
\(534\) 14.0000 0.605839
\(535\) 18.0000 0.778208
\(536\) 18.0000 0.777482
\(537\) 13.0000 0.560991
\(538\) −18.0000 −0.776035
\(539\) 0 0
\(540\) −5.00000 −0.215166
\(541\) −3.00000 −0.128980 −0.0644900 0.997918i \(-0.520542\pi\)
−0.0644900 + 0.997918i \(0.520542\pi\)
\(542\) −15.0000 −0.644305
\(543\) 21.0000 0.901196
\(544\) −15.0000 −0.643120
\(545\) 16.0000 0.685365
\(546\) 4.00000 0.171184
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) −12.0000 −0.512615
\(549\) −16.0000 −0.682863
\(550\) 0 0
\(551\) 10.0000 0.426014
\(552\) 3.00000 0.127688
\(553\) −12.0000 −0.510292
\(554\) −10.0000 −0.424859
\(555\) −3.00000 −0.127343
\(556\) 7.00000 0.296866
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 16.0000 0.677334
\(559\) 44.0000 1.86100
\(560\) −1.00000 −0.0422577
\(561\) 0 0
\(562\) 22.0000 0.928014
\(563\) 9.00000 0.379305 0.189652 0.981851i \(-0.439264\pi\)
0.189652 + 0.981851i \(0.439264\pi\)
\(564\) −4.00000 −0.168430
\(565\) 1.00000 0.0420703
\(566\) 2.00000 0.0840663
\(567\) 1.00000 0.0419961
\(568\) 15.0000 0.629386
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 1.00000 0.0418854
\(571\) 24.0000 1.00437 0.502184 0.864761i \(-0.332530\pi\)
0.502184 + 0.864761i \(0.332530\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) 1.00000 0.0417392
\(575\) 1.00000 0.0417029
\(576\) −14.0000 −0.583333
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) −8.00000 −0.332756
\(579\) 11.0000 0.457144
\(580\) 10.0000 0.415227
\(581\) 4.00000 0.165948
\(582\) −14.0000 −0.580319
\(583\) 0 0
\(584\) −45.0000 −1.86211
\(585\) 8.00000 0.330759
\(586\) −8.00000 −0.330477
\(587\) 34.0000 1.40333 0.701665 0.712507i \(-0.252440\pi\)
0.701665 + 0.712507i \(0.252440\pi\)
\(588\) 1.00000 0.0412393
\(589\) 8.00000 0.329634
\(590\) 14.0000 0.576371
\(591\) 18.0000 0.740421
\(592\) −3.00000 −0.123299
\(593\) 29.0000 1.19089 0.595444 0.803397i \(-0.296976\pi\)
0.595444 + 0.803397i \(0.296976\pi\)
\(594\) 0 0
\(595\) −3.00000 −0.122988
\(596\) 5.00000 0.204808
\(597\) 17.0000 0.695764
\(598\) −4.00000 −0.163572
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 3.00000 0.122474
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) −11.0000 −0.448327
\(603\) 12.0000 0.488678
\(604\) 11.0000 0.447584
\(605\) −11.0000 −0.447214
\(606\) −14.0000 −0.568711
\(607\) 3.00000 0.121766 0.0608831 0.998145i \(-0.480608\pi\)
0.0608831 + 0.998145i \(0.480608\pi\)
\(608\) −5.00000 −0.202777
\(609\) 10.0000 0.405220
\(610\) 8.00000 0.323911
\(611\) 16.0000 0.647291
\(612\) −6.00000 −0.242536
\(613\) −24.0000 −0.969351 −0.484675 0.874694i \(-0.661062\pi\)
−0.484675 + 0.874694i \(0.661062\pi\)
\(614\) −7.00000 −0.282497
\(615\) −1.00000 −0.0403239
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) −8.00000 −0.321807
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 8.00000 0.321288
\(621\) 5.00000 0.200643
\(622\) 12.0000 0.481156
\(623\) −14.0000 −0.560898
\(624\) −4.00000 −0.160128
\(625\) 1.00000 0.0400000
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) −13.0000 −0.518756
\(629\) −9.00000 −0.358854
\(630\) −2.00000 −0.0796819
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) 36.0000 1.43200
