Properties

Label 672.4.bl
Level $672$
Weight $4$
Character orbit 672.bl
Rep. character $\chi_{672}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $2$
Sturm bound $512$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.bl (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(512\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(672, [\chi])\).

Total New Old
Modular forms 800 96 704
Cusp forms 736 96 640
Eisenstein series 64 0 64

Trace form

\( 96 q - 432 q^{9} + 240 q^{21} + 1368 q^{25} - 72 q^{33} + 504 q^{37} - 368 q^{49} - 784 q^{53} + 336 q^{57} - 1200 q^{61} + 560 q^{65} + 648 q^{73} + 3136 q^{77} - 3888 q^{81} - 2112 q^{85} - 2760 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(672, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
672.4.bl.a 672.bl 28.f $48$ $39.649$ None 672.4.bl.a \(0\) \(-72\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{6}]$
672.4.bl.b 672.bl 28.f $48$ $39.649$ None 672.4.bl.a \(0\) \(72\) \(0\) \(20\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{4}^{\mathrm{old}}(672, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)