Properties

Label 672.2.bi.c.17.3
Level $672$
Weight $2$
Character 672.17
Analytic conductor $5.366$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,2,Mod(17,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 672.17
Dual form 672.2.bi.c.593.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69273 + 0.366975i) q^{3} +(2.66818 - 1.54047i) q^{5} +(1.46307 - 2.20441i) q^{7} +(2.73066 - 1.24238i) q^{9} +(0.621780 - 1.07696i) q^{11} -5.98957 q^{13} +(-3.95119 + 3.58676i) q^{15} +(0.595854 - 1.03205i) q^{17} +(-0.614126 - 1.06370i) q^{19} +(-1.66761 + 4.26838i) q^{21} +(2.56956 - 1.48354i) q^{23} +(2.24612 - 3.89040i) q^{25} +(-4.16634 + 3.10509i) q^{27} -3.19900 q^{29} +(-1.33987 - 0.773574i) q^{31} +(-0.657290 + 2.05117i) q^{33} +(0.507883 - 8.13559i) q^{35} +(-0.334978 + 0.193399i) q^{37} +(10.1387 - 2.19802i) q^{39} +9.44060 q^{41} -8.29057i q^{43} +(5.37204 - 7.52140i) q^{45} +(-3.34244 - 5.78928i) q^{47} +(-2.71887 - 6.45041i) q^{49} +(-0.629882 + 1.96564i) q^{51} +(5.25317 - 9.09875i) q^{53} -3.83135i q^{55} +(1.42990 + 1.57518i) q^{57} +(3.22898 + 1.86425i) q^{59} +(3.16493 + 5.48181i) q^{61} +(1.25642 - 7.83718i) q^{63} +(-15.9813 + 9.22678i) q^{65} +(10.7324 + 6.19634i) q^{67} +(-3.80515 + 3.45419i) q^{69} +6.21100i q^{71} +(-8.92963 - 5.15552i) q^{73} +(-2.37440 + 7.40966i) q^{75} +(-1.46435 - 2.94632i) q^{77} +(6.41425 + 11.1098i) q^{79} +(5.91299 - 6.78502i) q^{81} -5.22882i q^{83} -3.67159i q^{85} +(5.41505 - 1.17396i) q^{87} +(-6.94090 - 12.0220i) q^{89} +(-8.76314 + 13.2035i) q^{91} +(2.55192 + 0.817752i) q^{93} +(-3.27720 - 1.89209i) q^{95} +17.1489i q^{97} +(0.359884 - 3.71328i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{7} - 14 q^{9} - 4 q^{15} - 8 q^{25} - 48 q^{31} - 42 q^{33} + 8 q^{39} - 36 q^{49} + 4 q^{57} + 6 q^{63} - 36 q^{73} + 56 q^{79} + 42 q^{81} + 132 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.69273 + 0.366975i −0.977297 + 0.211873i
\(4\) 0 0
\(5\) 2.66818 1.54047i 1.19325 0.688921i 0.234205 0.972187i \(-0.424751\pi\)
0.959041 + 0.283266i \(0.0914180\pi\)
\(6\) 0 0
\(7\) 1.46307 2.20441i 0.552987 0.833190i
\(8\) 0 0
\(9\) 2.73066 1.24238i 0.910220 0.414126i
\(10\) 0 0
\(11\) 0.621780 1.07696i 0.187474 0.324714i −0.756933 0.653492i \(-0.773303\pi\)
0.944407 + 0.328778i \(0.106637\pi\)
\(12\) 0 0
\(13\) −5.98957 −1.66121 −0.830604 0.556864i \(-0.812005\pi\)
−0.830604 + 0.556864i \(0.812005\pi\)
\(14\) 0 0
\(15\) −3.95119 + 3.58676i −1.02019 + 0.926098i
\(16\) 0 0
\(17\) 0.595854 1.03205i 0.144516 0.250309i −0.784676 0.619906i \(-0.787171\pi\)
0.929192 + 0.369597i \(0.120504\pi\)
\(18\) 0 0
\(19\) −0.614126 1.06370i −0.140890 0.244029i 0.786942 0.617027i \(-0.211663\pi\)
−0.927832 + 0.372998i \(0.878330\pi\)
\(20\) 0 0
\(21\) −1.66761 + 4.26838i −0.363902 + 0.931437i
\(22\) 0 0
\(23\) 2.56956 1.48354i 0.535791 0.309339i −0.207581 0.978218i \(-0.566559\pi\)
0.743371 + 0.668879i \(0.233226\pi\)
\(24\) 0 0
\(25\) 2.24612 3.89040i 0.449225 0.778080i
\(26\) 0 0
\(27\) −4.16634 + 3.10509i −0.801813 + 0.597575i
\(28\) 0 0
\(29\) −3.19900 −0.594040 −0.297020 0.954871i \(-0.595993\pi\)
−0.297020 + 0.954871i \(0.595993\pi\)
\(30\) 0 0
\(31\) −1.33987 0.773574i −0.240648 0.138938i 0.374827 0.927095i \(-0.377702\pi\)
−0.615474 + 0.788157i \(0.711036\pi\)
\(32\) 0 0
\(33\) −0.657290 + 2.05117i −0.114419 + 0.357063i
\(34\) 0 0
\(35\) 0.507883 8.13559i 0.0858478 1.37517i
\(36\) 0 0
\(37\) −0.334978 + 0.193399i −0.0550700 + 0.0317947i −0.527282 0.849690i \(-0.676789\pi\)
0.472212 + 0.881485i \(0.343456\pi\)
\(38\) 0 0
\(39\) 10.1387 2.19802i 1.62349 0.351965i
\(40\) 0 0
\(41\) 9.44060 1.47437 0.737187 0.675689i \(-0.236154\pi\)
0.737187 + 0.675689i \(0.236154\pi\)
\(42\) 0 0
\(43\) 8.29057i 1.26430i −0.774846 0.632150i \(-0.782173\pi\)
0.774846 0.632150i \(-0.217827\pi\)
\(44\) 0 0
\(45\) 5.37204 7.52140i 0.800816 1.12122i
\(46\) 0 0
\(47\) −3.34244 5.78928i −0.487546 0.844454i 0.512352 0.858776i \(-0.328774\pi\)
−0.999897 + 0.0143219i \(0.995441\pi\)
\(48\) 0 0
\(49\) −2.71887 6.45041i −0.388410 0.921486i
\(50\) 0 0
\(51\) −0.629882 + 1.96564i −0.0882012 + 0.275245i
\(52\) 0 0
\(53\) 5.25317 9.09875i 0.721578 1.24981i −0.238789 0.971071i \(-0.576750\pi\)
0.960367 0.278738i \(-0.0899162\pi\)
\(54\) 0 0
\(55\) 3.83135i 0.516619i
\(56\) 0 0
\(57\) 1.42990 + 1.57518i 0.189395 + 0.208638i
\(58\) 0 0
\(59\) 3.22898 + 1.86425i 0.420377 + 0.242705i 0.695238 0.718779i \(-0.255299\pi\)
−0.274862 + 0.961484i \(0.588632\pi\)
\(60\) 0 0
\(61\) 3.16493 + 5.48181i 0.405227 + 0.701874i 0.994348 0.106171i \(-0.0338590\pi\)
−0.589121 + 0.808045i \(0.700526\pi\)
\(62\) 0 0
\(63\) 1.25642 7.83718i 0.158294 0.987392i
\(64\) 0 0
\(65\) −15.9813 + 9.22678i −1.98223 + 1.14444i
\(66\) 0 0
\(67\) 10.7324 + 6.19634i 1.31117 + 0.757003i 0.982290 0.187369i \(-0.0599961\pi\)
0.328878 + 0.944372i \(0.393329\pi\)
\(68\) 0 0
\(69\) −3.80515 + 3.45419i −0.458086 + 0.415836i
\(70\) 0 0
\(71\) 6.21100i 0.737110i 0.929606 + 0.368555i \(0.120147\pi\)
−0.929606 + 0.368555i \(0.879853\pi\)
\(72\) 0 0
\(73\) −8.92963 5.15552i −1.04513 0.603408i −0.123851 0.992301i \(-0.539524\pi\)
−0.921283 + 0.388893i \(0.872858\pi\)
\(74\) 0 0
\(75\) −2.37440 + 7.40966i −0.274172 + 0.855594i
\(76\) 0 0
\(77\) −1.46435 2.94632i −0.166878 0.335764i
\(78\) 0 0
\(79\) 6.41425 + 11.1098i 0.721660 + 1.24995i 0.960334 + 0.278852i \(0.0899539\pi\)
−0.238674 + 0.971100i \(0.576713\pi\)