\(633\) 11.0000 0.437211
\(634\) 33.0000 1.31060
\(635\) −16.0000 −0.634941
\(636\) −5.00000 −0.198263
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) 10.0000 0.395594
\(640\) −3.00000 −0.118585
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) −18.0000 −0.710403
\(643\) −2.00000 −0.0788723 −0.0394362 0.999222i \(-0.512556\pi\)
−0.0394362 + 0.999222i \(0.512556\pi\)
\(644\) −1.00000 −0.0394055
\(645\) 11.0000 0.433125
\(646\) 3.00000 0.118033
\(647\) 38.0000 1.49393 0.746967 0.664861i \(-0.231509\pi\)
0.746967 + 0.664861i \(0.231509\pi\)
\(648\) −3.00000 −0.117851
\(649\) 0 0
\(650\) −4.00000 −0.156893
\(651\) 8.00000 0.313545
\(652\) −3.00000 −0.117489
\(653\) 4.00000 0.156532 0.0782660 0.996933i \(-0.475062\pi\)
0.0782660 + 0.996933i \(0.475062\pi\)
\(654\) −16.0000 −0.625650
\(655\) −21.0000 −0.820538
\(656\) −1.00000 −0.0390434
\(657\) −30.0000 −1.17041
\(658\) −4.00000 −0.155936
\(659\) −27.0000 −1.05177 −0.525885 0.850555i \(-0.676266\pi\)
−0.525885 + 0.850555i \(0.676266\pi\)
\(660\) 0 0
\(661\) 26.0000 1.01128 0.505641 0.862744i \(-0.331256\pi\)
0.505641 + 0.862744i \(0.331256\pi\)
\(662\) 8.00000 0.310929
\(663\) −12.0000 −0.466041
\(664\) −12.0000 −0.465690
\(665\) −1.00000 −0.0387783
\(666\) −6.00000 −0.232495
\(667\) −10.0000 −0.387202
\(668\) −8.00000 −0.309529
\(669\) −15.0000 −0.579934
\(670\) −6.00000 −0.231800
\(671\) 0 0
\(672\) −5.00000 −0.192879
\(673\) 1.00000 0.0385472 0.0192736 0.999814i \(-0.493865\pi\)
0.0192736 + 0.999814i \(0.493865\pi\)
\(674\) −34.0000 −1.30963
\(675\) 5.00000 0.192450
\(676\) −3.00000 −0.115385
\(677\) −8.00000 −0.307465 −0.153732 0.988113i \(-0.549129\pi\)
−0.153732 + 0.988113i \(0.549129\pi\)
\(678\) −1.00000 −0.0384048
\(679\) 14.0000 0.537271
\(680\) 9.00000 0.345134
\(681\) 15.0000 0.574801
\(682\) 0 0
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) −2.00000 −0.0764719
\(685\) 12.0000 0.458496
\(686\) 1.00000 0.0381802
\(687\) −24.0000 −0.915657
\(688\) 11.0000 0.419371
\(689\) 20.0000 0.761939
\(690\) −1.00000 −0.0380693
\(691\) 31.0000 1.17930 0.589648 0.807661i \(-0.299267\pi\)
0.589648 + 0.807661i \(0.299267\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −7.00000 −0.265525
\(696\) −30.0000 −1.13715
\(697\) −3.00000 −0.113633
\(698\) 4.00000 0.151402
\(699\) −14.0000 −0.529529
\(700\) −1.00000 −0.0377964
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) −20.0000 −0.754851
\(703\) −3.00000 −0.113147
\(704\) 0 0
\(705\) 4.00000 0.150649
\(706\) 13.0000 0.489261
\(707\) 14.0000 0.526524
\(708\) 14.0000 0.526152
\(709\) −21.0000 −0.788672 −0.394336 0.918966i \(-0.629025\pi\)
−0.394336 + 0.918966i \(0.629025\pi\)
\(710\) −5.00000 −0.187647
\(711\) 24.0000 0.900070
\(712\) 42.0000 1.57402
\(713\) −8.00000 −0.299602
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) 13.0000 0.485833
\(717\) 10.0000 0.373457
\(718\) −18.0000 −0.671754
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 2.00000 0.0745356
\(721\) 8.00000 0.297936
\(722\) 1.00000 0.0372161
\(723\) 17.0000 0.632237
\(724\) 21.0000 0.780459
\(725\) −10.0000 −0.371391
\(726\) 11.0000 0.408248
\(727\) −2.00000 −0.0741759 −0.0370879 0.999312i \(-0.511808\pi\)
