Defining parameters
Level: | \( N \) | \(=\) | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 672.bq (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 32 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Sturm bound: | \(512\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(672, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1552 | 576 | 976 |
Cusp forms | 1520 | 576 | 944 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(672, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(672, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(672, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)