\(80\) 0 0
\(81\) 5.91299 6.78502i 0.656999 0.753891i
\(82\) 0 0
\(83\) 5.22882i 0.573938i −0.957940 0.286969i \(-0.907352\pi\)
0.957940 0.286969i \(-0.0926476\pi\)
\(84\) 0 0
\(85\) 3.67159i 0.398240i
\(86\) 0 0
\(87\) 5.41505 1.17396i 0.580554 0.125861i
\(88\) 0 0
\(89\) −6.94090 12.0220i −0.735734 1.27433i −0.954400 0.298529i \(-0.903504\pi\)
0.218666 0.975800i \(-0.429829\pi\)
\(90\) 0 0
\(91\) −8.76314 + 13.2035i −0.918627 + 1.38410i
\(92\) 0 0
\(93\) 2.55192 + 0.817752i 0.264621 + 0.0847969i
\(94\) 0 0
\(95\) −3.27720 1.89209i −0.336233 0.194124i
\(96\) 0 0
\(97\) 17.1489i 1.74120i 0.491989 + 0.870601i \(0.336270\pi\)
−0.491989 + 0.870601i \(0.663730\pi\)
\(98\) 0 0
\(99\) 0.359884 3.71328i 0.0361697 0.373199i
\(100\) 0 0
\(101\) 2.87413 + 1.65938i 0.285986 + 0.165114i 0.636130 0.771582i \(-0.280534\pi\)
−0.350144 + 0.936696i \(0.613867\pi\)
\(102\) 0 0
\(103\) −10.7667 + 6.21615i −1.06087 + 0.612496i −0.925674 0.378322i \(-0.876501\pi\)
−0.135200 + 0.990818i \(0.543168\pi\)
\(104\) 0 0
\(105\) 2.12585 + 13.9577i 0.207462 + 1.36213i
\(106\) 0 0
\(107\) 4.79031 + 8.29706i 0.463097 + 0.802107i 0.999113 0.0421002i \(-0.0134049\pi\)
−0.536017 + 0.844207i \(0.680072\pi\)
\(108\) 0 0
\(109\) −0.510424 0.294693i −0.0488898 0.0282265i 0.475356 0.879794i \(-0.342319\pi\)
−0.524246 + 0.851567i \(0.675653\pi\)
\(110\) 0 0
\(111\) 0.496053 0.450301i 0.0470833 0.0427407i
\(112\) 0 0
\(113\) 7.02041i 0.660425i −0.943907 0.330212i \(-0.892880\pi\)
0.943907 0.330212i \(-0.107120\pi\)
\(114\) 0 0
\(115\) 4.57070 7.91669i 0.426220 0.738235i
\(116\) 0 0
\(117\) −16.3555 + 7.44131i −1.51206 + 0.687950i
\(118\) 0 0
\(119\) −1.40329 2.82346i −0.128639 0.258827i
\(120\) 0 0
\(121\) 4.72678 + 8.18702i 0.429707 + 0.744275i
\(122\) 0 0
\(123\) −15.9804 + 3.46446i −1.44090 + 0.312380i
\(124\) 0 0
\(125\) 1.56436i 0.139921i
\(126\) 0 0
\(127\) 5.88744 0.522426 0.261213 0.965281i \(-0.415877\pi\)
0.261213 + 0.965281i \(0.415877\pi\)
\(128\) 0 0
\(129\) 3.04243 + 14.0337i 0.267871 + 1.23560i
\(130\) 0 0
\(131\) 3.67922 2.12420i 0.321455 0.185592i −0.330586 0.943776i \(-0.607246\pi\)
0.652041 + 0.758184i \(0.273913\pi\)
\(132\) 0 0
\(133\) −3.24333 0.202473i −0.281233 0.0175566i
\(134\) 0 0
\(135\) −6.33323 + 14.7031i −0.545078 + 1.26544i
\(136\) 0 0
\(137\) −0.674838 0.389618i −0.0576553 0.0332873i 0.470895 0.882189i \(-0.343931\pi\)
−0.528551 + 0.848902i \(0.677264\pi\)
\(138\) 0 0
\(139\) −5.54714 −0.470502 −0.235251 0.971935i \(-0.575591\pi\)
−0.235251 + 0.971935i \(0.575591\pi\)
\(140\) 0 0
\(141\) 7.78237 + 8.57309i 0.655394 + 0.721984i
\(142\) 0 0
\(143\) −3.72420 + 6.45050i −0.311433 + 0.539418i
\(144\) 0 0
\(145\) −8.53552 + 4.92798i −0.708836 + 0.409247i
\(146\) 0 0
\(147\) 6.96945 + 9.92102i 0.574831 + 0.818272i
\(148\) 0 0
\(149\) 2.07219 + 3.58914i 0.169761 + 0.294034i 0.938336 0.345726i \(-0.112367\pi\)
−0.768575 + 0.639760i \(0.779034\pi\)
\(150\) 0 0
\(151\) −2.16486 + 3.74965i −0.176174 + 0.305142i −0.940567 0.339608i \(-0.889705\pi\)
0.764393 + 0.644751i \(0.223039\pi\)
\(152\) 0 0
\(153\) 0.344878 3.55845i 0.0278817 0.287684i
\(154\) 0 0
\(155\) −4.76668 −0.382869
\(156\) 0 0
\(157\) −3.21017 + 5.56018i −0.256200 + 0.443751i −0.965221 0.261437i \(-0.915804\pi\)
0.709021 + 0.705187i \(0.249137\pi\)
\(158\) 0 0
\(159\) −5.55317 + 17.3295i −0.440395 + 1.37432i
\(160\) 0 0
\(161\) 0.489111 7.83489i 0.0385473 0.617476i
\(162\) 0 0
\(163\) 9.18195 5.30120i 0.719186 0.415222i −0.0952672 0.995452i \(-0.530371\pi\)
0.814453 + 0.580230i \(0.197037\pi\)
\(164\) 0 0
\(165\) 1.40601 + 6.48543i 0.109458 + 0.504890i
\(166\) 0 0
\(167\) −15.5718 −1.20498 −0.602492 0.798125i \(-0.705825\pi\)
−0.602492 + 0.798125i \(0.705825\pi\)
\(168\) 0 0
\(169\) 22.8750 1.75961
\(170\) 0 0
\(171\) −2.99848 2.14162i −0.229300 0.163774i
\(172\) 0 0
\(173\) −1.61807 + 0.934192i −0.123019 + 0.0710253i −0.560247 0.828326i \(-0.689294\pi\)
0.437228 + 0.899351i \(0.355960\pi\)
\(174\) 0 0
\(175\) −5.28982 10.6433i −0.399873 0.804558i
\(176\) 0 0
\(177\) −6.14991 1.97071i −0.462256 0.148128i
\(178\) 0 0
\(179\) 7.73124 13.3909i 0.577860 1.00088i −0.417864 0.908509i \(-0.637221\pi\)
0.995724 0.0923734i \(-0.0294454\pi\)
\(180\) 0 0
\(181\) 16.6129 1.23483 0.617415 0.786638i \(-0.288180\pi\)
0.617415 + 0.786638i \(0.288180\pi\)
\(182\) 0 0
\(183\) −7.36905 8.11777i −0.544736 0.600083i
\(184\) 0 0
\(185\) −0.595854 + 1.03205i −0.0438081 + 0.0758778i
\(186\) 0 0
\(187\) −0.740981 1.28342i −0.0541859 0.0938527i
\(188\) 0 0
\(189\) 0.749273 + 13.7273i 0.0545016 + 0.998514i
\(190\) 0 0
\(191\) −0.391130 + 0.225819i −0.0283012 + 0.0163397i −0.514084 0.857740i \(-0.671868\pi\)
0.485783 + 0.874080i \(0.338535\pi\)
\(192\) 0 0
\(193\) 0.859277 1.48831i 0.0618521 0.107131i −0.833441 0.552608i \(-0.813633\pi\)
0.895293 + 0.445477i \(0.146966\pi\)
\(194\) 0 0
\(195\) 23.6659 21.4832i 1.69475 1.53844i
\(196\) 0 0
\(197\) 16.4222 1.17003 0.585017 0.811021i \(-0.301088\pi\)
0.585017 + 0.811021i \(0.301088\pi\)
\(198\) 0 0
\(199\) −0.839396 0.484625i −0.0595032 0.0343542i 0.469953 0.882691i \(-0.344271\pi\)
−0.529456 + 0.848337i \(0.677604\pi\)
\(200\) 0 0
\(201\) −20.4409 6.55020i −1.44179 0.462016i
\(202\) 0 0
\(203\) −4.68036 + 7.05193i −0.328497 + 0.494948i
\(204\) 0 0
\(205\) 25.1892 14.5430i 1.75929 1.01573i
\(206\) 0 0
\(207\) 5.17348 7.24340i 0.359582 0.503451i
\(208\) 0 0
\(209\) −1.52741 −0.105653
