Properties

Label 672.4.bq
Level 672672
Weight 44
Character orbit 672.bq
Rep. character χ672(85,)\chi_{672}(85,\cdot)
Character field Q(ζ8)\Q(\zeta_{8})
Dimension 576576
Sturm bound 512512

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 672=2537 672 = 2^{5} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 672.bq (of order 88 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 32 32
Character field: Q(ζ8)\Q(\zeta_{8})
Sturm bound: 512512

Dimensions

The following table gives the dimensions of various subspaces of M4(672,[χ])M_{4}(672, [\chi]).

Total New Old
Modular forms 1552 576 976
Cusp forms 1520 576 944
Eisenstein series 32 0 32

Trace form

576q+240q1096q12120q1672q18+392q22+656q23+912q24+80q26+2480q32+2000q343280q40+1616q431000q442880q462976q51++23600q94+O(q100) 576 q + 240 q^{10} - 96 q^{12} - 120 q^{16} - 72 q^{18} + 392 q^{22} + 656 q^{23} + 912 q^{24} + 80 q^{26} + 2480 q^{32} + 2000 q^{34} - 3280 q^{40} + 1616 q^{43} - 1000 q^{44} - 2880 q^{46} - 2976 q^{51}+ \cdots + 23600 q^{94}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(672,[χ])S_{4}^{\mathrm{new}}(672, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(672,[χ])S_{4}^{\mathrm{old}}(672, [\chi]) into lower level spaces

S4old(672,[χ]) S_{4}^{\mathrm{old}}(672, [\chi]) \simeq S4new(32,[χ])S_{4}^{\mathrm{new}}(32, [\chi])4^{\oplus 4}\oplusS4new(96,[χ])S_{4}^{\mathrm{new}}(96, [\chi])2^{\oplus 2}\oplusS4new(224,[χ])S_{4}^{\mathrm{new}}(224, [\chi])2^{\oplus 2}