Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [672,4,Mod(271,672)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(672, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 0, 5]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("672.271");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 672.bb (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(39.6492835239\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
271.1 | 0 | −2.59808 | + | 1.50000i | 0 | −4.82508 | + | 8.35729i | 0 | 14.2799 | − | 11.7934i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.2 | 0 | −2.59808 | + | 1.50000i | 0 | 4.82508 | − | 8.35729i | 0 | −14.2799 | + | 11.7934i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.3 | 0 | −2.59808 | + | 1.50000i | 0 | −4.08960 | + | 7.08340i | 0 | −18.1007 | − | 3.91988i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.4 | 0 | −2.59808 | + | 1.50000i | 0 | 4.08960 | − | 7.08340i | 0 | 18.1007 | + | 3.91988i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.5 | 0 | −2.59808 | + | 1.50000i | 0 | −3.56336 | + | 6.17193i | 0 | −16.0311 | + | 9.27388i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.6 | 0 | −2.59808 | + | 1.50000i | 0 | 3.56336 | − | 6.17193i | 0 | 16.0311 | − | 9.27388i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.7 | 0 | −2.59808 | + | 1.50000i | 0 | −1.10134 | + | 1.90757i | 0 | −7.13695 | + | 17.0899i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.8 | 0 | −2.59808 | + | 1.50000i | 0 | 1.10134 | − | 1.90757i | 0 | 7.13695 | − | 17.0899i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.9 | 0 | −2.59808 | + | 1.50000i | 0 | −2.37912 | + | 4.12075i | 0 | −11.6311 | − | 14.4124i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.10 | 0 | −2.59808 | + | 1.50000i | 0 | 2.37912 | − | 4.12075i | 0 | 11.6311 | + | 14.4124i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.11 | 0 | −2.59808 | + | 1.50000i | 0 | −4.53700 | + | 7.85831i | 0 | 18.3201 | + | 2.71568i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.12 | 0 | −2.59808 | + | 1.50000i | 0 | 4.53700 | − | 7.85831i | 0 | −18.3201 | − | 2.71568i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.13 | 0 | −2.59808 | + | 1.50000i | 0 | −6.00810 | + | 10.4063i | 0 | −8.17074 | + | 16.6204i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.14 | 0 | −2.59808 | + | 1.50000i | 0 | 6.00810 | − | 10.4063i | 0 | 8.17074 | − | 16.6204i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.15 | 0 | −2.59808 | + | 1.50000i | 0 | −6.01586 | + | 10.4198i | 0 | −9.34266 | + | 15.9911i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.16 | 0 | −2.59808 | + | 1.50000i | 0 | 6.01586 | − | 10.4198i | 0 | 9.34266 | − | 15.9911i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.17 | 0 | −2.59808 | + | 1.50000i | 0 | −7.16825 | + | 12.4158i | 0 | 12.0691 | + | 14.0477i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.18 | 0 | −2.59808 | + | 1.50000i | 0 | 7.16825 | − | 12.4158i | 0 | −12.0691 | − | 14.0477i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.19 | 0 | −2.59808 | + | 1.50000i | 0 | −7.30307 | + | 12.6493i | 0 | 0.782311 | − | 18.5037i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
271.20 | 0 | −2.59808 | + | 1.50000i | 0 | 7.30307 | − | 12.6493i | 0 | −0.782311 | + | 18.5037i | 0 | 4.50000 | − | 7.79423i | 0 | ||||||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
8.d | odd | 2 | 1 | inner |
56.m | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 672.4.bb.a | 96 | |
4.b | odd | 2 | 1 | 168.4.t.a | ✓ | 96 | |
7.d | odd | 6 | 1 | inner | 672.4.bb.a | 96 | |
8.b | even | 2 | 1 | 168.4.t.a | ✓ | 96 | |
8.d | odd | 2 | 1 | inner | 672.4.bb.a | 96 | |
28.f | even | 6 | 1 | 168.4.t.a | ✓ | 96 | |
56.j | odd | 6 | 1 | 168.4.t.a | ✓ | 96 | |
56.m | even | 6 | 1 | inner | 672.4.bb.a | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.4.t.a | ✓ | 96 | 4.b | odd | 2 | 1 | |
168.4.t.a | ✓ | 96 | 8.b | even | 2 | 1 | |
168.4.t.a | ✓ | 96 | 28.f | even | 6 | 1 | |
168.4.t.a | ✓ | 96 | 56.j | odd | 6 | 1 | |
672.4.bb.a | 96 | 1.a | even | 1 | 1 | trivial | |
672.4.bb.a | 96 | 7.d | odd | 6 | 1 | inner | |
672.4.bb.a | 96 | 8.d | odd | 2 | 1 | inner | |
672.4.bb.a | 96 | 56.m | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(672, [\chi])\).