\(210\) 0 0
\(211\) 9.99340i 0.687974i 0.938974 + 0.343987i \(0.111778\pi\)
−0.938974 + 0.343987i \(0.888222\pi\)
\(212\) 0 0
\(213\) −2.27928 10.5135i −0.156174 0.720375i
\(214\) 0 0
\(215\) −12.7714 22.1207i −0.871003 1.50862i
\(216\) 0 0
\(217\) −3.66559 + 1.82184i −0.248837 + 0.123674i
\(218\) 0 0
\(219\) 17.0074 + 5.44995i 1.14925 + 0.368273i
\(220\) 0 0
\(221\) −3.56891 + 6.18153i −0.240071 + 0.415815i
\(222\) 0 0
\(223\) 13.7534i 0.920996i −0.887661 0.460498i \(-0.847671\pi\)
0.887661 0.460498i \(-0.152329\pi\)
\(224\) 0 0
\(225\) 1.30005 13.4139i 0.0866699 0.894259i
\(226\) 0 0
\(227\) −4.13075 2.38489i −0.274167 0.158291i 0.356613 0.934252i \(-0.383932\pi\)
−0.630780 + 0.775962i \(0.717265\pi\)
\(228\) 0 0
\(229\) 0.743202 + 1.28726i 0.0491122 + 0.0850648i 0.889536 0.456864i \(-0.151027\pi\)
−0.840424 + 0.541929i \(0.817694\pi\)
\(230\) 0 0
\(231\) 3.55997 + 4.44994i 0.234229 + 0.292784i
\(232\) 0 0
\(233\) −2.00188 + 1.15579i −0.131148 + 0.0757182i −0.564139 0.825680i \(-0.690792\pi\)
0.432991 + 0.901398i \(0.357458\pi\)
\(234\) 0 0
\(235\) −17.8365 10.2979i −1.16352 0.671761i
\(236\) 0 0
\(237\) −14.9346 16.4520i −0.970108 1.06867i
\(238\) 0 0
\(239\) 21.6031i 1.39739i 0.715420 + 0.698695i \(0.246235\pi\)
−0.715420 + 0.698695i \(0.753765\pi\)
\(240\) 0 0
\(241\) 3.38489 + 1.95427i 0.218040 + 0.125885i 0.605042 0.796193i \(-0.293156\pi\)
−0.387002 + 0.922079i \(0.626489\pi\)
\(242\) 0 0
\(243\) −7.51916 + 13.6551i −0.482354 + 0.875976i
\(244\) 0 0
\(245\) −17.1911 13.0225i −1.09830 0.831976i
\(246\) 0 0
\(247\) 3.67835 + 6.37109i 0.234048 + 0.405383i
\(248\) 0 0
\(249\) 1.91885 + 8.85097i 0.121602 + 0.560908i
\(250\) 0 0
\(251\) 15.6528i 0.987995i 0.869463 + 0.493997i \(0.164465\pi\)
−0.869463 + 0.493997i \(0.835535\pi\)
\(252\) 0 0
\(253\) 3.68974i 0.231972i
\(254\) 0 0
\(255\) 1.34738 + 6.21501i 0.0843764 + 0.389199i
\(256\) 0 0
\(257\) 6.53148 + 11.3128i 0.407422 + 0.705676i 0.994600 0.103782i \(-0.0330944\pi\)
−0.587178 + 0.809458i \(0.699761\pi\)
\(258\) 0 0
\(259\) −0.0637623 + 1.02139i −0.00396200 + 0.0634658i
\(260\) 0 0
\(261\) −8.73539 + 3.97437i −0.540707 + 0.246008i
\(262\) 0 0
\(263\) 26.2857 + 15.1761i 1.62085 + 0.935796i 0.986694 + 0.162586i \(0.0519836\pi\)
0.634151 + 0.773209i \(0.281350\pi\)
\(264\) 0 0
\(265\) 32.3695i 1.98844i
\(266\) 0 0
\(267\) 16.1608 + 17.8028i 0.989027 + 1.08952i
\(268\) 0 0
\(269\) 0.684713 + 0.395319i 0.0417477 + 0.0241030i 0.520729 0.853722i \(-0.325660\pi\)
−0.478981 + 0.877825i \(0.658994\pi\)
\(270\) 0 0
\(271\) 4.95134 2.85866i 0.300773 0.173651i −0.342017 0.939694i \(-0.611110\pi\)
0.642790 + 0.766043i \(0.277777\pi\)
\(272\) 0 0
\(273\) 9.98826 25.5658i 0.604517 1.54731i
\(274\) 0 0
\(275\) −2.79319 4.83795i −0.168436 0.291739i
\(276\) 0 0
\(277\) −15.4143 8.89945i −0.926156 0.534716i −0.0405619 0.999177i \(-0.512915\pi\)
−0.885594 + 0.464461i \(0.846248\pi\)
\(278\) 0 0
\(279\) −4.61980 0.447742i −0.276580 0.0268056i
\(280\) 0 0
\(281\) 27.9140i 1.66521i 0.553866 + 0.832606i \(0.313152\pi\)
−0.553866 + 0.832606i \(0.686848\pi\)
\(282\) 0 0
\(283\) −1.81190 + 3.13830i −0.107706 + 0.186552i −0.914841 0.403815i \(-0.867684\pi\)
0.807134 + 0.590368i \(0.201017\pi\)
\(284\) 0 0
\(285\) 6.24175 + 2.00015i 0.369729 + 0.118478i
\(286\) 0 0
\(287\) 13.8122 20.8110i 0.815309 1.22843i
\(288\) 0 0
\(289\) 7.78992 + 13.4925i 0.458230 + 0.793678i
\(290\) 0 0
\(291\) −6.29320 29.0284i −0.368914 1.70167i
\(292\) 0 0
\(293\) 9.77037i 0.570791i 0.958410 + 0.285396i \(0.0921250\pi\)
−0.958410 + 0.285396i \(0.907875\pi\)
\(294\) 0 0
\(295\) 11.4873 0.668817
\(296\) 0 0
\(297\) 0.753496 + 6.41765i 0.0437223 + 0.372390i
\(298\) 0 0
\(299\) −15.3906 + 8.88575i −0.890059 + 0.513876i
\(300\) 0 0
\(301\) −18.2758 12.1296i −1.05340 0.699141i
\(302\) 0 0
\(303\) −5.47407 1.75414i −0.314477 0.100773i
\(304\) 0 0
\(305\) 16.8892 + 9.75098i 0.967072 + 0.558339i
\(306\) 0 0
\(307\) −9.56907 −0.546136 −0.273068 0.961995i \(-0.588038\pi\)
−0.273068 + 0.961995i \(0.588038\pi\)
\(308\) 0 0
\(309\) 15.9439 14.4734i 0.907018 0.823361i
\(310\) 0 0
\(311\) 8.85168 15.3316i 0.501933 0.869373i −0.498065 0.867140i \(-0.665956\pi\)
0.999998 0.00223345i \(-0.000710930\pi\)
\(312\) 0 0
\(313\) −9.93451 + 5.73569i −0.561532 + 0.324200i −0.753760 0.657150i \(-0.771762\pi\)
0.192228 + 0.981350i \(0.438429\pi\)
\(314\) 0 0
\(315\) −8.72062 22.8465i −0.491351 1.28725i
\(316\) 0 0
\(317\) 1.15640 + 2.00294i 0.0649499 + 0.112497i 0.896672 0.442696i \(-0.145978\pi\)
−0.831722 + 0.555193i \(0.812645\pi\)
\(318\) 0 0
\(319\) −1.98908 + 3.44519i −0.111367 + 0.192893i
\(320\) 0 0
\(321\) −11.1535 12.2867i −0.622528 0.685779i
\(322\) 0 0
\(323\) −1.46372 −0.0814434
\(324\) 0 0
\(325\) −13.4533 + 23.3018i −0.746256 + 1.29255i
\(326\) 0 0
\(327\) 0.972154 + 0.311523i 0.0537603 + 0.0172273i
\(328\) 0 0
\(329\) −17.6522 1.10198i −0.973197 0.0607540i
\(330\) 0 0
\(331\) −20.7165 + 11.9607i −1.13868 + 0.657418i −0.946104 0.323863i \(-0.895018\pi\)
−0.192578 + 0.981282i \(0.561685\pi\)
\(332\) 0 0
\(333\) −0.674434 + 0.944277i −0.0369588 + 0.0517461i
\(334\) 0 0
\(335\) 38.1812 2.08606
\(336\) 0 0
\(337\) −25.6463 −1.39704 −0.698522 0.715589i \(-0.746159\pi\)
−0.698522 + 0.715589i \(0.746159\pi\)
\(338\) 0 0
\(339\) 2.57632 + 11.8836i 0.139926 + 0.645431i
\(340\) 0 0
\(341\) −1.66621 + 0.961986i −0.0902303 + 0.0520945i
\(342\) 0 0
\(343\) −18.1972 3.44385i −0.982559 0.185950i