−0.0370879 + 0.999312i \(0.511808\pi\)
\(728\) 12.0000 0.444750
\(729\) 13.0000 0.481481
\(730\) 15.0000 0.555175
\(731\) 33.0000 1.22055
\(732\) 8.00000 0.295689
\(733\) 31.0000 1.14501 0.572506 0.819901i \(-0.305971\pi\)
0.572506 + 0.819901i \(0.305971\pi\)
\(734\) −38.0000 −1.40261
\(735\) −1.00000 −0.0368856
\(736\) 5.00000 0.184302
\(737\) 0 0
\(738\) −2.00000 −0.0736210
\(739\) 6.00000 0.220714 0.110357 0.993892i \(-0.464801\pi\)
0.110357 + 0.993892i \(0.464801\pi\)
\(740\) −3.00000 −0.110282
\(741\) −4.00000 −0.146944
\(742\) −5.00000 −0.183556
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) −24.0000 −0.879883
\(745\) −5.00000 −0.183186
\(746\) −14.0000 −0.512576
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) 18.0000 0.657706
\(750\) −1.00000 −0.0365148
\(751\) −35.0000 −1.27717 −0.638584 0.769552i \(-0.720480\pi\)
−0.638584 + 0.769552i \(0.720480\pi\)
\(752\) 4.00000 0.145865
\(753\) −5.00000 −0.182210
\(754\) 40.0000 1.45671
\(755\) −11.0000 −0.400331
\(756\) −5.00000 −0.181848
\(757\) 40.0000 1.45382 0.726912 0.686730i \(-0.240955\pi\)
0.726912 + 0.686730i \(0.240955\pi\)
\(758\) −25.0000 −0.908041
\(759\) 0 0
\(760\) 3.00000 0.108821
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 16.0000 0.579619
\(763\) 16.0000 0.579239
\(764\) 6.00000 0.217072
\(765\) 6.00000 0.216930
\(766\) 27.0000 0.975550
\(767\) −56.0000 −2.02204
\(768\) 17.0000 0.613435
\(769\) −16.0000 −0.576975 −0.288487 0.957484i \(-0.593152\pi\)
−0.288487 + 0.957484i \(0.593152\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) 11.0000 0.395899
\(773\) −12.0000 −0.431610 −0.215805 0.976436i \(-0.569238\pi\)
−0.215805 + 0.976436i \(0.569238\pi\)
\(774\) 22.0000 0.790774
\(775\) −8.00000 −0.287368
\(776\) −42.0000 −1.50771
\(777\) −3.00000 −0.107624
\(778\) 27.0000 0.967997
\(779\) −1.00000 −0.0358287
\(780\) −4.00000 −0.143223
\(781\) 0 0
\(782\) −3.00000 −0.107280
\(783\) −50.0000 −1.78685
\(784\) −1.00000 −0.0357143
\(785\) 13.0000 0.463990
\(786\) 21.0000 0.749045
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 18.0000 0.641223
\(789\) −19.0000 −0.676418
\(790\) −12.0000 −0.426941
\(791\) 1.00000 0.0355559
\(792\) 0 0
\(793\) −32.0000 −1.13635
\(794\) −1.00000 −0.0354887
\(795\) 5.00000 0.177332
\(796\) 17.0000 0.602549
\(797\) −8.00000 −0.283375 −0.141687 0.989911i \(-0.545253\pi\)
−0.141687 + 0.989911i \(0.545253\pi\)
\(798\) 1.00000 0.0353996
\(799\) 12.0000 0.424529
\(800\) 5.00000 0.176777
\(801\) 28.0000 0.989331
\(802\) 10.0000 0.353112
\(803\) 0 0
\(804\) −6.00000 −0.211604
\(805\) 1.00000 0.0352454
\(806\) 32.0000 1.12715
\(807\) 18.0000 0.633630
\(808\) −42.0000 −1.47755
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 1.00000 0.0351364
\(811\) 14.0000 0.491606 0.245803 0.969320i \(-0.420948\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(812\) 10.0000 0.350931
\(813\) 15.0000 0.526073
\(814\) 0 0
\(815\) 3.00000 0.105085
\(816\) −3.00000 −0.105021
\(817\) 11.0000 0.384841
\(818\) −17.0000 −0.594391
\(819\) 8.00000 0.279543
\(820\) −1.00000 −0.0349215
\(821\) 41.0000 1.43091 0.715455 0.698659i \(-0.246219\pi\)
0.715455 + 0.698659i \(0.246219\pi\)