\(344\) 0 0
\(345\) −4.83173 + 15.0781i −0.260132 + 0.811779i
\(346\) 0 0
\(347\) 0.473950 0.820906i 0.0254430 0.0440686i −0.853024 0.521872i \(-0.825234\pi\)
0.878467 + 0.477804i \(0.158567\pi\)
\(348\) 0 0
\(349\) 14.1965 0.759919 0.379960 0.925003i \(-0.375938\pi\)
0.379960 + 0.925003i \(0.375938\pi\)
\(350\) 0 0
\(351\) 24.9546 18.5982i 1.33198 0.992697i
\(352\) 0 0
\(353\) 7.75978 13.4403i 0.413011 0.715356i −0.582206 0.813041i \(-0.697810\pi\)
0.995217 + 0.0976847i \(0.0311437\pi\)
\(354\) 0 0
\(355\) 9.56788 + 16.5721i 0.507810 + 0.879553i
\(356\) 0 0
\(357\) 3.41153 + 4.26439i 0.180557 + 0.225695i
\(358\) 0 0
\(359\) −12.2735 + 7.08613i −0.647772 + 0.373991i −0.787602 0.616184i \(-0.788678\pi\)
0.139830 + 0.990176i \(0.455344\pi\)
\(360\) 0 0
\(361\) 8.74570 15.1480i 0.460300 0.797263i
\(362\) 0 0
\(363\) −11.0056 12.1238i −0.577643 0.636334i
\(364\) 0 0
\(365\) −31.7678 −1.66280
\(366\) 0 0
\(367\) 11.5602 + 6.67430i 0.603439 + 0.348396i 0.770393 0.637569i \(-0.220060\pi\)
−0.166954 + 0.985965i \(0.553393\pi\)
\(368\) 0 0
\(369\) 25.7790 11.7288i 1.34200 0.610576i
\(370\) 0 0
\(371\) −12.3717 24.8922i −0.642305 1.29234i
\(372\) 0 0
\(373\) −4.56967 + 2.63830i −0.236609 + 0.136606i −0.613617 0.789604i \(-0.710286\pi\)
0.377008 + 0.926210i \(0.376953\pi\)
\(374\) 0 0
\(375\) −0.574082 2.64804i −0.0296455 0.136744i
\(376\) 0 0
\(377\) 19.1607 0.986824
\(378\) 0 0
\(379\) 15.3619i 0.789086i −0.918877 0.394543i \(-0.870903\pi\)
0.918877 0.394543i \(-0.129097\pi\)
\(380\) 0 0
\(381\) −9.96584 + 2.16054i −0.510565 + 0.110688i
\(382\) 0 0
\(383\) −1.35424 2.34561i −0.0691983 0.119855i 0.829350 0.558729i \(-0.188711\pi\)
−0.898549 + 0.438874i \(0.855377\pi\)
\(384\) 0 0
\(385\) −8.44587 5.60552i −0.430442 0.285684i
\(386\) 0 0
\(387\) −10.3000 22.6387i −0.523579 1.15079i
\(388\) 0 0
\(389\) 6.35306 11.0038i 0.322113 0.557916i −0.658811 0.752308i \(-0.728940\pi\)
0.980924 + 0.194393i \(0.0622736\pi\)
\(390\) 0 0
\(391\) 3.53589i 0.178817i
\(392\) 0 0
\(393\) −5.44840 + 4.94588i −0.274835 + 0.249487i
\(394\) 0 0
\(395\) 34.2288 + 19.7620i 1.72224 + 0.994334i
\(396\) 0 0
\(397\) 11.9617 + 20.7184i 0.600343 + 1.03982i 0.992769 + 0.120041i \(0.0383026\pi\)
−0.392426 + 0.919784i \(0.628364\pi\)
\(398\) 0 0
\(399\) 5.56439 0.847492i 0.278568 0.0424277i
\(400\) 0 0
\(401\) 23.5968 13.6236i 1.17837 0.680331i 0.222731 0.974880i \(-0.428503\pi\)
0.955636 + 0.294549i \(0.0951694\pi\)
\(402\) 0 0
\(403\) 8.02524 + 4.63338i 0.399766 + 0.230805i
\(404\) 0 0
\(405\) 5.32478 27.2125i 0.264590 1.35220i
\(406\) 0 0
\(407\) 0.481008i 0.0238427i
\(408\) 0 0
\(409\) 6.82328 + 3.93942i 0.337390 + 0.194792i 0.659117 0.752040i \(-0.270930\pi\)
−0.321727 + 0.946832i \(0.604263\pi\)
\(410\) 0 0
\(411\) 1.28530 + 0.411869i 0.0633991 + 0.0203160i
\(412\) 0 0
\(413\) 8.83378 4.39047i 0.434682 0.216041i
\(414\) 0 0
\(415\) −8.05487 13.9514i −0.395398 0.684849i
\(416\) 0 0
\(417\) 9.38980 2.03566i 0.459820 0.0996868i
\(418\) 0 0
\(419\) 19.8589i 0.970173i 0.874466 + 0.485086i \(0.161212\pi\)
−0.874466 + 0.485086i \(0.838788\pi\)
\(420\) 0 0
\(421\) 16.6507i 0.811505i 0.913983 + 0.405753i \(0.132991\pi\)
−0.913983 + 0.405753i \(0.867009\pi\)
\(422\) 0 0
\(423\) −16.3196 11.6560i −0.793484 0.566733i
\(424\) 0 0
\(425\) −2.67672 4.63622i −0.129840 0.224890i
\(426\) 0 0
\(427\) 16.7147 + 1.04345i 0.808880 + 0.0504962i
\(428\) 0 0
\(429\) 3.93688 12.2856i 0.190074 0.593156i
\(430\) 0 0
\(431\) −19.8541 11.4628i −0.956339 0.552142i −0.0612944 0.998120i \(-0.519523\pi\)
−0.895044 + 0.445977i \(0.852856\pi\)
\(432\) 0 0
\(433\) 10.5825i 0.508564i 0.967130 + 0.254282i \(0.0818392\pi\)
−0.967130 + 0.254282i \(0.918161\pi\)
\(434\) 0 0
\(435\) 12.6399 11.4741i 0.606035 0.550139i
\(436\) 0 0
\(437\) −3.15607 1.82216i −0.150975 0.0871656i
\(438\) 0 0
\(439\) 6.69332 3.86439i 0.319455 0.184437i −0.331695 0.943387i \(-0.607620\pi\)
0.651150 + 0.758949i \(0.274287\pi\)
\(440\) 0 0
\(441\) −15.4382 14.2360i −0.735150 0.677904i
\(442\) 0 0
\(443\) −2.28548 3.95856i −0.108586 0.188077i 0.806611 0.591082i \(-0.201299\pi\)
−0.915198 + 0.403005i \(0.867966\pi\)
\(444\) 0 0
\(445\) −37.0392 21.3846i −1.75582 1.01373i
\(446\) 0 0
\(447\) −4.82478 5.31500i −0.228204 0.251391i
\(448\) 0 0
\(449\) 4.33700i 0.204676i 0.994750 + 0.102338i \(0.0326323\pi\)
−0.994750 + 0.102338i \(0.967368\pi\)
\(450\) 0 0
\(451\) 5.86998 10.1671i 0.276406 0.478750i
\(452\) 0 0
\(453\) 2.28849 7.14159i 0.107523 0.335541i
\(454\) 0 0
\(455\) −3.04200 + 48.7287i −0.142611 + 2.28444i
\(456\) 0 0
\(457\) −9.88462 17.1207i −0.462383 0.800871i 0.536696 0.843776i \(-0.319672\pi\)
−0.999079 + 0.0429048i \(0.986339\pi\)
\(458\) 0 0
\(459\) 0.722078 + 6.15005i 0.0337037 + 0.287060i
\(460\) 0 0
\(461\) 25.3326i 1.17986i 0.807455 + 0.589929i \(0.200844\pi\)
−0.807455 + 0.589929i \(0.799156\pi\)
\(462\) 0 0
\(463\) −20.9574 −0.973975 −0.486988 0.873409i \(-0.661904\pi\)
−0.486988 + 0.873409i \(0.661904\pi\)
\(464\) 0 0
\(465\) 8.06870 1.74925i 0.374177 0.0811197i
\(466\) 0 0
\(467\) 26.9170 15.5406i 1.24557 0.719131i 0.275348 0.961345i \(-0.411207\pi\)
0.970223 + 0.242214i \(0.0778735\pi\)
\(468\) 0 0
\(469\) 29.3615 14.5929i 1.35579 0.673839i
\(470\) 0 0
\(471\) 3.39350 10.5899i 0.156364 0.487958i
\(472\) 0 0
\(473\) −8.92857 5.15491i −0.410536 0.237023i
\(474\) 0 0
\(475\) −5.51761 −0.253165
\(476\) 0 0
\(477\) 3.04051 31.3720i 0.139216 1.43643i
\(478\) 0 0
\(479\) −17.0894 + 29.5997i −0.780835 + 1.35245i 0.150620 + 0.988592i \(0.451873\pi\)
−0.931456 + 0.363855i \(0.881460\pi\)
\(480\) 0 0
\(481\) 2.00637 1.15838i 0.0914827 0.0528176i
\(482\) 0 0
\(483\) 2.04728 + 13.4418i 0.0931543 + 0.611624i
\(484\) 0 0
\(485\) 26.4174 + 45.7562i 1.19955 + 2.07768i
\(486\) 0 0
\(487\) 12.3371 21.3684i 0.559046 0.968296i −0.438531 0.898716i \(-0.644501\pi\)
0.997576 0.0695795i \(-0.0221658\pi\)
\(488\) 0 0
\(489\) −13.5971 + 12.3430i −0.614884 + 0.558171i
\(490\) 0 0
\(491\) −43.3064 −1.95439 −0.977196 0.212339i \(-0.931892\pi\)
−0.977196 + 0.212339i \(0.931892\pi\)
\(492\) 0 0
\(493\) −1.90614 + 3.30153i −0.0858482 + 0.148693i
\(494\) 0 0
\(495\) −4.75998 10.4621i −0.213945 0.470237i
\(496\) 0 0
\(497\) 13.6916 + 9.08710i 0.614152 + 0.407612i
\(498\) 0 0
\(499\) 32.3258 18.6633i 1.44710 0.835485i 0.448795 0.893635i \(-0.351853\pi\)
0.998308 + 0.0581497i \(0.0185201\pi\)
\(500\) 0 0
\(501\) 26.3589 5.71447i 1.17763 0.255304i
\(502\) 0 0
\(503\) 34.2432 1.52683 0.763414 0.645910i \(-0.223522\pi\)
0.763414 + 0.645910i \(0.223522\pi\)
\(504\) 0 0
\(505\) 10.2249 0.455003
\(506\) 0 0
\(507\) −38.7211 + 8.39454i −1.71966 + 0.372814i
\(508\) 0 0
\(509\) 24.1054 13.9173i 1.06845 0.616871i 0.140694 0.990053i \(-0.455067\pi\)
0.927758 + 0.373182i \(0.121733\pi\)
\(510\) 0 0
\(511\) −24.4295 + 12.1417i −1.08070 + 0.537118i
\(512\) 0 0
\(513\) 5.86153 + 2.52481i 0.258793 + 0.111473i
\(514\) 0 0
\(515\) −19.1517 + 33.1716i −0.843923 + 1.46172i
\(516\) 0 0
\(517\) −8.31307 −0.365608
\(518\) 0 0
\(519\) 2.39612 2.17512i 0.105178 0.0954774i
\(520\) 0 0
\(521\) 8.13261 14.0861i 0.356296 0.617123i −0.631043 0.775748i \(-0.717373\pi\)
0.987339 + 0.158625i \(0.0507061\pi\)
\(522\) 0 0
\(523\) −6.98922 12.1057i −0.305617 0.529345i 0.671781 0.740750i \(-0.265530\pi\)
−0.977399 + 0.211405i \(0.932196\pi\)
\(524\) 0 0
\(525\) 12.8601 + 16.0750i 0.561259 + 0.701570i
\(526\) 0 0
\(527\) −1.59673 + 0.921874i −0.0695548 + 0.0401575i
\(528\) 0 0
\(529\) −7.09824 + 12.2945i −0.308619 + 0.534544i
\(530\) 0 0
\(531\) 11.1333 + 1.07902i 0.483145 + 0.0468255i
\(532\) 0 0
\(533\) −56.5451 −2.44924
\(534\) 0 0
\(535\) 25.5628 + 14.7587i 1.10518 + 0.638074i
\(536\) 0 0
\(537\) −8.17276 + 25.5043i −0.352681 + 1.10059i
\(538\) 0 0
\(539\) −8.63734 1.08263i −0.372037 0.0466322i
\(540\) 0 0
\(541\) −18.9287 + 10.9285i −0.813810 + 0.469853i −0.848277 0.529552i \(-0.822360\pi\)
0.0344673 + 0.999406i \(0.489027\pi\)
\(542\) 0 0
\(543\) −28.1212 + 6.09653i −1.20680 + 0.261627i
\(544\) 0 0
\(545\) −1.81587 −0.0777834
\(546\) 0 0
\(547\) 9.11111i 0.389563i −0.980847 0.194782i \(-0.937600\pi\)
0.980847 0.194782i \(-0.0623998\pi\)
\(548\) 0 0
\(549\) 15.4528 + 11.0369i 0.659510 + 0.471044i
\(550\) 0 0
\(551\) 1.96459 + 3.40277i 0.0836944 + 0.144963i
\(552\) 0 0
\(553\) 33.8751 + 2.11473i 1.44052 + 0.0899275i
\(554\) 0 0
\(555\) 0.629882 1.96564i 0.0267370 0.0834369i
\(556\) 0 0
\(557\) −2.14436 + 3.71415i −0.0908596 + 0.157373i −0.907873 0.419245i \(-0.862295\pi\)
0.817013 + 0.576619i \(0.195628\pi\)
\(558\) 0 0
\(559\) 49.6569i 2.10026i
\(560\) 0 0
\(561\) 1.72526 + 1.90055i 0.0728406 + 0.0802414i
\(562\) 0 0
\(563\) −27.2512 15.7335i −1.14850 0.663087i −0.199979 0.979800i \(-0.564087\pi\)
−0.948521 + 0.316713i \(0.897421\pi\)
\(564\) 0 0
\(565\) −10.8148 18.7317i −0.454981 0.788049i
\(566\) 0 0
\(567\) −6.30589 22.9616i −0.264822 0.964297i
\(568\) 0 0
\(569\) −8.62592 + 4.98018i −0.361617 + 0.208780i −0.669790 0.742551i \(-0.733616\pi\)
0.308173 + 0.951330i \(0.400283\pi\)
\(570\) 0 0
\(571\) 29.5465 + 17.0587i 1.23648 + 0.713883i 0.968373 0.249506i \(-0.0802681\pi\)
0.268108 + 0.963389i \(0.413601\pi\)
\(572\) 0 0
\(573\) 0.579206 0.525785i 0.0241967 0.0219650i
\(574\) 0 0
\(575\) 13.3288i 0.555851i
\(576\) 0 0
\(577\) 0.843668 + 0.487092i 0.0351224 + 0.0202779i 0.517458 0.855708i \(-0.326878\pi\)
−0.482336 + 0.875986i \(0.660212\pi\)
\(578\) 0 0
\(579\) −0.908350 + 2.83464i −0.0377497 + 0.117804i
\(580\) 0 0
\(581\) −11.5265 7.65011i −0.478199 0.317380i
\(582\) 0 0
\(583\) −6.53263 11.3149i −0.270554 0.468613i
\(584\) 0 0
\(585\) −32.1762 + 45.0499i −1.33032 + 1.86259i
\(586\) 0 0
\(587\) 25.9212i 1.06988i 0.844890 + 0.534940i \(0.179666\pi\)
−0.844890 + 0.534940i \(0.820334\pi\)
\(588\) 0 0
\(589\) 1.90029i 0.0782999i
\(590\) 0 0
\(591\) −27.7983 + 6.02654i −1.14347 + 0.247899i
\(592\) 0 0
\(593\) −22.1118 38.2987i −0.908022 1.57274i −0.816808 0.576909i \(-0.804259\pi\)
−0.0912135 0.995831i \(-0.529075\pi\)
\(594\) 0 0
\(595\) −8.09370 5.37178i −0.331809 0.220222i
\(596\) 0 0
\(597\) 1.59871 + 0.512302i 0.0654310 + 0.0209671i
\(598\) 0 0
\(599\) −8.58632 4.95731i −0.350827 0.202550i 0.314222 0.949349i \(-0.398256\pi\)
−0.665050 + 0.746799i \(0.731590\pi\)
\(600\) 0 0
\(601\) 11.8235i 0.482292i −0.970489 0.241146i \(-0.922477\pi\)
0.970489 0.241146i \(-0.0775233\pi\)
\(602\) 0 0
\(603\) 37.0046 + 3.58642i 1.50695 + 0.146050i
\(604\) 0 0
\(605\) 25.2238 + 14.5630i 1.02549 + 0.592069i
\(606\) 0 0
\(607\) −5.56281 + 3.21169i −0.225788 + 0.130359i −0.608627 0.793456i \(-0.708279\pi\)
0.382840 + 0.923815i \(0.374946\pi\)
\(608\) 0 0
\(609\) 5.33469 13.6546i 0.216173 0.553311i
\(610\) 0 0
\(611\) 20.0198 + 34.6753i 0.809915 + 1.40281i
\(612\) 0 0
\(613\) 17.5740 + 10.1463i 0.709805 + 0.409806i 0.810989 0.585061i \(-0.198930\pi\)