\(822\) −12.0000 −0.418548
\(823\) 5.00000 0.174289 0.0871445 0.996196i \(-0.472226\pi\)
0.0871445 + 0.996196i \(0.472226\pi\)
\(824\) −24.0000 −0.836080
\(825\) 0 0
\(826\) 14.0000 0.487122
\(827\) 6.00000 0.208640 0.104320 0.994544i \(-0.466733\pi\)
0.104320 + 0.994544i \(0.466733\pi\)
\(828\) 2.00000 0.0695048
\(829\) −15.0000 −0.520972 −0.260486 0.965478i \(-0.583883\pi\)
−0.260486 + 0.965478i \(0.583883\pi\)
\(830\) 4.00000 0.138842
\(831\) 10.0000 0.346896
\(832\) −28.0000 −0.970725
\(833\) −3.00000 −0.103944
\(834\) 7.00000 0.242390
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) −15.0000 −0.518166
\(839\) −42.0000 −1.45000 −0.725001 0.688748i \(-0.758161\pi\)
−0.725001 + 0.688748i \(0.758161\pi\)
\(840\) 3.00000 0.103510
\(841\) 71.0000 2.44828
\(842\) −2.00000 −0.0689246
\(843\) −22.0000 −0.757720
\(844\) 11.0000 0.378636
\(845\) 3.00000 0.103203
\(846\) 8.00000 0.275046
\(847\) −11.0000 −0.377964
\(848\) 5.00000 0.171701
\(849\) −2.00000 −0.0686398
\(850\) −3.00000 −0.102899
\(851\) 3.00000 0.102839
\(852\) −5.00000 −0.171297
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 8.00000 0.273754
\(855\) 2.00000 0.0683986
\(856\) −54.0000 −1.84568
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −5.00000 −0.170598 −0.0852989 0.996355i \(-0.527185\pi\)
−0.0852989 + 0.996355i \(0.527185\pi\)
\(860\) 11.0000 0.375097
\(861\) −1.00000 −0.0340799
\(862\) 12.0000 0.408722
\(863\) 36.0000 1.22545 0.612727 0.790295i \(-0.290072\pi\)
0.612727 + 0.790295i \(0.290072\pi\)
\(864\) 25.0000 0.850517
\(865\) −6.00000 −0.204006
\(866\) −4.00000 −0.135926
\(867\) 8.00000 0.271694
\(868\) 8.00000 0.271538
\(869\) 0 0
\(870\) 10.0000 0.339032
\(871\) 24.0000 0.813209
\(872\) −48.0000 −1.62549
\(873\) −28.0000 −0.947656
\(874\) −1.00000 −0.0338255
\(875\) 1.00000 0.0338062
\(876\) 15.0000 0.506803
\(877\) 50.0000 1.68838 0.844190 0.536044i \(-0.180082\pi\)
0.844190 + 0.536044i \(0.180082\pi\)
\(878\) 2.00000 0.0674967
\(879\) 8.00000 0.269833
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) −2.00000 −0.0673435
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) −12.0000 −0.403604
\(885\) −14.0000 −0.470605
\(886\) −16.0000 −0.537531
\(887\) −5.00000 −0.167884 −0.0839418 0.996471i \(-0.526751\pi\)
−0.0839418 + 0.996471i \(0.526751\pi\)
\(888\) 9.00000 0.302020
\(889\) −16.0000 −0.536623
\(890\) −14.0000 −0.469281
\(891\) 0 0
\(892\) −15.0000 −0.502237
\(893\) 4.00000 0.133855
\(894\) 5.00000 0.167225
\(895\) −13.0000 −0.434542
\(896\) −3.00000 −0.100223
\(897\) 4.00000 0.133556
\(898\) −24.0000 −0.800890
\(899\) 80.0000 2.66815
\(900\) 2.00000 0.0666667
\(901\) 15.0000 0.499722
\(902\) 0 0
\(903\) 11.0000 0.366057
\(904\) −3.00000 −0.0997785
\(905\) −21.0000 −0.698064
\(906\) 11.0000 0.365451
\(907\) −20.0000 −0.664089 −0.332045 0.943264i \(-0.607738\pi\)
−0.332045 + 0.943264i \(0.607738\pi\)
\(908\) 15.0000 0.497792
\(909\) −28.0000 −0.928701
\(910\) −4.00000 −0.132599
\(911\) −57.0000 −1.88849 −0.944247 0.329238i \(-0.893208\pi\)
−0.944247 + 0.329238i \(0.893208\pi\)
\(912\) −1.00000 −0.0331133
\(913\) 0 0
\(914\) −16.0000 −0.529233
\(915\) −8.00000 −0.264472