−0.101184 + 0.994868i \(0.532263\pi\)
\(614\) 0 0
\(615\) −37.3016 + 33.8612i −1.50414 + 1.36541i
\(616\) 0 0
\(617\) 26.7202i 1.07571i 0.843036 + 0.537856i \(0.180766\pi\)
−0.843036 + 0.537856i \(0.819234\pi\)
\(618\) 0 0
\(619\) 7.12358 12.3384i 0.286321 0.495922i −0.686608 0.727028i \(-0.740901\pi\)
0.972929 + 0.231106i \(0.0742343\pi\)
\(620\) 0 0
\(621\) −6.09915 + 14.1596i −0.244750 + 0.568207i
\(622\) 0 0
\(623\) −36.6564 2.28836i −1.46861 0.0916813i
\(624\) 0 0
\(625\) 13.6405 + 23.6260i 0.545619 + 0.945040i
\(626\) 0 0
\(627\) 2.58548 0.560520i 0.103254 0.0223850i
\(628\) 0 0
\(629\) 0.460951i 0.0183793i
\(630\) 0 0
\(631\) 13.9775 0.556436 0.278218 0.960518i \(-0.410256\pi\)
0.278218 + 0.960518i \(0.410256\pi\)
\(632\) 0 0
\(633\) −3.66733 16.9161i −0.145763 0.672355i
\(634\) 0 0
\(635\) 15.7088 9.06945i 0.623383 0.359910i
\(636\) 0 0
\(637\) 16.2849 + 38.6352i 0.645231 + 1.53078i
\(638\) 0 0
\(639\) 7.71641 + 16.9601i 0.305256 + 0.670932i
\(640\) 0 0
\(641\) −6.31225 3.64438i −0.249319 0.143944i 0.370133 0.928979i \(-0.379312\pi\)
−0.619452 + 0.785034i \(0.712645\pi\)
\(642\) 0 0
\(643\) −25.1189 −0.990594 −0.495297 0.868724i \(-0.664941\pi\)
−0.495297 + 0.868724i \(0.664941\pi\)
\(644\) 0 0
\(645\) 29.7363 + 32.7576i 1.17086 + 1.28983i
\(646\) 0 0
\(647\) 20.2246 35.0301i 0.795112 1.37717i −0.127657 0.991818i \(-0.540746\pi\)
0.922768 0.385355i \(-0.125921\pi\)
\(648\) 0 0
\(649\) 4.01543 2.31831i 0.157619 0.0910016i
\(650\) 0 0
\(651\) 5.53629 4.42905i 0.216984 0.173588i
\(652\) 0 0
\(653\) −22.0316 38.1599i −0.862164 1.49331i −0.869836 0.493341i \(-0.835775\pi\)
0.00767187 0.999971i \(-0.497558\pi\)
\(654\) 0 0
\(655\) 6.54455 11.3355i 0.255717 0.442915i
\(656\) 0 0
\(657\) −30.7889 2.98400i −1.20119 0.116417i
\(658\) 0 0
\(659\) 5.89051 0.229462 0.114731 0.993397i \(-0.463399\pi\)
0.114731 + 0.993397i \(0.463399\pi\)
\(660\) 0 0
\(661\) 21.0993 36.5450i 0.820667 1.42144i −0.0845192 0.996422i \(-0.526935\pi\)
0.905186 0.425015i \(-0.139731\pi\)
\(662\) 0 0
\(663\) 3.77273 11.7734i 0.146521 0.457239i
\(664\) 0 0
\(665\) −8.96570 + 4.45604i −0.347675 + 0.172798i
\(666\) 0 0
\(667\) −8.22004 + 4.74584i −0.318281 + 0.183760i
\(668\) 0 0
\(669\) 5.04716 + 23.2808i 0.195134 + 0.900087i
\(670\) 0 0
\(671\) 7.87156 0.303878
\(672\) 0 0
\(673\) −46.7729 −1.80296 −0.901481 0.432818i \(-0.857519\pi\)
−0.901481 + 0.432818i \(0.857519\pi\)
\(674\) 0 0
\(675\) 2.72193 + 23.1832i 0.104767 + 0.892320i
\(676\) 0 0
\(677\) −35.7518 + 20.6413i −1.37405 + 0.793310i −0.991436 0.130596i \(-0.958311\pi\)
−0.382618 + 0.923907i \(0.624977\pi\)
\(678\) 0 0
\(679\) 37.8032 + 25.0899i 1.45075 + 0.962863i
\(680\) 0 0
\(681\) 7.86743 + 2.52109i 0.301481 + 0.0966083i
\(682\) 0 0
\(683\) 17.1346 29.6781i 0.655638 1.13560i −0.326095 0.945337i \(-0.605733\pi\)
0.981733 0.190262i \(-0.0609338\pi\)
\(684\) 0 0
\(685\) −2.40079 −0.0917293
\(686\) 0 0
\(687\) −1.73043 1.90625i −0.0660201 0.0727280i
\(688\) 0 0
\(689\) −31.4642 + 54.4976i −1.19869 + 2.07619i
\(690\) 0 0
\(691\) 3.57575 + 6.19338i 0.136028 + 0.235607i 0.925990 0.377549i \(-0.123233\pi\)
−0.789962 + 0.613156i \(0.789900\pi\)
\(692\) 0 0
\(693\) −7.65908 6.22611i −0.290944 0.236511i
\(694\) 0 0
\(695\) −14.8008 + 8.54522i −0.561425 + 0.324139i
\(696\) 0 0
\(697\) 5.62522 9.74316i 0.213070 0.369048i
\(698\) 0 0
\(699\) 2.96450 2.69108i 0.112128 0.101786i
\(700\) 0 0
\(701\) 12.4116 0.468778 0.234389 0.972143i \(-0.424691\pi\)
0.234389 + 0.972143i \(0.424691\pi\)
\(702\) 0 0
\(703\) 0.411437 + 0.237543i 0.0155176 + 0.00895911i
\(704\) 0 0
\(705\) 33.9714 + 10.8860i 1.27944 + 0.409991i
\(706\) 0 0
\(707\) 7.86299 3.90798i 0.295718 0.146975i
\(708\) 0 0
\(709\) −30.5908 + 17.6616i −1.14886 + 0.663295i −0.948609 0.316450i \(-0.897509\pi\)
−0.200251 + 0.979745i \(0.564176\pi\)
\(710\) 0 0
\(711\) 31.3177 + 22.3682i 1.17451 + 0.838872i
\(712\) 0 0
\(713\) −4.59050 −0.171916
\(714\) 0 0
\(715\) 22.9481i 0.858211i
\(716\) 0 0
\(717\) −7.92780 36.5682i −0.296069 1.36566i
\(718\) 0 0
\(719\) 12.1803 + 21.0969i 0.454250 + 0.786783i 0.998645 0.0520455i \(-0.0165741\pi\)
−0.544395 + 0.838829i \(0.683241\pi\)
\(720\) 0 0
\(721\) −2.04942 + 32.8289i −0.0763243 + 1.22261i
\(722\) 0 0
\(723\) −6.44687 2.06587i −0.239762 0.0768307i
\(724\) 0 0
\(725\) −7.18536 + 12.4454i −0.266858 + 0.462211i
\(726\) 0 0
\(727\) 5.15142i 0.191055i −0.995427 0.0955277i \(-0.969546\pi\)
0.995427 0.0955277i \(-0.0304539\pi\)
\(728\) 0 0
\(729\) 7.71680 25.8738i 0.285807 0.958287i
\(730\) 0 0
\(731\) −8.55627 4.93997i −0.316465 0.182711i
\(732\) 0 0
\(733\) 3.74171 + 6.48083i 0.138203 + 0.239375i 0.926817 0.375514i \(-0.122534\pi\)
−0.788613 + 0.614889i \(0.789201\pi\)
\(734\) 0 0
\(735\) 33.8788 + 15.7348i 1.24964 + 0.580388i
\(736\) 0 0
\(737\) 13.3464 7.70552i 0.491619 0.283837i
\(738\) 0 0
\(739\) −2.26360 1.30689i −0.0832679 0.0480747i 0.457788 0.889061i \(-0.348642\pi\)
−0.541056 + 0.840987i \(0.681975\pi\)
\(740\) 0 0
\(741\) −8.56448 9.43466i −0.314624 0.346591i
\(742\) 0 0
\(743\) 23.6093i 0.866140i −0.901360 0.433070i \(-0.857430\pi\)
0.901360 0.433070i \(-0.142570\pi\)
\(744\) 0 0
\(745\) 11.0580 + 6.38431i 0.405132 + 0.233903i
\(746\) 0 0
\(747\) −6.49617 14.2781i −0.237683 0.522409i
\(748\) 0 0
\(749\) 25.2987 + 1.57933i 0.924394 + 0.0577074i
\(750\) 0 0
\(751\) −0.504993 0.874673i −0.0184275 0.0319173i 0.856665 0.515874i \(-0.172533\pi\)