\(916\) −24.0000 −0.792982
\(917\) −21.0000 −0.693481
\(918\) −15.0000 −0.495074
\(919\) 28.0000 0.923635 0.461817 0.886975i \(-0.347198\pi\)
0.461817 + 0.886975i \(0.347198\pi\)
\(920\) −3.00000 −0.0989071
\(921\) 7.00000 0.230658
\(922\) −6.00000 −0.197599
\(923\) 20.0000 0.658308
\(924\) 0 0
\(925\) 3.00000 0.0986394
\(926\) −31.0000 −1.01872
\(927\) −16.0000 −0.525509
\(928\) −50.0000 −1.64133
\(929\) 42.0000 1.37798 0.688988 0.724773i \(-0.258055\pi\)
0.688988 + 0.724773i \(0.258055\pi\)
\(930\) 8.00000 0.262330
\(931\) −1.00000 −0.0327737
\(932\) −14.0000 −0.458585
\(933\) −12.0000 −0.392862
\(934\) 6.00000 0.196326
\(935\) 0 0
\(936\) −24.0000 −0.784465
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) −6.00000 −0.195907
\(939\) −6.00000 −0.195803
\(940\) 4.00000 0.130466
\(941\) −17.0000 −0.554184 −0.277092 0.960843i \(-0.589371\pi\)
−0.277092 + 0.960843i \(0.589371\pi\)
\(942\) −13.0000 −0.423563
\(943\) 1.00000 0.0325645
\(944\) −14.0000 −0.455661
\(945\) 5.00000 0.162650
\(946\) 0 0
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) −12.0000 −0.389742
\(949\) −60.0000 −1.94768
\(950\) −1.00000 −0.0324443
\(951\) −33.0000 −1.07010
\(952\) 9.00000 0.291692
\(953\) −21.0000 −0.680257 −0.340128 0.940379i \(-0.610471\pi\)
−0.340128 + 0.940379i \(0.610471\pi\)
\(954\) 10.0000 0.323762
\(955\) −6.00000 −0.194155
\(956\) 10.0000 0.323423
\(957\) 0 0
\(958\) 21.0000 0.678479
\(959\) 12.0000 0.387500
\(960\) −7.00000 −0.225924
\(961\) 33.0000 1.06452
\(962\) −12.0000 −0.386896
\(963\) −36.0000 −1.16008
\(964\) 17.0000 0.547533
\(965\) −11.0000 −0.354103
\(966\) −1.00000 −0.0321745
\(967\) −20.0000 −0.643157 −0.321578 0.946883i \(-0.604213\pi\)
−0.321578 + 0.946883i \(0.604213\pi\)
\(968\) 33.0000 1.06066
\(969\) −3.00000 −0.0963739
\(970\) 14.0000 0.449513
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 16.0000 0.513200
\(973\) −7.00000 −0.224410
\(974\) −42.0000 −1.34577
\(975\) 4.00000 0.128103
\(976\) −8.00000 −0.256074
\(977\) −27.0000 −0.863807 −0.431903 0.901920i \(-0.642158\pi\)
−0.431903 + 0.901920i \(0.642158\pi\)
\(978\) −3.00000 −0.0959294
\(979\) 0 0
\(980\) −1.00000 −0.0319438
\(981\) −32.0000 −1.02168
\(982\) 20.0000 0.638226
\(983\) 23.0000 0.733586 0.366793 0.930303i \(-0.380456\pi\)
0.366793 + 0.930303i \(0.380456\pi\)
\(984\) 3.00000 0.0956365
\(985\) −18.0000 −0.573528
\(986\) 30.0000 0.955395
\(987\) 4.00000 0.127321
\(988\) −4.00000 −0.127257
\(989\) −11.0000 −0.349780
\(990\) 0 0
\(991\) −53.0000 −1.68360 −0.841800 0.539789i \(-0.818504\pi\)
−0.841800 + 0.539789i \(0.818504\pi\)
\(992\) −40.0000 −1.27000
\(993\) −8.00000 −0.253872
\(994\) −5.00000 −0.158590
\(995\) −17.0000 −0.538936
\(996\) 4.00000 0.126745
\(997\) −57.0000 −1.80521 −0.902604 0.430472i \(-0.858347\pi\)
−0.902604 + 0.430472i \(0.858347\pi\)
\(998\) 36.0000 1.13956
\(999\) 15.0000 0.474579
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 665.2.a.d.1.1 1
3.2 odd 2 5985.2.a.d.1.1 1
5.4 even 2 3325.2.a.e.1.1 1
7.6 odd 2 4655.2.a.q.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
665.2.a.d.1.1 1 1.1 even 1 trivial
3325.2.a.e.1.1 1 5.4 even 2
4655.2.a.q.1.1 1 7.6 odd 2
5985.2.a.d.1.1 1 3.2 odd 2