−0.875092 + 0.483956i \(0.839199\pi\)
\(752\) 0 0
\(753\) −5.74418 26.4959i −0.209330 0.965564i
\(754\) 0 0
\(755\) 13.3397i 0.485480i
\(756\) 0 0
\(757\) 11.1837i 0.406478i −0.979129 0.203239i \(-0.934853\pi\)
0.979129 0.203239i \(-0.0651469\pi\)
\(758\) 0 0
\(759\) 1.35404 + 6.24572i 0.0491486 + 0.226705i
\(760\) 0 0
\(761\) 3.99009 + 6.91104i 0.144641 + 0.250525i 0.929239 0.369480i \(-0.120464\pi\)
−0.784598 + 0.620005i \(0.787131\pi\)
\(762\) 0 0
\(763\) −1.39641 + 0.694029i −0.0505534 + 0.0251255i
\(764\) 0 0
\(765\) −4.56150 10.0259i −0.164922 0.362486i
\(766\) 0 0
\(767\) −19.3402 11.1661i −0.698333 0.403183i
\(768\) 0 0
\(769\) 11.8900i 0.428766i 0.976750 + 0.214383i \(0.0687740\pi\)
−0.976750 + 0.214383i \(0.931226\pi\)
\(770\) 0 0
\(771\) −15.2075 16.7527i −0.547686 0.603333i
\(772\) 0 0
\(773\) 31.4449 + 18.1547i 1.13099 + 0.652979i 0.944185 0.329417i \(-0.106852\pi\)
0.186809 + 0.982396i \(0.440186\pi\)
\(774\) 0 0
\(775\) −6.01902 + 3.47508i −0.216210 + 0.124829i
\(776\) 0 0
\(777\) −0.266891 1.75233i −0.00957465 0.0628644i
\(778\) 0 0
\(779\) −5.79771 10.0419i −0.207725 0.359790i
\(780\) 0 0
\(781\) 6.68897 + 3.86188i 0.239350 + 0.138189i
\(782\) 0 0
\(783\) 13.3281 9.93321i 0.476309 0.354984i
\(784\) 0 0
\(785\) 19.7807i 0.706005i
\(786\) 0 0
\(787\) 6.73055 11.6577i 0.239918 0.415551i −0.720772 0.693172i \(-0.756213\pi\)
0.960691 + 0.277621i \(0.0895460\pi\)
\(788\) 0 0
\(789\) −50.0638 16.0427i −1.78232 0.571137i
\(790\) 0 0
\(791\) −15.4759 10.2713i −0.550259 0.365206i
\(792\) 0 0
\(793\) −18.9565 32.8337i −0.673167 1.16596i
\(794\) 0 0
\(795\) 11.8788 + 54.7927i 0.421297 + 1.94330i
\(796\) 0 0
\(797\) 13.9811i 0.495236i 0.968858 + 0.247618i \(0.0796479\pi\)
−0.968858 + 0.247618i \(0.920352\pi\)
\(798\) 0 0
\(799\) −7.96643 −0.281832
\(800\) 0 0
\(801\) −33.8891 24.2047i −1.19741 0.855232i
\(802\) 0 0
\(803\) −11.1045 + 6.41121i −0.391871 + 0.226247i
\(804\) 0 0
\(805\) −10.7644 21.6584i −0.379396 0.763357i
\(806\) 0 0
\(807\) −1.30411 0.417895i −0.0459067 0.0147106i
\(808\) 0 0
\(809\) 2.99316 + 1.72810i 0.105234 + 0.0607569i 0.551693 0.834047i \(-0.313982\pi\)
−0.446459 + 0.894804i \(0.647315\pi\)
\(810\) 0 0
\(811\) 45.3167 1.59129 0.795643 0.605766i \(-0.207133\pi\)
0.795643 + 0.605766i \(0.207133\pi\)
\(812\) 0 0
\(813\) −7.33222 + 6.65595i −0.257152 + 0.233434i
\(814\) 0 0
\(815\) 16.3327 28.2891i 0.572111 0.990924i
\(816\) 0 0
\(817\) −8.81865 + 5.09145i −0.308525 + 0.178127i
\(818\) 0 0
\(819\) −7.52542 + 46.9413i −0.262959 + 1.64026i
\(820\) 0 0
\(821\) −22.3394 38.6931i −0.779652 1.35040i −0.932142 0.362092i \(-0.882063\pi\)
0.152490 0.988305i \(-0.451271\pi\)
\(822\) 0 0
\(823\) −21.1932 + 36.7076i −0.738747 + 1.27955i 0.214312 + 0.976765i \(0.431249\pi\)
−0.953060 + 0.302783i \(0.902084\pi\)
\(824\) 0 0
\(825\) 6.50352 + 7.16430i 0.226424 + 0.249429i
\(826\) 0 0
\(827\) 9.18843 0.319513 0.159757 0.987156i \(-0.448929\pi\)
0.159757 + 0.987156i \(0.448929\pi\)
\(828\) 0 0
\(829\) 13.0225 22.5556i 0.452290 0.783389i −0.546238 0.837630i \(-0.683941\pi\)
0.998528 + 0.0542413i \(0.0172740\pi\)
\(830\) 0 0
\(831\) 29.3581 + 9.40769i 1.01842 + 0.326349i
\(832\) 0 0
\(833\) −8.27719 1.03749i −0.286788 0.0359468i
\(834\) 0 0
\(835\) −41.5484 + 23.9880i −1.43784 + 0.830139i
\(836\) 0 0
\(837\) 7.98437 0.937445i 0.275980 0.0324029i
\(838\) 0 0
\(839\) −31.2096 −1.07748 −0.538738 0.842473i \(-0.681099\pi\)
−0.538738 + 0.842473i \(0.681099\pi\)
\(840\) 0 0
\(841\) −18.7664 −0.647116
\(842\) 0 0
\(843\) −10.2438 47.2509i −0.352814 1.62741i
\(844\) 0 0
\(845\) 61.0345 35.2383i 2.09965 1.21223i
\(846\) 0 0
\(847\) 24.9632 + 1.55838i 0.857744 + 0.0535467i
\(848\) 0 0
\(849\) 1.91537 5.97721i 0.0657354 0.205137i
\(850\) 0 0
\(851\) −0.573831 + 0.993904i −0.0196707 + 0.0340706i
\(852\) 0 0
\(853\) 4.78201 0.163733 0.0818665 0.996643i \(-0.473912\pi\)
0.0818665 + 0.996643i \(0.473912\pi\)
\(854\) 0 0
\(855\) −11.2996 1.09513i −0.386438 0.0374528i
\(856\) 0 0
\(857\) 15.2965 26.4944i 0.522520 0.905031i −0.477137 0.878829i \(-0.658325\pi\)
0.999657 0.0262016i \(-0.00834119\pi\)
\(858\) 0 0
\(859\) −12.2711 21.2542i −0.418684 0.725183i 0.577123 0.816657i \(-0.304175\pi\)
−0.995807 + 0.0914746i \(0.970842\pi\)
\(860\) 0 0
\(861\) −15.7432 + 40.2961i −0.536528 + 1.37329i
\(862\) 0 0
\(863\) 32.1415 18.5569i 1.09411 0.631684i 0.159441 0.987207i \(-0.449031\pi\)
0.934667 + 0.355523i \(0.115697\pi\)
\(864\) 0 0
\(865\) −2.87820 + 4.98519i −0.0978617 + 0.169501i
\(866\) 0 0
\(867\) −18.1376 19.9805i −0.615986 0.678573i
\(868\) 0 0
\(869\) 15.9530 0.541170
\(870\) 0 0
\(871\) −64.2823 37.1134i −2.17812 1.25754i
\(872\) 0 0
\(873\) 21.3054 + 46.8277i 0.721078 + 1.58488i
\(874\) 0 0
\(875\) 3.44850 + 2.28877i 0.116581 + 0.0773744i
\(876\) 0 0
\(877\) 28.4107 16.4029i 0.959360 0.553887i 0.0633837 0.997989i \(-0.479811\pi\)
0.895976 + 0.444103i \(0.146477\pi\)
\(878\) 0 0
\(879\) −3.58548 16.5386i −0.120935 0.557832i
\(880\) 0 0
\(881\) −27.1405 −0.914385 −0.457193 0.889368i \(-0.651145\pi\)
−0.457193 + 0.889368i \(0.651145\pi\)
\(882\) 0 0
\(883\) 47.9537i 1.61377i 0.590709 + 0.806884i \(0.298848\pi\)
−0.590709 + 0.806884i \(0.701152\pi\)
\(884\) 0 0
\(885\) −19.4449 + 4.21556i −0.653633 + 0.141704i
\(886\) 0 0
\(887\) 14.5502 + 25.2017i 0.488548 + 0.846190i 0.999913 0.0131735i \(-0.00419338\pi\)
−0.511365 + 0.859364i \(0.670860\pi\)
\(888\) 0 0
\(889\) 8.61372 12.9784i 0.288895 0.435280i
\(890\) 0 0
\(891\) −3.63058 10.5868i −0.121629 0.354672i
\(892\) 0 0
\(893\) −4.10536 + 7.11070i −0.137381 + 0.237950i
\(894\) 0 0
\(895\) 47.6391i 1.59240i
\(896\) 0 0
\(897\) 22.7912 20.6891i 0.760976 0.690789i
\(898\) 0 0
\(899\) 4.28625 + 2.47467i 0.142954 + 0.0825348i
\(900\) 0 0
\(901\) −6.26024 10.8431i −0.208559 0.361235i
\(902\) 0 0
\(903\) 35.3873 + 13.8254i 1.17762 + 0.460081i
\(904\) 0 0
\(905\) 44.3263 25.5918i 1.47346 0.850700i
\(906\) 0 0
\(907\) −1.60692 0.927757i −0.0533570 0.0308057i 0.473084 0.881017i \(-0.343141\pi\)
−0.526441 + 0.850212i \(0.676474\pi\)
\(908\) 0 0
\(909\) 9.90984 + 0.960442i 0.328688 + 0.0318558i
\(910\) 0 0
\(911\) 12.2209i 0.404896i 0.979293 + 0.202448i \(0.0648897\pi\)
−0.979293 + 0.202448i \(0.935110\pi\)
\(912\) 0 0
\(913\) −5.63121 3.25118i −0.186366 0.107598i
\(914\) 0 0
\(915\) −32.1672 10.3078i −1.06341 0.340767i
\(916\) 0 0
\(917\) 0.700333 11.2184i 0.0231270 0.370463i
\(918\) 0 0
\(919\) −14.5126 25.1365i −0.478726 0.829177i 0.520977 0.853571i \(-0.325568\pi\)
−0.999702 + 0.0243939i \(0.992234\pi\)
\(920\) 0 0
\(921\) 16.1978 3.51161i 0.533737 0.115712i
\(922\) 0 0
\(923\) 37.2012i 1.22449i
\(924\) 0 0
\(925\) 1.73760i 0.0571318i
\(926\) 0 0
\(927\) −21.6774 + 30.3505i −0.711978 + 0.996841i
\(928\) 0 0
\(929\) 14.7335 + 25.5191i 0.483390 + 0.837255i 0.999818 0.0190749i \(-0.00607211\pi\)
−0.516428 + 0.856330i \(0.672739\pi\)
\(930\) 0 0
\(931\) −5.19155 + 6.85342i −0.170146 + 0.224612i
\(932\) 0 0
\(933\) −9.35719 + 29.2005i −0.306341 + 0.955982i
\(934\) 0 0
\(935\) −3.95414 2.28292i −0.129314 0.0746596i
\(936\) 0 0
\(937\) 23.9964i 0.783929i 0.919980 + 0.391965i \(0.128204\pi\)
−0.919980 + 0.391965i \(0.871796\pi\)
\(938\) 0 0
\(939\) 14.7116 13.3547i 0.480094 0.435814i
\(940\) 0 0
\(941\) −37.8505 21.8530i −1.23389 0.712387i −0.266052 0.963959i \(-0.585719\pi\)
−0.967839 + 0.251571i \(0.919053\pi\)
\(942\) 0 0
\(943\) 24.2582 14.0055i 0.789955 0.456081i
\(944\) 0 0
\(945\) 23.1457 + 35.4727i 0.752931 + 1.15393i
\(946\) 0 0
\(947\) −15.9345 27.5994i −0.517802 0.896859i −0.999786 0.0206793i \(-0.993417\pi\)
0.481984 0.876180i \(-0.339916\pi\)
\(948\) 0 0
\(949\) 53.4846 + 30.8794i 1.73618 + 1.00239i
\(950\) 0 0
\(951\) −2.69250 2.96607i −0.0873103 0.0961814i
\(952\) 0 0
\(953\) 49.4699i 1.60249i −0.598338 0.801243i \(-0.704172\pi\)
0.598338 0.801243i \(-0.295828\pi\)
\(954\) 0 0
\(955\) −0.695736 + 1.20505i −0.0225135 + 0.0389945i
\(956\) 0 0
\(957\) 2.10267 6.56171i 0.0679698 0.212110i
\(958\) 0 0
\(959\) −1.84621 + 0.917585i −0.0596173 + 0.0296304i
\(960\) 0 0
\(961\) −14.3032 24.7738i −0.461392 0.799155i
\(962\) 0 0
\(963\) 23.3888 + 16.7051i 0.753693 + 0.538313i
\(964\) 0 0
\(965\) 5.29478i 0.170445i
\(966\) 0 0
\(967\) −18.5748 −0.597324 −0.298662 0.954359i \(-0.596540\pi\)
−0.298662 + 0.954359i \(0.596540\pi\)
\(968\) 0 0
\(969\) 2.47767 0.537148i 0.0795944 0.0172557i
\(970\) 0 0
\(971\) 41.9333 24.2102i 1.34570 0.776943i 0.358067 0.933696i \(-0.383436\pi\)
0.987638 + 0.156753i \(0.0501026\pi\)
\(972\) 0 0
\(973\) −8.11583 + 12.2282i −0.260182 + 0.392018i
\(974\) 0 0
\(975\) 14.2216 44.3807i 0.455456 1.42132i
\(976\) 0 0
\(977\) −46.0630 26.5945i −1.47369 0.850833i −0.474125 0.880458i \(-0.657235\pi\)
−0.999561 + 0.0296250i \(0.990569\pi\)
\(978\) 0 0
\(979\) −17.2629 −0.551724
\(980\) 0 0
\(981\) −1.75991 0.170567i −0.0561897 0.00544580i
\(982\) 0 0
\(983\) −7.97962 + 13.8211i −0.254510 + 0.440825i −0.964762 0.263123i \(-0.915248\pi\)
0.710252 + 0.703947i \(0.248581\pi\)
\(984\) 0 0
\(985\) 43.8174 25.2980i 1.39614 0.806061i
\(986\) 0 0
\(987\) 30.2848 4.61256i 0.963975 0.146820i
\(988\) 0 0
\(989\) −12.2994 21.3031i −0.391097 0.677400i
\(990\) 0 0
\(991\) 4.26387 7.38524i 0.135446 0.234600i −0.790322 0.612692i \(-0.790086\pi\)
0.925768 + 0.378092i \(0.123420\pi\)
\(992\) 0 0
\(993\) 30.6781 27.8486i 0.973541 0.883749i
\(994\) 0 0
\(995\) −2.98621 −0.0946693
\(996\) 0 0
\(997\) −13.8974 + 24.0710i −0.440136 + 0.762337i −0.997699 0.0677970i \(-0.978403\pi\)
0.557564 + 0.830134i \(0.311736\pi\)
\(998\) 0 0
\(999\) 0.795108 1.84591i 0.0251561 0.0584019i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bi.c.17.3 48
3.2 odd 2 inner 672.2.bi.c.17.15 48
4.3 odd 2 168.2.ba.c.101.13 yes 48
7.5 odd 6 inner 672.2.bi.c.593.10 48
8.3 odd 2 168.2.ba.c.101.20 yes 48
8.5 even 2 inner 672.2.bi.c.17.22 48
12.11 even 2 168.2.ba.c.101.12 yes 48
21.5 even 6 inner 672.2.bi.c.593.22 48
24.5 odd 2 inner 672.2.bi.c.17.10 48
24.11 even 2 168.2.ba.c.101.5 yes 48
28.19 even 6 168.2.ba.c.5.5 48
56.5 odd 6 inner 672.2.bi.c.593.15 48
56.19 even 6 168.2.ba.c.5.12 yes 48
84.47 odd 6 168.2.ba.c.5.20 yes 48
168.5 even 6 inner 672.2.bi.c.593.3 48
168.131 odd 6 168.2.ba.c.5.13 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.ba.c.5.5 48 28.19 even 6
168.2.ba.c.5.12 yes 48 56.19 even 6
168.2.ba.c.5.13 yes 48 168.131 odd 6
168.2.ba.c.5.20 yes 48 84.47 odd 6
168.2.ba.c.101.5 yes 48 24.11 even 2
168.2.ba.c.101.12 yes 48 12.11 even 2
168.2.ba.c.101.13 yes 48 4.3 odd 2
168.2.ba.c.101.20 yes 48 8.3 odd 2
672.2.bi.c.17.3 48 1.1 even 1 trivial
672.2.bi.c.17.10 48 24.5 odd 2 inner
672.2.bi.c.17.15 48 3.2 odd 2 inner
672.2.bi.c.17.22 48 8.5 even 2 inner
672.2.bi.c.593.3 48 168.5 even 6 inner
672.2.bi.c.593.10 48 7.5 odd 6 inner
672.2.bi.c.593.15 48 56.5 odd 6 inner
672.2.bi.c.593.22 48 21.5 even 6 inner